Merge pull request #376 from wernsaar/develop

Merged some Lapack optimized functions
https://github.com/xianyi/OpenBLAS/wiki/Fixed-optimized-kernels-To-do-List
This commit is contained in:
Zhang Xianyi 2014-05-26 04:46:06 -05:00
commit 0ac073fa94
24 changed files with 240 additions and 1167 deletions

View File

@ -207,6 +207,7 @@ else
netlib : lapack_prebuild
ifndef NOFORTRAN
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapacklib
@$(MAKE) -C $(NETLIB_LAPACK_DIR) tmglib
endif
ifndef NO_LAPACKE
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapackelib
@ -230,11 +231,18 @@ ifndef NOFORTRAN
-@echo "ARCHFLAGS = -ru" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "RANLIB = $(RANLIB)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "LAPACKLIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "TMGLIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "BLASLIB = ../../../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "LAPACKELIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "LAPACKLIB_P = ../$(LIBNAME_P)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "SUFFIX = $(SUFFIX)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "PSUFFIX = $(PSUFFIX)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "CEXTRALIB = $(EXTRALIB)" >> $(NETLIB_LAPACK_DIR)/make.inc
ifeq ($(F_COMPILER), GFORTRAN)
-@echo "TIMER = INT_ETIME" >> $(NETLIB_LAPACK_DIR)/make.inc
else
-@echo "TIMER = NONE" >> $(NETLIB_LAPACK_DIR)/make.inc
endif
-@cat make.inc >> $(NETLIB_LAPACK_DIR)/make.inc
endif
@ -256,13 +264,12 @@ lapack-timing : large.tgz timing.tgz
ifndef NOFORTRAN
(cd $(NETLIB_LAPACK_DIR); $(TAR) zxf ../timing.tgz TIMING)
(cd $(NETLIB_LAPACK_DIR)/TIMING; $(TAR) zxf ../../large.tgz )
make -C $(NETLIB_LAPACK_DIR) tmglib
make -C $(NETLIB_LAPACK_DIR)/TIMING
endif
lapack-test :
make -j 1 -C $(NETLIB_LAPACK_DIR) tmglib
(cd $(NETLIB_LAPACK_DIR)/TESTING && rm -f x* *.out)
make -j 1 -C $(NETLIB_LAPACK_DIR)/TESTING xeigtstc xeigtstd xeigtsts xeigtstz xlintstc xlintstd xlintstds xlintstrfd xlintstrfz xlintsts xlintstz xlintstzc xlintstrfs xlintstrfc
(cd $(NETLIB_LAPACK_DIR); ./lapack_testing.py -r )
@ -291,4 +298,5 @@ endif
@$(MAKE) -C $(NETLIB_LAPACK_DIR) clean
@rm -f $(NETLIB_LAPACK_DIR)/make.inc $(NETLIB_LAPACK_DIR)/lapacke/include/lapacke_mangling.h
@rm -f *.grd Makefile.conf_last config_last.h
@(cd $(NETLIB_LAPACK_DIR)/TESTING && rm -f x* *.out testing_results.txt)
@echo Done.

View File

@ -2667,34 +2667,34 @@
## @(MATGEN_OBJ) from `lapack-3.4.1/lapacke/src/Makefile`
## Not exported: requires LAPACKE_TESTING to be set and depends on libtmg
## (see `lapack-3.4.1/TESTING/MATGEN`).
#LAPACKE_clatms,
#LAPACKE_clatms_work,
#LAPACKE_dlatms,
#LAPACKE_dlatms_work,
#LAPACKE_slatms,
#LAPACKE_slatms_work,
#LAPACKE_zlatms,
#LAPACKE_zlatms_work,
#LAPACKE_clagge,
#LAPACKE_clagge_work,
#LAPACKE_dlagge,
#LAPACKE_dlagge_work,
#LAPACKE_slagge,
#LAPACKE_slagge_work,
#LAPACKE_zlagge,
#LAPACKE_zlagge_work,
#LAPACKE_claghe,
#LAPACKE_claghe_work,
#LAPACKE_zlaghe,
#LAPACKE_zlaghe_work,
#LAPACKE_clagsy,
#LAPACKE_clagsy_work,
#LAPACKE_dlagsy,
#LAPACKE_dlagsy_work,
#LAPACKE_slagsy,
#LAPACKE_slagsy_work,
#LAPACKE_zlagsy,
#LAPACKE_zlagsy_work,
LAPACKE_clatms,
LAPACKE_clatms_work,
LAPACKE_dlatms,
LAPACKE_dlatms_work,
LAPACKE_slatms,
LAPACKE_slatms_work,
LAPACKE_zlatms,
LAPACKE_zlatms_work,
LAPACKE_clagge,
LAPACKE_clagge_work,
LAPACKE_dlagge,
LAPACKE_dlagge_work,
LAPACKE_slagge,
LAPACKE_slagge_work,
LAPACKE_zlagge,
LAPACKE_zlagge_work,
LAPACKE_claghe,
LAPACKE_claghe_work,
LAPACKE_zlaghe,
LAPACKE_zlaghe_work,
LAPACKE_clagsy,
LAPACKE_clagsy_work,
LAPACKE_dlagsy,
LAPACKE_dlagsy_work,
LAPACKE_slagsy,
LAPACKE_slagsy_work,
LAPACKE_zlagsy,
LAPACKE_zlagsy_work,
);
#These function may need 2 underscores.

View File

@ -349,7 +349,8 @@ XBLASOBJS = $(XBLAS1OBJS) $(XBLAS2OBJS) $(XBLAS3OBJS)
SLAPACKOBJS = \
sgetrf.$(SUFFIX) sgetrs.$(SUFFIX) spotrf.$(SUFFIX) sgetf2.$(SUFFIX) \
spotf2.$(SUFFIX) slaswp.$(SUFFIX) sgesv.$(SUFFIX)
spotf2.$(SUFFIX) slaswp.$(SUFFIX) sgesv.$(SUFFIX) slauu2.$(SUFFIX) \
slauum.$(SUFFIX) strti2.$(SUFFIX) strtri.$(SUFFIX) spotri.$(SUFFIX)
#DLAPACKOBJS = \
@ -359,7 +360,8 @@ SLAPACKOBJS = \
DLAPACKOBJS = \
dgetrf.$(SUFFIX) dgetrs.$(SUFFIX) dpotrf.$(SUFFIX) dgetf2.$(SUFFIX) \
dpotf2.$(SUFFIX) dlaswp.$(SUFFIX) dgesv.$(SUFFIX)
dpotf2.$(SUFFIX) dlaswp.$(SUFFIX) dgesv.$(SUFFIX) dlauu2.$(SUFFIX) \
dlauum.$(SUFFIX) dtrti2.$(SUFFIX) dtrtri.$(SUFFIX) dpotri.$(SUFFIX)
QLAPACKOBJS = \
@ -374,7 +376,8 @@ QLAPACKOBJS = \
CLAPACKOBJS = \
cgetrf.$(SUFFIX) cgetrs.$(SUFFIX) cpotrf.$(SUFFIX) cgetf2.$(SUFFIX) \
cpotf2.$(SUFFIX) claswp.$(SUFFIX) cgesv.$(SUFFIX)
cpotf2.$(SUFFIX) claswp.$(SUFFIX) cgesv.$(SUFFIX) clauu2.$(SUFFIX) \
clauum.$(SUFFIX) ctrti2.$(SUFFIX) ctrtri.$(SUFFIX) cpotri.$(SUFFIX)
#ZLAPACKOBJS = \
@ -384,7 +387,9 @@ CLAPACKOBJS = \
ZLAPACKOBJS = \
zgetrf.$(SUFFIX) zgetrs.$(SUFFIX) zpotrf.$(SUFFIX) zgetf2.$(SUFFIX) \
zpotf2.$(SUFFIX) zlaswp.$(SUFFIX) zgesv.$(SUFFIX)
zpotf2.$(SUFFIX) zlaswp.$(SUFFIX) zgesv.$(SUFFIX) zlauu2.$(SUFFIX) \
zlauum.$(SUFFIX) ztrti2.$(SUFFIX) ztrtri.$(SUFFIX) zpotri.$(SUFFIX)
@ -1788,37 +1793,37 @@ zgetrf.$(SUFFIX) zgetrf.$(PSUFFIX) : lapack/zgetrf.c
xgetrf.$(SUFFIX) xgetrf.$(PSUFFIX) : zgetrf.c
$(CC) -c $(CFLAGS) $< -o $(@F)
slauu2.$(SUFFIX) slauu2.$(PSUFFIX) : lauu2.c
slauu2.$(SUFFIX) slauu2.$(PSUFFIX) : lapack/lauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
dlauu2.$(SUFFIX) dlauu2.$(PSUFFIX) : lauu2.c
dlauu2.$(SUFFIX) dlauu2.$(PSUFFIX) : lapack/lauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
qlauu2.$(SUFFIX) qlauu2.$(PSUFFIX) : lauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
clauu2.$(SUFFIX) clauu2.$(PSUFFIX) : zlauu2.c
clauu2.$(SUFFIX) clauu2.$(PSUFFIX) : lapack/zlauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
zlauu2.$(SUFFIX) zlauu2.$(PSUFFIX) : zlauu2.c
zlauu2.$(SUFFIX) zlauu2.$(PSUFFIX) : lapack/zlauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
xlauu2.$(SUFFIX) xlauu2.$(PSUFFIX) : zlauu2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
slauum.$(SUFFIX) slauum.$(PSUFFIX) : lauum.c
slauum.$(SUFFIX) slauum.$(PSUFFIX) : lapack/lauum.c
$(CC) -c $(CFLAGS) $< -o $(@F)
dlauum.$(SUFFIX) dlauum.$(PSUFFIX) : lauum.c
dlauum.$(SUFFIX) dlauum.$(PSUFFIX) : lapack/lauum.c
$(CC) -c $(CFLAGS) $< -o $(@F)
qlauum.$(SUFFIX) qlauum.$(PSUFFIX) : lauum.c
$(CC) -c $(CFLAGS) $< -o $(@F)
clauum.$(SUFFIX) clauum.$(PSUFFIX) : zlauum.c
clauum.$(SUFFIX) clauum.$(PSUFFIX) : lapack/zlauum.c
$(CC) -c $(CFLAGS) $< -o $(@F)
zlauum.$(SUFFIX) zlauum.$(PSUFFIX) : zlauum.c
zlauum.$(SUFFIX) zlauum.$(PSUFFIX) : lapack/zlauum.c
$(CC) -c $(CFLAGS) $< -o $(@F)
xlauum.$(SUFFIX) xlauum.$(PSUFFIX) : zlauum.c
@ -1860,37 +1865,37 @@ zpotrf.$(SUFFIX) zpotrf.$(PSUFFIX) : lapack/zpotrf.c
xpotrf.$(SUFFIX) xpotrf.$(PSUFFIX) : zpotrf.c
$(CC) -c $(CFLAGS) $< -o $(@F)
strti2.$(SUFFIX) strti2.$(PSUFFIX) : trti2.c
strti2.$(SUFFIX) strti2.$(PSUFFIX) : lapack/trti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
dtrti2.$(SUFFIX) dtrti2.$(PSUFFIX) : trti2.c
dtrti2.$(SUFFIX) dtrti2.$(PSUFFIX) : lapack/trti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
qtrti2.$(SUFFIX) qtrti2.$(PSUFFIX) : trti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
ctrti2.$(SUFFIX) ctrti2.$(PSUFFIX) : ztrti2.c
ctrti2.$(SUFFIX) ctrti2.$(PSUFFIX) : lapack/ztrti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
ztrti2.$(SUFFIX) ztrti2.$(PSUFFIX) : ztrti2.c
ztrti2.$(SUFFIX) ztrti2.$(PSUFFIX) : lapack/ztrti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
xtrti2.$(SUFFIX) xtrti2.$(PSUFFIX) : ztrti2.c
$(CC) -c $(CFLAGS) $< -o $(@F)
strtri.$(SUFFIX) strtri.$(PSUFFIX) : trtri.c
strtri.$(SUFFIX) strtri.$(PSUFFIX) : lapack/trtri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
dtrtri.$(SUFFIX) dtrtri.$(PSUFFIX) : trtri.c
dtrtri.$(SUFFIX) dtrtri.$(PSUFFIX) : lapack/trtri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
qtrtri.$(SUFFIX) qtrtri.$(PSUFFIX) : trtri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
ctrtri.$(SUFFIX) ctrtri.$(PSUFFIX) : ztrtri.c
ctrtri.$(SUFFIX) ctrtri.$(PSUFFIX) : lapack/ztrtri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
ztrtri.$(SUFFIX) ztrtri.$(PSUFFIX) : ztrtri.c
ztrtri.$(SUFFIX) ztrtri.$(PSUFFIX) : lapack/ztrtri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
xtrtri.$(SUFFIX) xtrtri.$(PSUFFIX) : ztrtri.c
@ -1950,19 +1955,19 @@ zgesv.$(SUFFIX) zgesv.$(PSUFFIX) : lapack/gesv.c
xgesv.$(SUFFIX) xgesv.$(PSUFFIX) : gesv.c
$(CC) -c $(CFLAGS) $< -o $(@F)
spotri.$(SUFFIX) spotri.$(PSUFFIX) : potri.c
spotri.$(SUFFIX) spotri.$(PSUFFIX) : lapack/potri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
dpotri.$(SUFFIX) dpotri.$(PSUFFIX) : potri.c
dpotri.$(SUFFIX) dpotri.$(PSUFFIX) : lapack/potri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
qpotri.$(SUFFIX) qpotri.$(PSUFFIX) : potri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
cpotri.$(SUFFIX) cpotri.$(PSUFFIX) : zpotri.c
cpotri.$(SUFFIX) cpotri.$(PSUFFIX) : lapack/zpotri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
zpotri.$(SUFFIX) zpotri.$(PSUFFIX) : zpotri.c
zpotri.$(SUFFIX) zpotri.$(PSUFFIX) : lapack/zpotri.c
$(CC) -c $(CFLAGS) $< -o $(@F)
xpotri.$(SUFFIX) xpotri.$(PSUFFIX) : zpotri.c

View File

@ -149,7 +149,10 @@ int NAME(char *UPLO, blasint *N, FLOAT *a, blasint *ldA, blasint *Info){
blas_memory_free(buffer);
#endif
FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.n, 2. / 3. * args.m * args.n * args.n);
FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, .5 * args.n * args.n,
args.n * (1./3. + args.n * ( 1./2. + args.n * 1./6.))
+ args.n * (1./3. + args.n * (-1./2. + args.n * 1./6.)));
IDEBUG_END;

View File

@ -120,14 +120,14 @@ SLASRC = \
slarrv.o slartv.o \
slarz.o slarzb.o slarzt.o slasy2.o slasyf.o slasyf_rook.o \
slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o slatzm.o \
slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \
sorgrq.o sorgtr.o sorm2l.o sorm2r.o \
sormbr.o sormhr.o sorml2.o sormlq.o sormql.o sormqr.o sormr2.o \
sormr3.o sormrq.o sormrz.o sormtr.o spbcon.o spbequ.o spbrfs.o \
spbstf.o spbsv.o spbsvx.o \
spbtf2.o spbtrf.o spbtrs.o spocon.o spoequ.o sporfs.o sposv.o \
sposvx.o spotri.o spstrf.o spstf2.o \
sposvx.o spstrf.o spstf2.o \
sppcon.o sppequ.o \
spprfs.o sppsv.o sppsvx.o spptrf.o spptri.o spptrs.o sptcon.o \
spteqr.o sptrfs.o sptsv.o sptsvx.o spttrs.o sptts2.o srscl.o \
@ -147,7 +147,7 @@ SLASRC = \
stgsja.o stgsna.o stgsy2.o stgsyl.o stpcon.o stprfs.o stptri.o \
stptrs.o \
strcon.o strevc.o strexc.o strrfs.o strsen.o strsna.o strsyl.o \
strti2.o strtri.o strtrs.o stzrqf.o stzrzf.o sstemr.o \
strtrs.o stzrqf.o stzrzf.o sstemr.o \
slansf.o spftrf.o spftri.o spftrs.o ssfrk.o stfsm.o stftri.o stfttp.o \
stfttr.o stpttf.o stpttr.o strttf.o strttp.o \
sgejsv.o sgesvj.o sgsvj0.o sgsvj1.o \
@ -208,9 +208,9 @@ CLASRC = \
clarfx.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \
clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \
clasyf.o clasyf_rook.o clatbs.o clatdf.o clatps.o clatrd.o clatrs.o clatrz.o \
clatzm.o clauu2.o clauum.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \
clatzm.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \
cpbsvx.o cpbtf2.o cpbtrf.o cpbtrs.o cpocon.o cpoequ.o cporfs.o \
cposv.o cposvx.o cpotri.o cpstrf.o cpstf2.o \
cposv.o cposvx.o cpstrf.o cpstf2.o \
cppcon.o cppequ.o cpprfs.o cppsv.o cppsvx.o cpptrf.o cpptri.o cpptrs.o \
cptcon.o cpteqr.o cptrfs.o cptsv.o cptsvx.o cpttrf.o cpttrs.o cptts2.o \
crot.o cspcon.o cspmv.o cspr.o csprfs.o cspsv.o \
@ -225,7 +225,7 @@ CLASRC = \
ctgexc.o ctgsen.o ctgsja.o ctgsna.o ctgsy2.o ctgsyl.o ctpcon.o \
ctprfs.o ctptri.o \
ctptrs.o ctrcon.o ctrevc.o ctrexc.o ctrrfs.o ctrsen.o ctrsna.o \
ctrsyl.o ctrti2.o ctrtri.o ctrtrs.o ctzrqf.o ctzrzf.o cung2l.o cung2r.o \
ctrsyl.o ctrtrs.o ctzrqf.o ctzrzf.o cung2l.o cung2r.o \
cungbr.o cunghr.o cungl2.o cunglq.o cungql.o cungqr.o cungr2.o \
cungrq.o cungtr.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o \
cunmlq.o cunmql.o cunmqr.o cunmr2.o cunmr3.o cunmrq.o cunmrz.o \
@ -279,15 +279,15 @@ DLASRC = \
dlarf.o dlarfb.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o \
dlargv.o dlarrv.o dlartv.o \
dlarz.o dlarzb.o dlarzt.o dlasy2.o dlasyf.o dlasyf_rook.o \
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o dlauu2.o \
dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o \
dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \
dorgrq.o dorgtr.o dorm2l.o dorm2r.o \
dormbr.o dormhr.o dorml2.o dormlq.o dormql.o dormqr.o dormr2.o \
dormr3.o dormrq.o dormrz.o dormtr.o dpbcon.o dpbequ.o dpbrfs.o \
dpbstf.o dpbsv.o dpbsvx.o \
dpbtf2.o dpbtrf.o dpbtrs.o dpocon.o dpoequ.o dporfs.o dposv.o \
dposvx.o dpotri.o dpotrs.o dpstrf.o dpstf2.o \
dposvx.o dpotrs.o dpstrf.o dpstf2.o \
dppcon.o dppequ.o \
dpprfs.o dppsv.o dppsvx.o dpptrf.o dpptri.o dpptrs.o dptcon.o \
dpteqr.o dptrfs.o dptsv.o dptsvx.o dpttrs.o dptts2.o drscl.o \
@ -307,7 +307,7 @@ DLASRC = \
dtgsja.o dtgsna.o dtgsy2.o dtgsyl.o dtpcon.o dtprfs.o dtptri.o \
dtptrs.o \
dtrcon.o dtrevc.o dtrexc.o dtrrfs.o dtrsen.o dtrsna.o dtrsyl.o \
dtrti2.o dtrtri.o dtrtrs.o dtzrqf.o dtzrzf.o dstemr.o \
dtrtrs.o dtzrqf.o dtzrzf.o dstemr.o \
dsgesv.o dsposv.o dlag2s.o slag2d.o dlat2s.o \
dlansf.o dpftrf.o dpftri.o dpftrs.o dsfrk.o dtfsm.o dtftri.o dtfttp.o \
dtfttr.o dtpttf.o dtpttr.o dtrttf.o dtrttp.o \
@ -369,10 +369,10 @@ ZLASRC = \
zlarfx.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \
zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \
zlassq.o zlasyf.o zlasyf_rook.o \
zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o zlauu2.o \
zlauum.o zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \
zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o \
zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \
zpbsvx.o zpbtf2.o zpbtrf.o zpbtrs.o zpocon.o zpoequ.o zporfs.o \
zposv.o zposvx.o zpotri.o zpotrs.o zpstrf.o zpstf2.o \
zposv.o zposvx.o zpotrs.o zpstrf.o zpstf2.o \
zppcon.o zppequ.o zpprfs.o zppsv.o zppsvx.o zpptrf.o zpptri.o zpptrs.o \
zptcon.o zpteqr.o zptrfs.o zptsv.o zptsvx.o zpttrf.o zpttrs.o zptts2.o \
zrot.o zspcon.o zspmv.o zspr.o zsprfs.o zspsv.o \
@ -387,7 +387,7 @@ ZLASRC = \
ztgexc.o ztgsen.o ztgsja.o ztgsna.o ztgsy2.o ztgsyl.o ztpcon.o \
ztprfs.o ztptri.o \
ztptrs.o ztrcon.o ztrevc.o ztrexc.o ztrrfs.o ztrsen.o ztrsna.o \
ztrsyl.o ztrti2.o ztrtri.o ztrtrs.o ztzrqf.o ztzrzf.o zung2l.o \
ztrsyl.o ztrtrs.o ztzrqf.o ztzrzf.o zung2l.o \
zung2r.o zungbr.o zunghr.o zungl2.o zunglq.o zungql.o zungqr.o zungr2.o \
zungrq.o zungtr.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o \
zunmlq.o zunmql.o zunmqr.o zunmr2.o zunmr3.o zunmrq.o zunmrz.o \

View File

@ -5,7 +5,7 @@ SEP: Data file for testing Symmetric Eigenvalue Problem routines
1 3 3 3 10 Values of NB (blocksize)
2 2 2 2 2 Values of NBMIN (minimum blocksize)
1 0 5 9 1 Values of NX (crossover point)
50.0 Threshold value
60.0 Threshold value
T Put T to test the LAPACK routines
T Put T to test the driver routines
T Put T to test the error exits

View File

@ -2072,9 +2072,9 @@ SOBJ_FILES := $(SSRC_OBJ)
DOBJ_FILES := $(DSRC_OBJ)
ZOBJ_FILES := $(ZSRC_OBJ)
ifdef LAPACKE_TESTING
# ifdef LAPACKE_TESTING
ZOBJ_FILES += $(MATGEN_OBJ)
endif
#endif
ALLOBJ = $(COBJ_FILES) $(DOBJ_FILES) $(SOBJ_FILES) $(ZOBJ_FILES) $(OBJ_FILES)

View File

@ -2,7 +2,7 @@ TOPDIR = ..
include ../Makefile.system
#SUBDIRS = laswp getf2 getrf potf2 potrf lauu2 lauum trti2 trtri getrs
SUBDIRS = getrf getf2 laswp getrs potrf potf2
SUBDIRS = getrf getf2 laswp getrs potrf potf2 lauu2 lauum trti2 trtri
FLAMEDIRS = laswp getf2 potf2 lauu2 trti2

View File

@ -1,194 +0,0 @@
SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CGETRI computes the inverse of a matrix using the LU factorization
* computed by CGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by CGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CGEMV, CSWAP, CTRSM, CTRTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from CTRTRI, then U is singular,
* and the inverse is not computed.
*
CALL CTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'CGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL CGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL CGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL CTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of CGETRI
*
END

View File

@ -1,193 +0,0 @@
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGETRI computes the inverse of a matrix using the LU factorization
* computed by DGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by DGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from DGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from DTRTRI, then U is singular,
* and the inverse is not computed.
*
CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL DGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of DGETRI
*
END

View File

@ -1,193 +0,0 @@
SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SGETRI computes the inverse of a matrix using the LU factorization
* computed by SGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by SGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from SGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from STRTRI, then U is singular,
* and the inverse is not computed.
*
CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL SGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of SGETRI
*
END

View File

@ -1,194 +0,0 @@
SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZGETRI computes the inverse of a matrix using the LU factorization
* computed by ZGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by ZGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from ZGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEMM, ZGEMV, ZSWAP, ZTRSM, ZTRTRI
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from ZTRTRI, then U is singular,
* and the inverse is not computed.
*
CALL ZTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'ZGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL ZGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL ZGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL ZTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL ZSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of ZGETRI
*
END

View File

@ -1,190 +1,113 @@
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
/***************************************************************************
* Copyright (c) 2013, The OpenBLAS Project
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of the OpenBLAS project nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* *****************************************************************************/
/**************************************************************************************
* 2014/05/22 Saar
* TEST double precision unblocked : OK
* 2014/05/23 Saar
* TEST double precision blocked: OK
* TEST single precision blocked: OK
**************************************************************************************/
#include <stdio.h>
#include "common.h"
static FLOAT dp1 = 1.;
static FLOAT dm1 = -1.;
// static FLOAT dp1 = 1.;
// static FLOAT dm1 = -1.;
#ifdef UNIT
#define TRTI2 TRTI2_LU
#define TRTI2 TRTI2_LU
#define TRMM TRMM_LNLU
#define TRSM TRSM_RNLU
#else
#define TRTI2 TRTI2_LN
#define TRTI2 TRTI2_LN
#define TRMM TRMM_LNLN
#define TRSM TRSM_RNLN
#endif
#if 0
#undef GEMM_P
#undef GEMM_Q
#undef GEMM_R
#define GEMM_P 8
#define GEMM_Q 20
#define GEMM_R 64
#endif
#define GEMM_PQ MAX(GEMM_P, GEMM_Q)
#define REAL_GEMM_R (GEMM_R - 2 * GEMM_PQ)
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
BLASLONG n, lda;
BLASLONG j, n, lda;
FLOAT *a;
BLASLONG i, is, min_i, start_i;
BLASLONG ls, min_l;
BLASLONG bk;
BLASLONG blocking;
BLASLONG range_N[2];
// BLASLONG info=0;
BLASLONG jb;
BLASLONG NB;
BLASLONG start_j;
FLOAT *sa_trsm = (FLOAT *)((BLASLONG)sb);
FLOAT *sa_trmm = (FLOAT *)((((BLASLONG)sb
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
+ GEMM_OFFSET_A);
FLOAT *sb_gemm = (FLOAT *)((((BLASLONG)sa_trmm
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
+ GEMM_OFFSET_B);
FLOAT beta_plus[2] = { ONE, ZERO};
FLOAT beta_minus[2] = {-ONE, ZERO};
n = args -> n;
a = (FLOAT *)args -> a;
lda = args -> lda;
if (range_n) {
n = range_n[1] - range_n[0];
a += range_n[0] * (lda + 1) * COMPSIZE;
}
NB = GEMM_Q;
if (n <= DTB_ENTRIES) {
if (n < NB) {
TRTI2(args, NULL, range_n, sa, sb, 0);
return 0;
}
blocking = GEMM_Q;
if (n <= 4 * GEMM_Q) blocking = (n + 3) / 4;
start_i = 0;
while (start_i < n) start_i += blocking;
start_i -= blocking;
lda = args -> lda;
a = (FLOAT *) args -> a;
args -> ldb = lda;
args -> ldc = lda;
args -> alpha = NULL;
for (i = start_i; i >= 0; i -= blocking) {
bk = MIN(blocking, n - i);
start_j = 0;
while (start_j < n) start_j += NB;
start_j -= NB;
if (n - bk - i > 0) TRSM_OLNCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, sa_trsm);
if (!range_n) {
range_N[0] = i;
range_N[1] = i + bk;
} else {
range_N[0] = range_n[0] + i;
range_N[1] = range_n[0] + i + bk;
}
for (j = start_j ; j >=0 ; j-= NB)
{
jb = n - j;
if ( jb > NB ) jb = NB;
CNAME(args, NULL, range_N, sa, sa_trmm, 0);
args -> n = jb;
args -> m = n-j-jb;
if (i > 0) {
TRMM_ILTCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, 0, sa_trmm);
args -> a = &a[(j+jb+(j+jb)*lda) * COMPSIZE];
args -> b = &a[(j+jb+j*lda) * COMPSIZE];
args -> beta = beta_plus;
for (ls = 0; ls < i; ls += REAL_GEMM_R) {
min_l = i - ls;
if (min_l > REAL_GEMM_R) min_l = REAL_GEMM_R;
TRMM(args, NULL, NULL, sa, sb, 0);
GEMM_ONCOPY (bk, min_l, a + (i + ls * lda) * COMPSIZE, lda, sb_gemm);
args -> a = &a[(j+j*lda) * COMPSIZE];
args -> beta = beta_minus;
if (n - bk - i > 0) {
for (is = i + bk; is < n; is += GEMM_P) {
min_i = n - is;
if (min_i > GEMM_P) min_i = GEMM_P;
TRSM(args, NULL, NULL, sa, sb, 0);
if (ls == 0) {
NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
args -> a = &a[(j+j*lda) * COMPSIZE];
TRSM_KERNEL_RT(min_i, bk, bk, dm1,
#ifdef COMPLEX
ZERO,
#endif
sa, sa_trsm,
a + (is + i * lda) * COMPSIZE, lda, 0);
} else {
GEMM_ITCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
}
TRTI2(args, NULL, range_n, sa, sb, 0);
GEMM_KERNEL_N(min_i, min_l, bk, dp1,
#ifdef COMPLEX
ZERO,
#endif
sa, sb_gemm,
a + (is + ls * lda) * COMPSIZE, lda);
}
}
for (is = 0; is < bk; is += GEMM_P) {
min_i = bk - is;
if (min_i > GEMM_P) min_i = GEMM_P;
TRMM_KERNEL_LT(min_i, min_l, bk, dp1,
#ifdef COMPLEX
ZERO,
#endif
sa_trmm + is * bk * COMPSIZE, sb_gemm,
a + (i + is + ls * lda) * COMPSIZE, lda, is);
}
}
} else {
if (n - bk - i > 0) {
for (is = 0; is < n - bk - i; is += GEMM_P) {
min_i = n - bk - i - is;
if (min_i > GEMM_P) min_i = GEMM_P;
NEG_TCOPY (bk, min_i, a + (i + bk + is + i * lda) * COMPSIZE, lda, sa);
TRSM_KERNEL_RT(min_i, bk, bk, dm1,
#ifdef COMPLEX
ZERO,
#endif
sa, sa_trsm,
a + (i + bk + is + i * lda) * COMPSIZE, lda, 0);
}
}
}
}
return 0;
}

View File

@ -1,46 +1,44 @@
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
/***************************************************************************
* Copyright (c) 2013, The OpenBLAS Project
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of the OpenBLAS project nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* *****************************************************************************/
/**************************************************************************************
* 2014/05/22 Saar
* TEST double precision unblocked : OK
* TEST double precision blocked : OK
* 2014/05/23
* TEST single precision blocked : OK
*
**************************************************************************************/
#include <stdio.h>
#include "common.h"
static FLOAT dp1 = 1.;
static FLOAT dm1 = -1.;
// static FLOAT dp1 = 1.;
// static FLOAT dm1 = -1.;
#ifdef UNIT
#define TRTI2 TRTI2_UU
@ -48,152 +46,66 @@ static FLOAT dm1 = -1.;
#define TRTI2 TRTI2_UN
#endif
#if 0
#undef GEMM_P
#undef GEMM_Q
#undef GEMM_R
#define GEMM_P 8
#define GEMM_Q 20
#define GEMM_R 64
#ifdef UNIT
#define TRMM TRMM_LNUU
#define TRSM TRSM_RNUU
#else
#define TRMM TRMM_LNUN
#define TRSM TRSM_RNUN
#endif
#define GEMM_PQ MAX(GEMM_P, GEMM_Q)
#define REAL_GEMM_R (GEMM_R - 2 * GEMM_PQ)
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
BLASLONG n, lda;
BLASLONG j, n, lda;
FLOAT *a;
BLASLONG i, is, min_i, start_is;
BLASLONG ls, min_l;
BLASLONG bk;
BLASLONG blocking;
BLASLONG range_N[2];
// BLASLONG info=0;
BLASLONG jb;
BLASLONG NB;
FLOAT *sa_trsm = (FLOAT *)((BLASLONG)sb);
FLOAT *sa_trmm = (FLOAT *)((((BLASLONG)sb
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
+ GEMM_OFFSET_A);
FLOAT *sb_gemm = (FLOAT *)((((BLASLONG)sa_trmm
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
+ GEMM_OFFSET_B);
FLOAT beta_plus[2] = { ONE, ZERO};
FLOAT beta_minus[2] = {-ONE, ZERO};
n = args -> n;
a = (FLOAT *)args -> a;
lda = args -> lda;
if (range_n) {
n = range_n[1] - range_n[0];
a += range_n[0] * (lda + 1) * COMPSIZE;
}
NB = GEMM_Q;
if (n <= DTB_ENTRIES) {
if (n <= NB) {
TRTI2(args, NULL, range_n, sa, sb, 0);
return 0;
}
blocking = GEMM_Q;
if (n <= 4 * GEMM_Q) blocking = (n + 3) / 4;
for (i = 0; i < n; i += blocking) {
bk = MIN(blocking, n - i);
lda = args -> lda;
a = (FLOAT *) args -> a;
args -> ldb = lda;
args -> ldc = lda;
args -> alpha = NULL;
if (i > 0) TRSM_OUNCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, sa_trsm);
for (j = 0; j < n; j += NB)
{
jb = n - j;
if ( jb > NB ) jb = NB;
if (!range_n) {
range_N[0] = i;
range_N[1] = i + bk;
} else {
range_N[0] = range_n[0] + i;
range_N[1] = range_n[0] + i + bk;
}
args -> n = jb;
args -> m = j;
CNAME(args, NULL, range_N, sa, sa_trmm, 0);
args -> a = &a[0];
args -> b = &a[(j*lda) * COMPSIZE];
args -> beta = beta_plus;
if (n -bk - i > 0) {
TRMM_IUTCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, 0, sa_trmm);
TRMM(args, NULL, NULL, sa, sb, 0);
for (ls = i + bk; ls < n; ls += REAL_GEMM_R) {
min_l = n - ls;
if (min_l > REAL_GEMM_R) min_l = REAL_GEMM_R;
args -> a = &a[(j+j*lda) * COMPSIZE];
args -> beta = beta_minus;
GEMM_ONCOPY (bk, min_l, a + (i + ls * lda) * COMPSIZE, lda, sb_gemm);
TRSM(args, NULL, NULL, sa, sb, 0);
if (i > 0) {
for (is = 0; is < i; is += GEMM_P) {
min_i = i - is;
if (min_i > GEMM_P) min_i = GEMM_P;
args -> a = &a[(j+j*lda) * COMPSIZE];
if (ls == i + bk) {
//NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
TRTI2(args, NULL, range_n, sa, sb, 0);
GEMM_BETA(min_i, bk, 0, dm1,
#ifdef COMPLEX
ZERO,
#endif
NULL, 0, NULL, 0, a + (is + i * lda) * COMPSIZE, lda);
TRSM_KERNEL_RN(min_i, bk, bk, dm1,
#ifdef COMPLEX
ZERO,
#endif
sa, sa_trsm,
a + (is + i * lda) * COMPSIZE, lda, 0);
} else {
GEMM_ITCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
}
GEMM_KERNEL_N(min_i, min_l, bk, dp1,
#ifdef COMPLEX
ZERO,
#endif
sa, sb_gemm,
a + (is + ls * lda) * COMPSIZE, lda);
}
}
start_is = 0;
while (start_is < bk) start_is += GEMM_P;
start_is -= GEMM_P;
for (is = 0; is < bk; is += GEMM_P) {
min_i = bk - is;
if (min_i > GEMM_P) min_i = GEMM_P;
TRMM_KERNEL_LN(min_i, min_l, bk, dp1,
#ifdef COMPLEX
ZERO,
#endif
sa_trmm + is * bk * COMPSIZE, sb_gemm,
a + (i + is + ls * lda) * COMPSIZE, lda, is);
}
}
} else {
if (i > 0) {
for (is = 0; is < i; is += GEMM_P) {
min_i = i - is;
if (min_i > GEMM_P) min_i = GEMM_P;
//NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
GEMM_BETA(min_i, bk, 0, dm1,
#ifdef COMPLEX
ZERO,
#endif
NULL, 0, NULL, 0, a + (is + i * lda) * COMPSIZE, lda);
TRSM_KERNEL_RN(min_i, bk, bk, dm1,
#ifdef COMPLEX
ZERO,
#endif
sa, sa_trsm,
a + (is + i * lda) * COMPSIZE, lda, 0);
}
}
}
}
return 0;
}

View File

@ -1,11 +1,7 @@
SHELL = /bin/sh
PLAT = _LINUX
DRVOPTS = $(OPTS)
LOADER = $(FORTRAN)
TIMER = NONE
LOADER = $(FORTRAN) -pthread
ARCHFLAGS= -ru
#RANLIB = ranlib
BLASLIB = ../../../libopenblas.a
TMGLIB = tmglib.a
#EIGSRCLIB = eigsrc.a
#LINSRCLIB = linsrc.a