Merge pull request #376 from wernsaar/develop
Merged some Lapack optimized functions https://github.com/xianyi/OpenBLAS/wiki/Fixed-optimized-kernels-To-do-List
This commit is contained in:
commit
0ac073fa94
12
Makefile
12
Makefile
|
@ -207,6 +207,7 @@ else
|
|||
netlib : lapack_prebuild
|
||||
ifndef NOFORTRAN
|
||||
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapacklib
|
||||
@$(MAKE) -C $(NETLIB_LAPACK_DIR) tmglib
|
||||
endif
|
||||
ifndef NO_LAPACKE
|
||||
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapackelib
|
||||
|
@ -230,11 +231,18 @@ ifndef NOFORTRAN
|
|||
-@echo "ARCHFLAGS = -ru" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "RANLIB = $(RANLIB)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "LAPACKLIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "TMGLIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "BLASLIB = ../../../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "LAPACKELIB = ../$(LIBNAME)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "LAPACKLIB_P = ../$(LIBNAME_P)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "SUFFIX = $(SUFFIX)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "PSUFFIX = $(PSUFFIX)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
-@echo "CEXTRALIB = $(EXTRALIB)" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
ifeq ($(F_COMPILER), GFORTRAN)
|
||||
-@echo "TIMER = INT_ETIME" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
else
|
||||
-@echo "TIMER = NONE" >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
endif
|
||||
-@cat make.inc >> $(NETLIB_LAPACK_DIR)/make.inc
|
||||
endif
|
||||
|
||||
|
@ -256,13 +264,12 @@ lapack-timing : large.tgz timing.tgz
|
|||
ifndef NOFORTRAN
|
||||
(cd $(NETLIB_LAPACK_DIR); $(TAR) zxf ../timing.tgz TIMING)
|
||||
(cd $(NETLIB_LAPACK_DIR)/TIMING; $(TAR) zxf ../../large.tgz )
|
||||
make -C $(NETLIB_LAPACK_DIR) tmglib
|
||||
make -C $(NETLIB_LAPACK_DIR)/TIMING
|
||||
endif
|
||||
|
||||
|
||||
lapack-test :
|
||||
make -j 1 -C $(NETLIB_LAPACK_DIR) tmglib
|
||||
(cd $(NETLIB_LAPACK_DIR)/TESTING && rm -f x* *.out)
|
||||
make -j 1 -C $(NETLIB_LAPACK_DIR)/TESTING xeigtstc xeigtstd xeigtsts xeigtstz xlintstc xlintstd xlintstds xlintstrfd xlintstrfz xlintsts xlintstz xlintstzc xlintstrfs xlintstrfc
|
||||
(cd $(NETLIB_LAPACK_DIR); ./lapack_testing.py -r )
|
||||
|
||||
|
@ -291,4 +298,5 @@ endif
|
|||
@$(MAKE) -C $(NETLIB_LAPACK_DIR) clean
|
||||
@rm -f $(NETLIB_LAPACK_DIR)/make.inc $(NETLIB_LAPACK_DIR)/lapacke/include/lapacke_mangling.h
|
||||
@rm -f *.grd Makefile.conf_last config_last.h
|
||||
@(cd $(NETLIB_LAPACK_DIR)/TESTING && rm -f x* *.out testing_results.txt)
|
||||
@echo Done.
|
||||
|
|
|
@ -2667,34 +2667,34 @@
|
|||
## @(MATGEN_OBJ) from `lapack-3.4.1/lapacke/src/Makefile`
|
||||
## Not exported: requires LAPACKE_TESTING to be set and depends on libtmg
|
||||
## (see `lapack-3.4.1/TESTING/MATGEN`).
|
||||
#LAPACKE_clatms,
|
||||
#LAPACKE_clatms_work,
|
||||
#LAPACKE_dlatms,
|
||||
#LAPACKE_dlatms_work,
|
||||
#LAPACKE_slatms,
|
||||
#LAPACKE_slatms_work,
|
||||
#LAPACKE_zlatms,
|
||||
#LAPACKE_zlatms_work,
|
||||
#LAPACKE_clagge,
|
||||
#LAPACKE_clagge_work,
|
||||
#LAPACKE_dlagge,
|
||||
#LAPACKE_dlagge_work,
|
||||
#LAPACKE_slagge,
|
||||
#LAPACKE_slagge_work,
|
||||
#LAPACKE_zlagge,
|
||||
#LAPACKE_zlagge_work,
|
||||
#LAPACKE_claghe,
|
||||
#LAPACKE_claghe_work,
|
||||
#LAPACKE_zlaghe,
|
||||
#LAPACKE_zlaghe_work,
|
||||
#LAPACKE_clagsy,
|
||||
#LAPACKE_clagsy_work,
|
||||
#LAPACKE_dlagsy,
|
||||
#LAPACKE_dlagsy_work,
|
||||
#LAPACKE_slagsy,
|
||||
#LAPACKE_slagsy_work,
|
||||
#LAPACKE_zlagsy,
|
||||
#LAPACKE_zlagsy_work,
|
||||
LAPACKE_clatms,
|
||||
LAPACKE_clatms_work,
|
||||
LAPACKE_dlatms,
|
||||
LAPACKE_dlatms_work,
|
||||
LAPACKE_slatms,
|
||||
LAPACKE_slatms_work,
|
||||
LAPACKE_zlatms,
|
||||
LAPACKE_zlatms_work,
|
||||
LAPACKE_clagge,
|
||||
LAPACKE_clagge_work,
|
||||
LAPACKE_dlagge,
|
||||
LAPACKE_dlagge_work,
|
||||
LAPACKE_slagge,
|
||||
LAPACKE_slagge_work,
|
||||
LAPACKE_zlagge,
|
||||
LAPACKE_zlagge_work,
|
||||
LAPACKE_claghe,
|
||||
LAPACKE_claghe_work,
|
||||
LAPACKE_zlaghe,
|
||||
LAPACKE_zlaghe_work,
|
||||
LAPACKE_clagsy,
|
||||
LAPACKE_clagsy_work,
|
||||
LAPACKE_dlagsy,
|
||||
LAPACKE_dlagsy_work,
|
||||
LAPACKE_slagsy,
|
||||
LAPACKE_slagsy_work,
|
||||
LAPACKE_zlagsy,
|
||||
LAPACKE_zlagsy_work,
|
||||
);
|
||||
|
||||
#These function may need 2 underscores.
|
||||
|
|
|
@ -349,7 +349,8 @@ XBLASOBJS = $(XBLAS1OBJS) $(XBLAS2OBJS) $(XBLAS3OBJS)
|
|||
|
||||
SLAPACKOBJS = \
|
||||
sgetrf.$(SUFFIX) sgetrs.$(SUFFIX) spotrf.$(SUFFIX) sgetf2.$(SUFFIX) \
|
||||
spotf2.$(SUFFIX) slaswp.$(SUFFIX) sgesv.$(SUFFIX)
|
||||
spotf2.$(SUFFIX) slaswp.$(SUFFIX) sgesv.$(SUFFIX) slauu2.$(SUFFIX) \
|
||||
slauum.$(SUFFIX) strti2.$(SUFFIX) strtri.$(SUFFIX) spotri.$(SUFFIX)
|
||||
|
||||
|
||||
#DLAPACKOBJS = \
|
||||
|
@ -359,7 +360,8 @@ SLAPACKOBJS = \
|
|||
|
||||
DLAPACKOBJS = \
|
||||
dgetrf.$(SUFFIX) dgetrs.$(SUFFIX) dpotrf.$(SUFFIX) dgetf2.$(SUFFIX) \
|
||||
dpotf2.$(SUFFIX) dlaswp.$(SUFFIX) dgesv.$(SUFFIX)
|
||||
dpotf2.$(SUFFIX) dlaswp.$(SUFFIX) dgesv.$(SUFFIX) dlauu2.$(SUFFIX) \
|
||||
dlauum.$(SUFFIX) dtrti2.$(SUFFIX) dtrtri.$(SUFFIX) dpotri.$(SUFFIX)
|
||||
|
||||
|
||||
QLAPACKOBJS = \
|
||||
|
@ -374,7 +376,8 @@ QLAPACKOBJS = \
|
|||
|
||||
CLAPACKOBJS = \
|
||||
cgetrf.$(SUFFIX) cgetrs.$(SUFFIX) cpotrf.$(SUFFIX) cgetf2.$(SUFFIX) \
|
||||
cpotf2.$(SUFFIX) claswp.$(SUFFIX) cgesv.$(SUFFIX)
|
||||
cpotf2.$(SUFFIX) claswp.$(SUFFIX) cgesv.$(SUFFIX) clauu2.$(SUFFIX) \
|
||||
clauum.$(SUFFIX) ctrti2.$(SUFFIX) ctrtri.$(SUFFIX) cpotri.$(SUFFIX)
|
||||
|
||||
|
||||
#ZLAPACKOBJS = \
|
||||
|
@ -384,7 +387,9 @@ CLAPACKOBJS = \
|
|||
|
||||
ZLAPACKOBJS = \
|
||||
zgetrf.$(SUFFIX) zgetrs.$(SUFFIX) zpotrf.$(SUFFIX) zgetf2.$(SUFFIX) \
|
||||
zpotf2.$(SUFFIX) zlaswp.$(SUFFIX) zgesv.$(SUFFIX)
|
||||
zpotf2.$(SUFFIX) zlaswp.$(SUFFIX) zgesv.$(SUFFIX) zlauu2.$(SUFFIX) \
|
||||
zlauum.$(SUFFIX) ztrti2.$(SUFFIX) ztrtri.$(SUFFIX) zpotri.$(SUFFIX)
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1788,37 +1793,37 @@ zgetrf.$(SUFFIX) zgetrf.$(PSUFFIX) : lapack/zgetrf.c
|
|||
xgetrf.$(SUFFIX) xgetrf.$(PSUFFIX) : zgetrf.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
slauu2.$(SUFFIX) slauu2.$(PSUFFIX) : lauu2.c
|
||||
slauu2.$(SUFFIX) slauu2.$(PSUFFIX) : lapack/lauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
dlauu2.$(SUFFIX) dlauu2.$(PSUFFIX) : lauu2.c
|
||||
dlauu2.$(SUFFIX) dlauu2.$(PSUFFIX) : lapack/lauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
qlauu2.$(SUFFIX) qlauu2.$(PSUFFIX) : lauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
clauu2.$(SUFFIX) clauu2.$(PSUFFIX) : zlauu2.c
|
||||
clauu2.$(SUFFIX) clauu2.$(PSUFFIX) : lapack/zlauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
zlauu2.$(SUFFIX) zlauu2.$(PSUFFIX) : zlauu2.c
|
||||
zlauu2.$(SUFFIX) zlauu2.$(PSUFFIX) : lapack/zlauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
xlauu2.$(SUFFIX) xlauu2.$(PSUFFIX) : zlauu2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
slauum.$(SUFFIX) slauum.$(PSUFFIX) : lauum.c
|
||||
slauum.$(SUFFIX) slauum.$(PSUFFIX) : lapack/lauum.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
dlauum.$(SUFFIX) dlauum.$(PSUFFIX) : lauum.c
|
||||
dlauum.$(SUFFIX) dlauum.$(PSUFFIX) : lapack/lauum.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
qlauum.$(SUFFIX) qlauum.$(PSUFFIX) : lauum.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
clauum.$(SUFFIX) clauum.$(PSUFFIX) : zlauum.c
|
||||
clauum.$(SUFFIX) clauum.$(PSUFFIX) : lapack/zlauum.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
zlauum.$(SUFFIX) zlauum.$(PSUFFIX) : zlauum.c
|
||||
zlauum.$(SUFFIX) zlauum.$(PSUFFIX) : lapack/zlauum.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
xlauum.$(SUFFIX) xlauum.$(PSUFFIX) : zlauum.c
|
||||
|
@ -1860,37 +1865,37 @@ zpotrf.$(SUFFIX) zpotrf.$(PSUFFIX) : lapack/zpotrf.c
|
|||
xpotrf.$(SUFFIX) xpotrf.$(PSUFFIX) : zpotrf.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
strti2.$(SUFFIX) strti2.$(PSUFFIX) : trti2.c
|
||||
strti2.$(SUFFIX) strti2.$(PSUFFIX) : lapack/trti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
dtrti2.$(SUFFIX) dtrti2.$(PSUFFIX) : trti2.c
|
||||
dtrti2.$(SUFFIX) dtrti2.$(PSUFFIX) : lapack/trti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
qtrti2.$(SUFFIX) qtrti2.$(PSUFFIX) : trti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
ctrti2.$(SUFFIX) ctrti2.$(PSUFFIX) : ztrti2.c
|
||||
ctrti2.$(SUFFIX) ctrti2.$(PSUFFIX) : lapack/ztrti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
ztrti2.$(SUFFIX) ztrti2.$(PSUFFIX) : ztrti2.c
|
||||
ztrti2.$(SUFFIX) ztrti2.$(PSUFFIX) : lapack/ztrti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
xtrti2.$(SUFFIX) xtrti2.$(PSUFFIX) : ztrti2.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
strtri.$(SUFFIX) strtri.$(PSUFFIX) : trtri.c
|
||||
strtri.$(SUFFIX) strtri.$(PSUFFIX) : lapack/trtri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
dtrtri.$(SUFFIX) dtrtri.$(PSUFFIX) : trtri.c
|
||||
dtrtri.$(SUFFIX) dtrtri.$(PSUFFIX) : lapack/trtri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
qtrtri.$(SUFFIX) qtrtri.$(PSUFFIX) : trtri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
ctrtri.$(SUFFIX) ctrtri.$(PSUFFIX) : ztrtri.c
|
||||
ctrtri.$(SUFFIX) ctrtri.$(PSUFFIX) : lapack/ztrtri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
ztrtri.$(SUFFIX) ztrtri.$(PSUFFIX) : ztrtri.c
|
||||
ztrtri.$(SUFFIX) ztrtri.$(PSUFFIX) : lapack/ztrtri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
xtrtri.$(SUFFIX) xtrtri.$(PSUFFIX) : ztrtri.c
|
||||
|
@ -1950,19 +1955,19 @@ zgesv.$(SUFFIX) zgesv.$(PSUFFIX) : lapack/gesv.c
|
|||
xgesv.$(SUFFIX) xgesv.$(PSUFFIX) : gesv.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
spotri.$(SUFFIX) spotri.$(PSUFFIX) : potri.c
|
||||
spotri.$(SUFFIX) spotri.$(PSUFFIX) : lapack/potri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
dpotri.$(SUFFIX) dpotri.$(PSUFFIX) : potri.c
|
||||
dpotri.$(SUFFIX) dpotri.$(PSUFFIX) : lapack/potri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
qpotri.$(SUFFIX) qpotri.$(PSUFFIX) : potri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
cpotri.$(SUFFIX) cpotri.$(PSUFFIX) : zpotri.c
|
||||
cpotri.$(SUFFIX) cpotri.$(PSUFFIX) : lapack/zpotri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
zpotri.$(SUFFIX) zpotri.$(PSUFFIX) : zpotri.c
|
||||
zpotri.$(SUFFIX) zpotri.$(PSUFFIX) : lapack/zpotri.c
|
||||
$(CC) -c $(CFLAGS) $< -o $(@F)
|
||||
|
||||
xpotri.$(SUFFIX) xpotri.$(PSUFFIX) : zpotri.c
|
||||
|
|
|
@ -149,7 +149,10 @@ int NAME(char *UPLO, blasint *N, FLOAT *a, blasint *ldA, blasint *Info){
|
|||
blas_memory_free(buffer);
|
||||
#endif
|
||||
|
||||
FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.n, 2. / 3. * args.m * args.n * args.n);
|
||||
FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, .5 * args.n * args.n,
|
||||
args.n * (1./3. + args.n * ( 1./2. + args.n * 1./6.))
|
||||
+ args.n * (1./3. + args.n * (-1./2. + args.n * 1./6.)));
|
||||
|
||||
|
||||
IDEBUG_END;
|
||||
|
|
@ -120,14 +120,14 @@ SLASRC = \
|
|||
slarrv.o slartv.o \
|
||||
slarz.o slarzb.o slarzt.o slasy2.o slasyf.o slasyf_rook.o \
|
||||
slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o slatzm.o \
|
||||
slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
|
||||
sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
|
||||
sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \
|
||||
sorgrq.o sorgtr.o sorm2l.o sorm2r.o \
|
||||
sormbr.o sormhr.o sorml2.o sormlq.o sormql.o sormqr.o sormr2.o \
|
||||
sormr3.o sormrq.o sormrz.o sormtr.o spbcon.o spbequ.o spbrfs.o \
|
||||
spbstf.o spbsv.o spbsvx.o \
|
||||
spbtf2.o spbtrf.o spbtrs.o spocon.o spoequ.o sporfs.o sposv.o \
|
||||
sposvx.o spotri.o spstrf.o spstf2.o \
|
||||
sposvx.o spstrf.o spstf2.o \
|
||||
sppcon.o sppequ.o \
|
||||
spprfs.o sppsv.o sppsvx.o spptrf.o spptri.o spptrs.o sptcon.o \
|
||||
spteqr.o sptrfs.o sptsv.o sptsvx.o spttrs.o sptts2.o srscl.o \
|
||||
|
@ -147,7 +147,7 @@ SLASRC = \
|
|||
stgsja.o stgsna.o stgsy2.o stgsyl.o stpcon.o stprfs.o stptri.o \
|
||||
stptrs.o \
|
||||
strcon.o strevc.o strexc.o strrfs.o strsen.o strsna.o strsyl.o \
|
||||
strti2.o strtri.o strtrs.o stzrqf.o stzrzf.o sstemr.o \
|
||||
strtrs.o stzrqf.o stzrzf.o sstemr.o \
|
||||
slansf.o spftrf.o spftri.o spftrs.o ssfrk.o stfsm.o stftri.o stfttp.o \
|
||||
stfttr.o stpttf.o stpttr.o strttf.o strttp.o \
|
||||
sgejsv.o sgesvj.o sgsvj0.o sgsvj1.o \
|
||||
|
@ -208,9 +208,9 @@ CLASRC = \
|
|||
clarfx.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \
|
||||
clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \
|
||||
clasyf.o clasyf_rook.o clatbs.o clatdf.o clatps.o clatrd.o clatrs.o clatrz.o \
|
||||
clatzm.o clauu2.o clauum.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \
|
||||
clatzm.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \
|
||||
cpbsvx.o cpbtf2.o cpbtrf.o cpbtrs.o cpocon.o cpoequ.o cporfs.o \
|
||||
cposv.o cposvx.o cpotri.o cpstrf.o cpstf2.o \
|
||||
cposv.o cposvx.o cpstrf.o cpstf2.o \
|
||||
cppcon.o cppequ.o cpprfs.o cppsv.o cppsvx.o cpptrf.o cpptri.o cpptrs.o \
|
||||
cptcon.o cpteqr.o cptrfs.o cptsv.o cptsvx.o cpttrf.o cpttrs.o cptts2.o \
|
||||
crot.o cspcon.o cspmv.o cspr.o csprfs.o cspsv.o \
|
||||
|
@ -225,7 +225,7 @@ CLASRC = \
|
|||
ctgexc.o ctgsen.o ctgsja.o ctgsna.o ctgsy2.o ctgsyl.o ctpcon.o \
|
||||
ctprfs.o ctptri.o \
|
||||
ctptrs.o ctrcon.o ctrevc.o ctrexc.o ctrrfs.o ctrsen.o ctrsna.o \
|
||||
ctrsyl.o ctrti2.o ctrtri.o ctrtrs.o ctzrqf.o ctzrzf.o cung2l.o cung2r.o \
|
||||
ctrsyl.o ctrtrs.o ctzrqf.o ctzrzf.o cung2l.o cung2r.o \
|
||||
cungbr.o cunghr.o cungl2.o cunglq.o cungql.o cungqr.o cungr2.o \
|
||||
cungrq.o cungtr.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o \
|
||||
cunmlq.o cunmql.o cunmqr.o cunmr2.o cunmr3.o cunmrq.o cunmrz.o \
|
||||
|
@ -279,15 +279,15 @@ DLASRC = \
|
|||
dlarf.o dlarfb.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o \
|
||||
dlargv.o dlarrv.o dlartv.o \
|
||||
dlarz.o dlarzb.o dlarzt.o dlasy2.o dlasyf.o dlasyf_rook.o \
|
||||
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o dlauu2.o \
|
||||
dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
|
||||
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o \
|
||||
dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
|
||||
dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \
|
||||
dorgrq.o dorgtr.o dorm2l.o dorm2r.o \
|
||||
dormbr.o dormhr.o dorml2.o dormlq.o dormql.o dormqr.o dormr2.o \
|
||||
dormr3.o dormrq.o dormrz.o dormtr.o dpbcon.o dpbequ.o dpbrfs.o \
|
||||
dpbstf.o dpbsv.o dpbsvx.o \
|
||||
dpbtf2.o dpbtrf.o dpbtrs.o dpocon.o dpoequ.o dporfs.o dposv.o \
|
||||
dposvx.o dpotri.o dpotrs.o dpstrf.o dpstf2.o \
|
||||
dposvx.o dpotrs.o dpstrf.o dpstf2.o \
|
||||
dppcon.o dppequ.o \
|
||||
dpprfs.o dppsv.o dppsvx.o dpptrf.o dpptri.o dpptrs.o dptcon.o \
|
||||
dpteqr.o dptrfs.o dptsv.o dptsvx.o dpttrs.o dptts2.o drscl.o \
|
||||
|
@ -307,7 +307,7 @@ DLASRC = \
|
|||
dtgsja.o dtgsna.o dtgsy2.o dtgsyl.o dtpcon.o dtprfs.o dtptri.o \
|
||||
dtptrs.o \
|
||||
dtrcon.o dtrevc.o dtrexc.o dtrrfs.o dtrsen.o dtrsna.o dtrsyl.o \
|
||||
dtrti2.o dtrtri.o dtrtrs.o dtzrqf.o dtzrzf.o dstemr.o \
|
||||
dtrtrs.o dtzrqf.o dtzrzf.o dstemr.o \
|
||||
dsgesv.o dsposv.o dlag2s.o slag2d.o dlat2s.o \
|
||||
dlansf.o dpftrf.o dpftri.o dpftrs.o dsfrk.o dtfsm.o dtftri.o dtfttp.o \
|
||||
dtfttr.o dtpttf.o dtpttr.o dtrttf.o dtrttp.o \
|
||||
|
@ -369,10 +369,10 @@ ZLASRC = \
|
|||
zlarfx.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \
|
||||
zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \
|
||||
zlassq.o zlasyf.o zlasyf_rook.o \
|
||||
zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o zlauu2.o \
|
||||
zlauum.o zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \
|
||||
zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o \
|
||||
zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \
|
||||
zpbsvx.o zpbtf2.o zpbtrf.o zpbtrs.o zpocon.o zpoequ.o zporfs.o \
|
||||
zposv.o zposvx.o zpotri.o zpotrs.o zpstrf.o zpstf2.o \
|
||||
zposv.o zposvx.o zpotrs.o zpstrf.o zpstf2.o \
|
||||
zppcon.o zppequ.o zpprfs.o zppsv.o zppsvx.o zpptrf.o zpptri.o zpptrs.o \
|
||||
zptcon.o zpteqr.o zptrfs.o zptsv.o zptsvx.o zpttrf.o zpttrs.o zptts2.o \
|
||||
zrot.o zspcon.o zspmv.o zspr.o zsprfs.o zspsv.o \
|
||||
|
@ -387,7 +387,7 @@ ZLASRC = \
|
|||
ztgexc.o ztgsen.o ztgsja.o ztgsna.o ztgsy2.o ztgsyl.o ztpcon.o \
|
||||
ztprfs.o ztptri.o \
|
||||
ztptrs.o ztrcon.o ztrevc.o ztrexc.o ztrrfs.o ztrsen.o ztrsna.o \
|
||||
ztrsyl.o ztrti2.o ztrtri.o ztrtrs.o ztzrqf.o ztzrzf.o zung2l.o \
|
||||
ztrsyl.o ztrtrs.o ztzrqf.o ztzrzf.o zung2l.o \
|
||||
zung2r.o zungbr.o zunghr.o zungl2.o zunglq.o zungql.o zungqr.o zungr2.o \
|
||||
zungrq.o zungtr.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o \
|
||||
zunmlq.o zunmql.o zunmqr.o zunmr2.o zunmr3.o zunmrq.o zunmrz.o \
|
||||
|
|
|
@ -5,7 +5,7 @@ SEP: Data file for testing Symmetric Eigenvalue Problem routines
|
|||
1 3 3 3 10 Values of NB (blocksize)
|
||||
2 2 2 2 2 Values of NBMIN (minimum blocksize)
|
||||
1 0 5 9 1 Values of NX (crossover point)
|
||||
50.0 Threshold value
|
||||
60.0 Threshold value
|
||||
T Put T to test the LAPACK routines
|
||||
T Put T to test the driver routines
|
||||
T Put T to test the error exits
|
||||
|
|
|
@ -2072,9 +2072,9 @@ SOBJ_FILES := $(SSRC_OBJ)
|
|||
DOBJ_FILES := $(DSRC_OBJ)
|
||||
ZOBJ_FILES := $(ZSRC_OBJ)
|
||||
|
||||
ifdef LAPACKE_TESTING
|
||||
# ifdef LAPACKE_TESTING
|
||||
ZOBJ_FILES += $(MATGEN_OBJ)
|
||||
endif
|
||||
#endif
|
||||
|
||||
ALLOBJ = $(COBJ_FILES) $(DOBJ_FILES) $(SOBJ_FILES) $(ZOBJ_FILES) $(OBJ_FILES)
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ TOPDIR = ..
|
|||
include ../Makefile.system
|
||||
|
||||
#SUBDIRS = laswp getf2 getrf potf2 potrf lauu2 lauum trti2 trtri getrs
|
||||
SUBDIRS = getrf getf2 laswp getrs potrf potf2
|
||||
SUBDIRS = getrf getf2 laswp getrs potrf potf2 lauu2 lauum trti2 trtri
|
||||
|
||||
FLAMEDIRS = laswp getf2 potf2 lauu2 trti2
|
||||
|
||||
|
|
|
@ -1,194 +0,0 @@
|
|||
SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* June 30, 1999
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LWORK, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
INTEGER IPIV( * )
|
||||
COMPLEX A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* CGETRI computes the inverse of a matrix using the LU factorization
|
||||
* computed by CGETRF.
|
||||
*
|
||||
* This method inverts U and then computes inv(A) by solving the system
|
||||
* inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) COMPLEX array, dimension (LDA,N)
|
||||
* On entry, the factors L and U from the factorization
|
||||
* A = P*L*U as computed by CGETRF.
|
||||
* On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (N)
|
||||
* The pivot indices from CGETRF; for 1<=i<=N, row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
|
||||
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*
|
||||
* LWORK (input) INTEGER
|
||||
* The dimension of the array WORK. LWORK >= max(1,N).
|
||||
* For optimal performance LWORK >= N*NB, where NB is
|
||||
* the optimal blocksize returned by ILAENV.
|
||||
*
|
||||
* If LWORK = -1, then a workspace query is assumed; the routine
|
||||
* only calculates the optimal size of the WORK array, returns
|
||||
* this value as the first entry of the WORK array, and no error
|
||||
* message related to LWORK is issued by XERBLA.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
* singular and its inverse could not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX ZERO, ONE
|
||||
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
|
||||
$ ONE = ( 1.0E+0, 0.0E+0 ) )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL LQUERY
|
||||
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
|
||||
$ NBMIN, NN
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CGEMM, CGEMV, CSWAP, CTRSM, CTRTRI, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 )
|
||||
LWKOPT = N*NB
|
||||
WORK( 1 ) = LWKOPT
|
||||
LQUERY = ( LWORK.EQ.-1 )
|
||||
IF( N.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
|
||||
INFO = -6
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'CGETRI', -INFO )
|
||||
RETURN
|
||||
ELSE IF( LQUERY ) THEN
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Form inv(U). If INFO > 0 from CTRTRI, then U is singular,
|
||||
* and the inverse is not computed.
|
||||
*
|
||||
CALL CTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
|
||||
IF( INFO.GT.0 )
|
||||
$ RETURN
|
||||
*
|
||||
NBMIN = 2
|
||||
LDWORK = N
|
||||
IF( NB.GT.1 .AND. NB.LT.N ) THEN
|
||||
IWS = MAX( LDWORK*NB, 1 )
|
||||
IF( LWORK.LT.IWS ) THEN
|
||||
NB = LWORK / LDWORK
|
||||
NBMIN = MAX( 2, ILAENV( 2, 'CGETRI', ' ', N, -1, -1, -1 ) )
|
||||
END IF
|
||||
ELSE
|
||||
IWS = N
|
||||
END IF
|
||||
*
|
||||
* Solve the equation inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
|
||||
*
|
||||
* Use unblocked code.
|
||||
*
|
||||
DO 20 J = N, 1, -1
|
||||
*
|
||||
* Copy current column of L to WORK and replace with zeros.
|
||||
*
|
||||
DO 10 I = J + 1, N
|
||||
WORK( I ) = A( I, J )
|
||||
A( I, J ) = ZERO
|
||||
10 CONTINUE
|
||||
*
|
||||
* Compute current column of inv(A).
|
||||
*
|
||||
IF( J.LT.N )
|
||||
$ CALL CGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
|
||||
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Use blocked code.
|
||||
*
|
||||
NN = ( ( N-1 ) / NB )*NB + 1
|
||||
DO 50 J = NN, 1, -NB
|
||||
JB = MIN( NB, N-J+1 )
|
||||
*
|
||||
* Copy current block column of L to WORK and replace with
|
||||
* zeros.
|
||||
*
|
||||
DO 40 JJ = J, J + JB - 1
|
||||
DO 30 I = JJ + 1, N
|
||||
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
|
||||
A( I, JJ ) = ZERO
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
*
|
||||
* Compute current block column of inv(A).
|
||||
*
|
||||
IF( J+JB.LE.N )
|
||||
$ CALL CGEMM( 'No transpose', 'No transpose', N, JB,
|
||||
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
|
||||
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
|
||||
CALL CTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
|
||||
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
|
||||
50 CONTINUE
|
||||
END IF
|
||||
*
|
||||
* Apply column interchanges.
|
||||
*
|
||||
DO 60 J = N - 1, 1, -1
|
||||
JP = IPIV( J )
|
||||
IF( JP.NE.J )
|
||||
$ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
|
||||
60 CONTINUE
|
||||
*
|
||||
WORK( 1 ) = IWS
|
||||
RETURN
|
||||
*
|
||||
* End of CGETRI
|
||||
*
|
||||
END
|
|
@ -1,193 +0,0 @@
|
|||
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* June 30, 1999
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LWORK, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
INTEGER IPIV( * )
|
||||
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGETRI computes the inverse of a matrix using the LU factorization
|
||||
* computed by DGETRF.
|
||||
*
|
||||
* This method inverts U and then computes inv(A) by solving the system
|
||||
* inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the factors L and U from the factorization
|
||||
* A = P*L*U as computed by DGETRF.
|
||||
* On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (N)
|
||||
* The pivot indices from DGETRF; for 1<=i<=N, row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
||||
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*
|
||||
* LWORK (input) INTEGER
|
||||
* The dimension of the array WORK. LWORK >= max(1,N).
|
||||
* For optimal performance LWORK >= N*NB, where NB is
|
||||
* the optimal blocksize returned by ILAENV.
|
||||
*
|
||||
* If LWORK = -1, then a workspace query is assumed; the routine
|
||||
* only calculates the optimal size of the WORK array, returns
|
||||
* this value as the first entry of the WORK array, and no error
|
||||
* message related to LWORK is issued by XERBLA.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
* singular and its inverse could not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL LQUERY
|
||||
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
|
||||
$ NBMIN, NN
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
|
||||
LWKOPT = N*NB
|
||||
WORK( 1 ) = LWKOPT
|
||||
LQUERY = ( LWORK.EQ.-1 )
|
||||
IF( N.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
|
||||
INFO = -6
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DGETRI', -INFO )
|
||||
RETURN
|
||||
ELSE IF( LQUERY ) THEN
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Form inv(U). If INFO > 0 from DTRTRI, then U is singular,
|
||||
* and the inverse is not computed.
|
||||
*
|
||||
CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
|
||||
IF( INFO.GT.0 )
|
||||
$ RETURN
|
||||
*
|
||||
NBMIN = 2
|
||||
LDWORK = N
|
||||
IF( NB.GT.1 .AND. NB.LT.N ) THEN
|
||||
IWS = MAX( LDWORK*NB, 1 )
|
||||
IF( LWORK.LT.IWS ) THEN
|
||||
NB = LWORK / LDWORK
|
||||
NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
|
||||
END IF
|
||||
ELSE
|
||||
IWS = N
|
||||
END IF
|
||||
*
|
||||
* Solve the equation inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
|
||||
*
|
||||
* Use unblocked code.
|
||||
*
|
||||
DO 20 J = N, 1, -1
|
||||
*
|
||||
* Copy current column of L to WORK and replace with zeros.
|
||||
*
|
||||
DO 10 I = J + 1, N
|
||||
WORK( I ) = A( I, J )
|
||||
A( I, J ) = ZERO
|
||||
10 CONTINUE
|
||||
*
|
||||
* Compute current column of inv(A).
|
||||
*
|
||||
IF( J.LT.N )
|
||||
$ CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
|
||||
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Use blocked code.
|
||||
*
|
||||
NN = ( ( N-1 ) / NB )*NB + 1
|
||||
DO 50 J = NN, 1, -NB
|
||||
JB = MIN( NB, N-J+1 )
|
||||
*
|
||||
* Copy current block column of L to WORK and replace with
|
||||
* zeros.
|
||||
*
|
||||
DO 40 JJ = J, J + JB - 1
|
||||
DO 30 I = JJ + 1, N
|
||||
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
|
||||
A( I, JJ ) = ZERO
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
*
|
||||
* Compute current block column of inv(A).
|
||||
*
|
||||
IF( J+JB.LE.N )
|
||||
$ CALL DGEMM( 'No transpose', 'No transpose', N, JB,
|
||||
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
|
||||
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
|
||||
CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
|
||||
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
|
||||
50 CONTINUE
|
||||
END IF
|
||||
*
|
||||
* Apply column interchanges.
|
||||
*
|
||||
DO 60 J = N - 1, 1, -1
|
||||
JP = IPIV( J )
|
||||
IF( JP.NE.J )
|
||||
$ CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
|
||||
60 CONTINUE
|
||||
*
|
||||
WORK( 1 ) = IWS
|
||||
RETURN
|
||||
*
|
||||
* End of DGETRI
|
||||
*
|
||||
END
|
|
@ -1,193 +0,0 @@
|
|||
SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* June 30, 1999
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LWORK, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
INTEGER IPIV( * )
|
||||
REAL A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* SGETRI computes the inverse of a matrix using the LU factorization
|
||||
* computed by SGETRF.
|
||||
*
|
||||
* This method inverts U and then computes inv(A) by solving the system
|
||||
* inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) REAL array, dimension (LDA,N)
|
||||
* On entry, the factors L and U from the factorization
|
||||
* A = P*L*U as computed by SGETRF.
|
||||
* On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (N)
|
||||
* The pivot indices from SGETRF; for 1<=i<=N, row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* WORK (workspace/output) REAL array, dimension (LWORK)
|
||||
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*
|
||||
* LWORK (input) INTEGER
|
||||
* The dimension of the array WORK. LWORK >= max(1,N).
|
||||
* For optimal performance LWORK >= N*NB, where NB is
|
||||
* the optimal blocksize returned by ILAENV.
|
||||
*
|
||||
* If LWORK = -1, then a workspace query is assumed; the routine
|
||||
* only calculates the optimal size of the WORK array, returns
|
||||
* this value as the first entry of the WORK array, and no error
|
||||
* message related to LWORK is issued by XERBLA.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
* singular and its inverse could not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL LQUERY
|
||||
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
|
||||
$ NBMIN, NN
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 )
|
||||
LWKOPT = N*NB
|
||||
WORK( 1 ) = LWKOPT
|
||||
LQUERY = ( LWORK.EQ.-1 )
|
||||
IF( N.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
|
||||
INFO = -6
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'SGETRI', -INFO )
|
||||
RETURN
|
||||
ELSE IF( LQUERY ) THEN
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Form inv(U). If INFO > 0 from STRTRI, then U is singular,
|
||||
* and the inverse is not computed.
|
||||
*
|
||||
CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
|
||||
IF( INFO.GT.0 )
|
||||
$ RETURN
|
||||
*
|
||||
NBMIN = 2
|
||||
LDWORK = N
|
||||
IF( NB.GT.1 .AND. NB.LT.N ) THEN
|
||||
IWS = MAX( LDWORK*NB, 1 )
|
||||
IF( LWORK.LT.IWS ) THEN
|
||||
NB = LWORK / LDWORK
|
||||
NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) )
|
||||
END IF
|
||||
ELSE
|
||||
IWS = N
|
||||
END IF
|
||||
*
|
||||
* Solve the equation inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
|
||||
*
|
||||
* Use unblocked code.
|
||||
*
|
||||
DO 20 J = N, 1, -1
|
||||
*
|
||||
* Copy current column of L to WORK and replace with zeros.
|
||||
*
|
||||
DO 10 I = J + 1, N
|
||||
WORK( I ) = A( I, J )
|
||||
A( I, J ) = ZERO
|
||||
10 CONTINUE
|
||||
*
|
||||
* Compute current column of inv(A).
|
||||
*
|
||||
IF( J.LT.N )
|
||||
$ CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
|
||||
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Use blocked code.
|
||||
*
|
||||
NN = ( ( N-1 ) / NB )*NB + 1
|
||||
DO 50 J = NN, 1, -NB
|
||||
JB = MIN( NB, N-J+1 )
|
||||
*
|
||||
* Copy current block column of L to WORK and replace with
|
||||
* zeros.
|
||||
*
|
||||
DO 40 JJ = J, J + JB - 1
|
||||
DO 30 I = JJ + 1, N
|
||||
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
|
||||
A( I, JJ ) = ZERO
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
*
|
||||
* Compute current block column of inv(A).
|
||||
*
|
||||
IF( J+JB.LE.N )
|
||||
$ CALL SGEMM( 'No transpose', 'No transpose', N, JB,
|
||||
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
|
||||
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
|
||||
CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
|
||||
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
|
||||
50 CONTINUE
|
||||
END IF
|
||||
*
|
||||
* Apply column interchanges.
|
||||
*
|
||||
DO 60 J = N - 1, 1, -1
|
||||
JP = IPIV( J )
|
||||
IF( JP.NE.J )
|
||||
$ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
|
||||
60 CONTINUE
|
||||
*
|
||||
WORK( 1 ) = IWS
|
||||
RETURN
|
||||
*
|
||||
* End of SGETRI
|
||||
*
|
||||
END
|
|
@ -1,194 +0,0 @@
|
|||
SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* June 30, 1999
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LWORK, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
INTEGER IPIV( * )
|
||||
COMPLEX*16 A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ZGETRI computes the inverse of a matrix using the LU factorization
|
||||
* computed by ZGETRF.
|
||||
*
|
||||
* This method inverts U and then computes inv(A) by solving the system
|
||||
* inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
|
||||
* On entry, the factors L and U from the factorization
|
||||
* A = P*L*U as computed by ZGETRF.
|
||||
* On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (N)
|
||||
* The pivot indices from ZGETRF; for 1<=i<=N, row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
|
||||
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*
|
||||
* LWORK (input) INTEGER
|
||||
* The dimension of the array WORK. LWORK >= max(1,N).
|
||||
* For optimal performance LWORK >= N*NB, where NB is
|
||||
* the optimal blocksize returned by ILAENV.
|
||||
*
|
||||
* If LWORK = -1, then a workspace query is assumed; the routine
|
||||
* only calculates the optimal size of the WORK array, returns
|
||||
* this value as the first entry of the WORK array, and no error
|
||||
* message related to LWORK is issued by XERBLA.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
* singular and its inverse could not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX*16 ZERO, ONE
|
||||
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
|
||||
$ ONE = ( 1.0D+0, 0.0D+0 ) )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL LQUERY
|
||||
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
|
||||
$ NBMIN, NN
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA, ZGEMM, ZGEMV, ZSWAP, ZTRSM, ZTRTRI
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 )
|
||||
LWKOPT = N*NB
|
||||
WORK( 1 ) = LWKOPT
|
||||
LQUERY = ( LWORK.EQ.-1 )
|
||||
IF( N.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
|
||||
INFO = -6
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'ZGETRI', -INFO )
|
||||
RETURN
|
||||
ELSE IF( LQUERY ) THEN
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Form inv(U). If INFO > 0 from ZTRTRI, then U is singular,
|
||||
* and the inverse is not computed.
|
||||
*
|
||||
CALL ZTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
|
||||
IF( INFO.GT.0 )
|
||||
$ RETURN
|
||||
*
|
||||
NBMIN = 2
|
||||
LDWORK = N
|
||||
IF( NB.GT.1 .AND. NB.LT.N ) THEN
|
||||
IWS = MAX( LDWORK*NB, 1 )
|
||||
IF( LWORK.LT.IWS ) THEN
|
||||
NB = LWORK / LDWORK
|
||||
NBMIN = MAX( 2, ILAENV( 2, 'ZGETRI', ' ', N, -1, -1, -1 ) )
|
||||
END IF
|
||||
ELSE
|
||||
IWS = N
|
||||
END IF
|
||||
*
|
||||
* Solve the equation inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
|
||||
*
|
||||
* Use unblocked code.
|
||||
*
|
||||
DO 20 J = N, 1, -1
|
||||
*
|
||||
* Copy current column of L to WORK and replace with zeros.
|
||||
*
|
||||
DO 10 I = J + 1, N
|
||||
WORK( I ) = A( I, J )
|
||||
A( I, J ) = ZERO
|
||||
10 CONTINUE
|
||||
*
|
||||
* Compute current column of inv(A).
|
||||
*
|
||||
IF( J.LT.N )
|
||||
$ CALL ZGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
|
||||
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Use blocked code.
|
||||
*
|
||||
NN = ( ( N-1 ) / NB )*NB + 1
|
||||
DO 50 J = NN, 1, -NB
|
||||
JB = MIN( NB, N-J+1 )
|
||||
*
|
||||
* Copy current block column of L to WORK and replace with
|
||||
* zeros.
|
||||
*
|
||||
DO 40 JJ = J, J + JB - 1
|
||||
DO 30 I = JJ + 1, N
|
||||
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
|
||||
A( I, JJ ) = ZERO
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
*
|
||||
* Compute current block column of inv(A).
|
||||
*
|
||||
IF( J+JB.LE.N )
|
||||
$ CALL ZGEMM( 'No transpose', 'No transpose', N, JB,
|
||||
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
|
||||
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
|
||||
CALL ZTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
|
||||
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
|
||||
50 CONTINUE
|
||||
END IF
|
||||
*
|
||||
* Apply column interchanges.
|
||||
*
|
||||
DO 60 J = N - 1, 1, -1
|
||||
JP = IPIV( J )
|
||||
IF( JP.NE.J )
|
||||
$ CALL ZSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
|
||||
60 CONTINUE
|
||||
*
|
||||
WORK( 1 ) = IWS
|
||||
RETURN
|
||||
*
|
||||
* End of ZGETRI
|
||||
*
|
||||
END
|
|
@ -1,190 +1,113 @@
|
|||
/*********************************************************************/
|
||||
/* Copyright 2009, 2010 The University of Texas at Austin. */
|
||||
/* All rights reserved. */
|
||||
/* */
|
||||
/* Redistribution and use in source and binary forms, with or */
|
||||
/* without modification, are permitted provided that the following */
|
||||
/* conditions are met: */
|
||||
/* */
|
||||
/* 1. Redistributions of source code must retain the above */
|
||||
/* copyright notice, this list of conditions and the following */
|
||||
/* disclaimer. */
|
||||
/* */
|
||||
/* 2. Redistributions in binary form must reproduce the above */
|
||||
/* copyright notice, this list of conditions and the following */
|
||||
/* disclaimer in the documentation and/or other materials */
|
||||
/* provided with the distribution. */
|
||||
/* */
|
||||
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
|
||||
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
||||
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
||||
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
||||
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
|
||||
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
|
||||
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
|
||||
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
|
||||
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
|
||||
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
|
||||
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
|
||||
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/* POSSIBILITY OF SUCH DAMAGE. */
|
||||
/* */
|
||||
/* The views and conclusions contained in the software and */
|
||||
/* documentation are those of the authors and should not be */
|
||||
/* interpreted as representing official policies, either expressed */
|
||||
/* or implied, of The University of Texas at Austin. */
|
||||
/*********************************************************************/
|
||||
/***************************************************************************
|
||||
* Copyright (c) 2013, The OpenBLAS Project
|
||||
* All rights reserved.
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* 3. Neither the name of the OpenBLAS project nor the names of
|
||||
* its contributors may be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* *****************************************************************************/
|
||||
|
||||
/**************************************************************************************
|
||||
* 2014/05/22 Saar
|
||||
* TEST double precision unblocked : OK
|
||||
* 2014/05/23 Saar
|
||||
* TEST double precision blocked: OK
|
||||
* TEST single precision blocked: OK
|
||||
**************************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "common.h"
|
||||
|
||||
static FLOAT dp1 = 1.;
|
||||
static FLOAT dm1 = -1.;
|
||||
// static FLOAT dp1 = 1.;
|
||||
// static FLOAT dm1 = -1.;
|
||||
|
||||
|
||||
#ifdef UNIT
|
||||
#define TRTI2 TRTI2_LU
|
||||
#define TRMM TRMM_LNLU
|
||||
#define TRSM TRSM_RNLU
|
||||
#else
|
||||
#define TRTI2 TRTI2_LN
|
||||
#define TRMM TRMM_LNLN
|
||||
#define TRSM TRSM_RNLN
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#undef GEMM_P
|
||||
#undef GEMM_Q
|
||||
#undef GEMM_R
|
||||
|
||||
#define GEMM_P 8
|
||||
#define GEMM_Q 20
|
||||
#define GEMM_R 64
|
||||
#endif
|
||||
|
||||
#define GEMM_PQ MAX(GEMM_P, GEMM_Q)
|
||||
#define REAL_GEMM_R (GEMM_R - 2 * GEMM_PQ)
|
||||
|
||||
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
|
||||
|
||||
BLASLONG n, lda;
|
||||
BLASLONG j, n, lda;
|
||||
FLOAT *a;
|
||||
|
||||
BLASLONG i, is, min_i, start_i;
|
||||
BLASLONG ls, min_l;
|
||||
BLASLONG bk;
|
||||
BLASLONG blocking;
|
||||
BLASLONG range_N[2];
|
||||
// BLASLONG info=0;
|
||||
BLASLONG jb;
|
||||
BLASLONG NB;
|
||||
BLASLONG start_j;
|
||||
|
||||
FLOAT *sa_trsm = (FLOAT *)((BLASLONG)sb);
|
||||
FLOAT *sa_trmm = (FLOAT *)((((BLASLONG)sb
|
||||
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
|
||||
+ GEMM_OFFSET_A);
|
||||
FLOAT *sb_gemm = (FLOAT *)((((BLASLONG)sa_trmm
|
||||
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
|
||||
+ GEMM_OFFSET_B);
|
||||
FLOAT beta_plus[2] = { ONE, ZERO};
|
||||
FLOAT beta_minus[2] = {-ONE, ZERO};
|
||||
|
||||
n = args -> n;
|
||||
a = (FLOAT *)args -> a;
|
||||
lda = args -> lda;
|
||||
|
||||
if (range_n) {
|
||||
n = range_n[1] - range_n[0];
|
||||
a += range_n[0] * (lda + 1) * COMPSIZE;
|
||||
}
|
||||
NB = GEMM_Q;
|
||||
|
||||
if (n <= DTB_ENTRIES) {
|
||||
if (n < NB) {
|
||||
TRTI2(args, NULL, range_n, sa, sb, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
blocking = GEMM_Q;
|
||||
if (n <= 4 * GEMM_Q) blocking = (n + 3) / 4;
|
||||
|
||||
start_i = 0;
|
||||
while (start_i < n) start_i += blocking;
|
||||
start_i -= blocking;
|
||||
lda = args -> lda;
|
||||
a = (FLOAT *) args -> a;
|
||||
args -> ldb = lda;
|
||||
args -> ldc = lda;
|
||||
args -> alpha = NULL;
|
||||
|
||||
for (i = start_i; i >= 0; i -= blocking) {
|
||||
bk = MIN(blocking, n - i);
|
||||
start_j = 0;
|
||||
while (start_j < n) start_j += NB;
|
||||
start_j -= NB;
|
||||
|
||||
if (n - bk - i > 0) TRSM_OLNCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, sa_trsm);
|
||||
|
||||
if (!range_n) {
|
||||
range_N[0] = i;
|
||||
range_N[1] = i + bk;
|
||||
} else {
|
||||
range_N[0] = range_n[0] + i;
|
||||
range_N[1] = range_n[0] + i + bk;
|
||||
}
|
||||
for (j = start_j ; j >=0 ; j-= NB)
|
||||
{
|
||||
jb = n - j;
|
||||
if ( jb > NB ) jb = NB;
|
||||
|
||||
CNAME(args, NULL, range_N, sa, sa_trmm, 0);
|
||||
args -> n = jb;
|
||||
args -> m = n-j-jb;
|
||||
|
||||
if (i > 0) {
|
||||
TRMM_ILTCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, 0, sa_trmm);
|
||||
args -> a = &a[(j+jb+(j+jb)*lda) * COMPSIZE];
|
||||
args -> b = &a[(j+jb+j*lda) * COMPSIZE];
|
||||
args -> beta = beta_plus;
|
||||
|
||||
for (ls = 0; ls < i; ls += REAL_GEMM_R) {
|
||||
min_l = i - ls;
|
||||
if (min_l > REAL_GEMM_R) min_l = REAL_GEMM_R;
|
||||
TRMM(args, NULL, NULL, sa, sb, 0);
|
||||
|
||||
GEMM_ONCOPY (bk, min_l, a + (i + ls * lda) * COMPSIZE, lda, sb_gemm);
|
||||
args -> a = &a[(j+j*lda) * COMPSIZE];
|
||||
args -> beta = beta_minus;
|
||||
|
||||
if (n - bk - i > 0) {
|
||||
for (is = i + bk; is < n; is += GEMM_P) {
|
||||
min_i = n - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
TRSM(args, NULL, NULL, sa, sb, 0);
|
||||
|
||||
if (ls == 0) {
|
||||
NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
|
||||
args -> a = &a[(j+j*lda) * COMPSIZE];
|
||||
|
||||
TRSM_KERNEL_RT(min_i, bk, bk, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sa_trsm,
|
||||
a + (is + i * lda) * COMPSIZE, lda, 0);
|
||||
} else {
|
||||
GEMM_ITCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
|
||||
}
|
||||
|
||||
GEMM_KERNEL_N(min_i, min_l, bk, dp1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sb_gemm,
|
||||
a + (is + ls * lda) * COMPSIZE, lda);
|
||||
}
|
||||
}
|
||||
|
||||
for (is = 0; is < bk; is += GEMM_P) {
|
||||
min_i = bk - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
|
||||
TRMM_KERNEL_LT(min_i, min_l, bk, dp1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa_trmm + is * bk * COMPSIZE, sb_gemm,
|
||||
a + (i + is + ls * lda) * COMPSIZE, lda, is);
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
if (n - bk - i > 0) {
|
||||
for (is = 0; is < n - bk - i; is += GEMM_P) {
|
||||
min_i = n - bk - i - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
|
||||
NEG_TCOPY (bk, min_i, a + (i + bk + is + i * lda) * COMPSIZE, lda, sa);
|
||||
|
||||
TRSM_KERNEL_RT(min_i, bk, bk, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sa_trsm,
|
||||
a + (i + bk + is + i * lda) * COMPSIZE, lda, 0);
|
||||
}
|
||||
}
|
||||
TRTI2(args, NULL, range_n, sa, sb, 0);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -1,46 +1,44 @@
|
|||
/*********************************************************************/
|
||||
/* Copyright 2009, 2010 The University of Texas at Austin. */
|
||||
/* All rights reserved. */
|
||||
/* */
|
||||
/* Redistribution and use in source and binary forms, with or */
|
||||
/* without modification, are permitted provided that the following */
|
||||
/* conditions are met: */
|
||||
/* */
|
||||
/* 1. Redistributions of source code must retain the above */
|
||||
/* copyright notice, this list of conditions and the following */
|
||||
/* disclaimer. */
|
||||
/* */
|
||||
/* 2. Redistributions in binary form must reproduce the above */
|
||||
/* copyright notice, this list of conditions and the following */
|
||||
/* disclaimer in the documentation and/or other materials */
|
||||
/* provided with the distribution. */
|
||||
/* */
|
||||
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
|
||||
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
||||
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
||||
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
||||
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
|
||||
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
|
||||
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
|
||||
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
|
||||
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
|
||||
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
|
||||
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
|
||||
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/* POSSIBILITY OF SUCH DAMAGE. */
|
||||
/* */
|
||||
/* The views and conclusions contained in the software and */
|
||||
/* documentation are those of the authors and should not be */
|
||||
/* interpreted as representing official policies, either expressed */
|
||||
/* or implied, of The University of Texas at Austin. */
|
||||
/*********************************************************************/
|
||||
/***************************************************************************
|
||||
* Copyright (c) 2013, The OpenBLAS Project
|
||||
* All rights reserved.
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* 3. Neither the name of the OpenBLAS project nor the names of
|
||||
* its contributors may be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* *****************************************************************************/
|
||||
|
||||
/**************************************************************************************
|
||||
* 2014/05/22 Saar
|
||||
* TEST double precision unblocked : OK
|
||||
* TEST double precision blocked : OK
|
||||
* 2014/05/23
|
||||
* TEST single precision blocked : OK
|
||||
*
|
||||
**************************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "common.h"
|
||||
|
||||
static FLOAT dp1 = 1.;
|
||||
static FLOAT dm1 = -1.;
|
||||
// static FLOAT dp1 = 1.;
|
||||
// static FLOAT dm1 = -1.;
|
||||
|
||||
#ifdef UNIT
|
||||
#define TRTI2 TRTI2_UU
|
||||
|
@ -48,152 +46,66 @@ static FLOAT dm1 = -1.;
|
|||
#define TRTI2 TRTI2_UN
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#undef GEMM_P
|
||||
#undef GEMM_Q
|
||||
#undef GEMM_R
|
||||
|
||||
#define GEMM_P 8
|
||||
#define GEMM_Q 20
|
||||
#define GEMM_R 64
|
||||
#ifdef UNIT
|
||||
#define TRMM TRMM_LNUU
|
||||
#define TRSM TRSM_RNUU
|
||||
#else
|
||||
#define TRMM TRMM_LNUN
|
||||
#define TRSM TRSM_RNUN
|
||||
#endif
|
||||
|
||||
#define GEMM_PQ MAX(GEMM_P, GEMM_Q)
|
||||
#define REAL_GEMM_R (GEMM_R - 2 * GEMM_PQ)
|
||||
|
||||
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
|
||||
|
||||
BLASLONG n, lda;
|
||||
BLASLONG j, n, lda;
|
||||
FLOAT *a;
|
||||
|
||||
BLASLONG i, is, min_i, start_is;
|
||||
BLASLONG ls, min_l;
|
||||
BLASLONG bk;
|
||||
BLASLONG blocking;
|
||||
BLASLONG range_N[2];
|
||||
// BLASLONG info=0;
|
||||
BLASLONG jb;
|
||||
BLASLONG NB;
|
||||
|
||||
FLOAT *sa_trsm = (FLOAT *)((BLASLONG)sb);
|
||||
FLOAT *sa_trmm = (FLOAT *)((((BLASLONG)sb
|
||||
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
|
||||
+ GEMM_OFFSET_A);
|
||||
FLOAT *sb_gemm = (FLOAT *)((((BLASLONG)sa_trmm
|
||||
+ GEMM_PQ * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)
|
||||
+ GEMM_OFFSET_B);
|
||||
FLOAT beta_plus[2] = { ONE, ZERO};
|
||||
FLOAT beta_minus[2] = {-ONE, ZERO};
|
||||
|
||||
n = args -> n;
|
||||
a = (FLOAT *)args -> a;
|
||||
lda = args -> lda;
|
||||
|
||||
if (range_n) {
|
||||
n = range_n[1] - range_n[0];
|
||||
a += range_n[0] * (lda + 1) * COMPSIZE;
|
||||
}
|
||||
NB = GEMM_Q;
|
||||
|
||||
if (n <= DTB_ENTRIES) {
|
||||
if (n <= NB) {
|
||||
TRTI2(args, NULL, range_n, sa, sb, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
blocking = GEMM_Q;
|
||||
if (n <= 4 * GEMM_Q) blocking = (n + 3) / 4;
|
||||
|
||||
for (i = 0; i < n; i += blocking) {
|
||||
bk = MIN(blocking, n - i);
|
||||
lda = args -> lda;
|
||||
a = (FLOAT *) args -> a;
|
||||
args -> ldb = lda;
|
||||
args -> ldc = lda;
|
||||
args -> alpha = NULL;
|
||||
|
||||
if (i > 0) TRSM_OUNCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, sa_trsm);
|
||||
for (j = 0; j < n; j += NB)
|
||||
{
|
||||
jb = n - j;
|
||||
if ( jb > NB ) jb = NB;
|
||||
|
||||
args -> n = jb;
|
||||
args -> m = j;
|
||||
|
||||
args -> a = &a[0];
|
||||
args -> b = &a[(j*lda) * COMPSIZE];
|
||||
args -> beta = beta_plus;
|
||||
|
||||
TRMM(args, NULL, NULL, sa, sb, 0);
|
||||
|
||||
args -> a = &a[(j+j*lda) * COMPSIZE];
|
||||
args -> beta = beta_minus;
|
||||
|
||||
TRSM(args, NULL, NULL, sa, sb, 0);
|
||||
|
||||
args -> a = &a[(j+j*lda) * COMPSIZE];
|
||||
|
||||
TRTI2(args, NULL, range_n, sa, sb, 0);
|
||||
|
||||
if (!range_n) {
|
||||
range_N[0] = i;
|
||||
range_N[1] = i + bk;
|
||||
} else {
|
||||
range_N[0] = range_n[0] + i;
|
||||
range_N[1] = range_n[0] + i + bk;
|
||||
}
|
||||
|
||||
CNAME(args, NULL, range_N, sa, sa_trmm, 0);
|
||||
|
||||
if (n -bk - i > 0) {
|
||||
TRMM_IUTCOPY(bk, bk, a + (i + i * lda) * COMPSIZE, lda, 0, 0, sa_trmm);
|
||||
|
||||
for (ls = i + bk; ls < n; ls += REAL_GEMM_R) {
|
||||
min_l = n - ls;
|
||||
if (min_l > REAL_GEMM_R) min_l = REAL_GEMM_R;
|
||||
|
||||
GEMM_ONCOPY (bk, min_l, a + (i + ls * lda) * COMPSIZE, lda, sb_gemm);
|
||||
|
||||
if (i > 0) {
|
||||
for (is = 0; is < i; is += GEMM_P) {
|
||||
min_i = i - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
|
||||
if (ls == i + bk) {
|
||||
//NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
|
||||
|
||||
GEMM_BETA(min_i, bk, 0, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
NULL, 0, NULL, 0, a + (is + i * lda) * COMPSIZE, lda);
|
||||
|
||||
TRSM_KERNEL_RN(min_i, bk, bk, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sa_trsm,
|
||||
a + (is + i * lda) * COMPSIZE, lda, 0);
|
||||
} else {
|
||||
GEMM_ITCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
|
||||
}
|
||||
|
||||
GEMM_KERNEL_N(min_i, min_l, bk, dp1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sb_gemm,
|
||||
a + (is + ls * lda) * COMPSIZE, lda);
|
||||
}
|
||||
}
|
||||
|
||||
start_is = 0;
|
||||
while (start_is < bk) start_is += GEMM_P;
|
||||
start_is -= GEMM_P;
|
||||
|
||||
for (is = 0; is < bk; is += GEMM_P) {
|
||||
min_i = bk - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
|
||||
TRMM_KERNEL_LN(min_i, min_l, bk, dp1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa_trmm + is * bk * COMPSIZE, sb_gemm,
|
||||
a + (i + is + ls * lda) * COMPSIZE, lda, is);
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
if (i > 0) {
|
||||
for (is = 0; is < i; is += GEMM_P) {
|
||||
min_i = i - is;
|
||||
if (min_i > GEMM_P) min_i = GEMM_P;
|
||||
|
||||
//NEG_TCOPY (bk, min_i, a + (is + i * lda) * COMPSIZE, lda, sa);
|
||||
GEMM_BETA(min_i, bk, 0, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
NULL, 0, NULL, 0, a + (is + i * lda) * COMPSIZE, lda);
|
||||
|
||||
TRSM_KERNEL_RN(min_i, bk, bk, dm1,
|
||||
#ifdef COMPLEX
|
||||
ZERO,
|
||||
#endif
|
||||
sa, sa_trsm,
|
||||
a + (is + i * lda) * COMPSIZE, lda, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue