s390x: Factor out small block sizes for SGEMM/DGEMM on z14

For small register blockings that are too small to fill up vector
registers with column vectors, we currently use a generic code block.
Replace that with instantiations of the generic code as individual
functions, so that the compiler can optimize each one separately.

Signed-off-by: Marius Hillenbrand <mhillen@linux.ibm.com>
This commit is contained in:
Marius Hillenbrand 2020-08-11 12:55:53 +02:00
parent e2828e30aa
commit 07c334e7be
1 changed files with 51 additions and 27 deletions

View File

@ -265,12 +265,58 @@ VECTOR_BLOCK(4, 4)
VECTOR_BLOCK(4, 2)
VECTOR_BLOCK(4, 1)
/**
* Calculate for a row-block in C_i of size ROWSxCOLS using scalar operations.
* Simple implementation for smaller block sizes
*
* @param[in] A Pointer current block of input matrix A.
* @param[in] k Number of columns in A.
* @param[in] B Pointer current block of input matrix B.
* @param[inout] C Pointer current block of output matrix C.
* @param[in] ldc Offset between elements in adjacent columns in C.
* @param[in] alpha Scalar factor.
*/
#define SCALAR_BLOCK(ROWS, COLS) \
static inline void GEBP_block_##ROWS##_##COLS( \
FLOAT const *restrict A, BLASLONG k, FLOAT const *restrict B, \
FLOAT *restrict C, BLASLONG ldc, FLOAT alpha) { \
FLOAT Caux[ROWS][COLS] __attribute__((aligned(16))); \
\
/* \
* Peel off first iteration (i.e., column of A) for \
* initializing Caux \
*/ \
for (BLASLONG i = 0; i < ROWS; i++) \
for (BLASLONG j = 0; j < COLS; j++) Caux[i][j] = A[i] * B[j]; \
\
for (BLASLONG kk = 1; kk < k; kk++) \
for (BLASLONG i = 0; i < ROWS; i++) \
for (BLASLONG j = 0; j < COLS; j++) \
Caux[i][j] += A[i + kk * ROWS] * B[j + kk * COLS]; \
\
for (BLASLONG i = 0; i < ROWS; i++) \
for (BLASLONG j = 0; j < COLS; j++) \
if (trmm) { \
C[i + j * ldc] = alpha * Caux[i][j]; \
} else { \
C[i + j * ldc] += alpha * Caux[i][j]; \
} \
}
#ifdef DOUBLE
VECTOR_BLOCK(2, 4)
VECTOR_BLOCK(2, 2)
VECTOR_BLOCK(2, 1)
#else
SCALAR_BLOCK(2, 4)
SCALAR_BLOCK(2, 2)
SCALAR_BLOCK(2, 1)
#endif
SCALAR_BLOCK(1, 4)
SCALAR_BLOCK(1, 2)
SCALAR_BLOCK(1, 1)
/**
* Calculate a row-block that fits 4x4 vector registers using a loop
@ -526,6 +572,8 @@ static inline void GEBP_block(BLASLONG m, BLASLONG n,
}
}
/* Dispatch into the implementation for each block size: */
#define BLOCK(bm, bn) \
if (m == bm && n == bn) { \
GEBP_block_##bm##_##bn(A, k, B, C, ldc, alpha); \
@ -541,35 +589,11 @@ static inline void GEBP_block(BLASLONG m, BLASLONG n,
BLOCK(8, 4); BLOCK(8, 2); BLOCK(8, 1);
BLOCK(4, 4); BLOCK(4, 2); BLOCK(4, 1);
#ifdef DOUBLE
BLOCK(2, 4);
BLOCK(2, 2);
#endif
BLOCK(2, 4); BLOCK(2, 2); BLOCK(2, 1);
BLOCK(1, 4); BLOCK(1, 2); BLOCK(1, 1);
#undef BLOCK
/* simple implementation for smaller block sizes: */
FLOAT Caux[m][n] __attribute__ ((aligned (16)));
/*
* Peel off first iteration (i.e., column of A) for initializing Caux
*/
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
Caux[i][j] = A[i] * B[j];
for (BLASLONG kk = 1; kk < k; kk++)
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
Caux[i][j] += A[i + kk * m] * B[j + kk * n];
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
if (trmm) {
C[i + j * ldc] = alpha * Caux[i][j];
} else {
C[i + j * ldc] += alpha * Caux[i][j];
}
}
/**