Add reciprocal scaling of a complex vector and use it in C/ZGETF2 (Reference-LAPACK PR839)

This commit is contained in:
Martin Kroeker 2023-07-05 14:13:58 +02:00 committed by GitHub
parent 4d0b7fbec0
commit 069353bd44
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 416 additions and 31 deletions

View File

@ -101,7 +101,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexGEcomputational
*> \ingroup getf2
*
* =====================================================================
SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
@ -126,16 +126,14 @@
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
REAL SFMIN
INTEGER I, J, JP
INTEGER J, JP
* ..
* .. External Functions ..
REAL SLAMCH
INTEGER ICAMAX
EXTERNAL SLAMCH, ICAMAX
EXTERNAL ICAMAX
* ..
* .. External Subroutines ..
EXTERNAL CGERU, CSCAL, CSWAP, XERBLA
EXTERNAL CGERU, CRSCL, CSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
@ -161,10 +159,6 @@
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Compute machine safe minimum
*
SFMIN = SLAMCH('S')
*
DO 10 J = 1, MIN( M, N )
*
@ -181,15 +175,8 @@
*
* Compute elements J+1:M of J-th column.
*
IF( J.LT.M ) THEN
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
ELSE
DO 20 I = 1, M-J
A( J+I, J ) = A( J+I, J ) / A( J, J )
20 CONTINUE
END IF
END IF
IF( J.LT.M )
$ CALL CRSCL( M-J, A( J, J ), A( J+1, J ), 1 )
*
ELSE IF( INFO.EQ.0 ) THEN
*

202
lapack-netlib/SRC/crscl.f Normal file
View File

@ -0,0 +1,202 @@
*> \brief \b CRSCL multiplies a vector by the reciprocal of a real scalar.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CRSCL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/crscl.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/crscl.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/crscl.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CRSCL( N, A, X, INCX )
*
* .. Scalar Arguments ..
* INTEGER INCX, N
* COMPLEX A
* ..
* .. Array Arguments ..
* COMPLEX X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CRSCL multiplies an n-element complex vector x by the complex scalar
*> 1/a. This is done without overflow or underflow as long as
*> the final result x/a does not overflow or underflow.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of components of the vector x.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX
*> The scalar a which is used to divide each component of x.
*> A must not be 0, or the subroutine will divide by zero.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension
*> (1+(N-1)*abs(INCX))
*> The n-element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between successive values of the vector X.
*> > 0: X(1) = X(1) and X(1+(i-1)*INCX) = x(i), 1< i<= n
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
SUBROUTINE CRSCL( N, A, X, INCX )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX, N
COMPLEX A
* ..
* .. Array Arguments ..
COMPLEX X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
REAL SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR
% , UI
* ..
* .. External Functions ..
REAL SLAMCH
COMPLEX CLADIV
EXTERNAL SLAMCH, CLADIV
* ..
* .. External Subroutines ..
EXTERNAL CSCAL, CSSCAL, CSRSCL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
* Get machine parameters
*
SAFMIN = SLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
OV = SLAMCH( 'O' )
*
* Initialize constants related to A.
*
AR = REAL( A )
AI = AIMAG( A )
ABSR = ABS( AR )
ABSI = ABS( AI )
*
IF( AI.EQ.ZERO ) THEN
* If alpha is real, then we can use csrscl
CALL CSRSCL( N, AR, X, INCX )
*
ELSE IF( AR.EQ.ZERO ) THEN
* If alpha has a zero real part, then we follow the same rules as if
* alpha were real.
IF( ABSI.GT.SAFMAX ) THEN
CALL CSSCAL( N, SAFMIN, X, INCX )
CALL CSCAL( N, CMPLX( ZERO, -SAFMAX / AI ), X, INCX )
ELSE IF( ABSI.LT.SAFMIN ) THEN
CALL CSCAL( N, CMPLX( ZERO, -SAFMIN / AI ), X, INCX )
CALL CSSCAL( N, SAFMAX, X, INCX )
ELSE
CALL CSCAL( N, CMPLX( ZERO, -ONE / AI ), X, INCX )
END IF
*
ELSE
* The following numbers can be computed.
* They are the inverse of the real and imaginary parts of 1/alpha.
* Note that a and b are always different from zero.
* NaNs are only possible if either:
* 1. alphaR or alphaI is NaN.
* 2. alphaR and alphaI are both infinite, in which case it makes sense
* to propagate a NaN.
UR = AR + AI * ( AI / AR )
UI = AI + AR * ( AR / AI )
*
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
* This means that both alphaR and alphaI are very small.
CALL CSCAL( N, CMPLX( SAFMIN / UR, -SAFMIN / UI ), X, INCX )
CALL CSSCAL( N, SAFMAX, X, INCX )
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
* This means that a and b are both Inf. No need for scaling.
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
ELSE
CALL CSSCAL( N, SAFMIN, X, INCX )
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
* Infs were generated. We do proper scaling to avoid them.
IF( ABSR.GE.ABSI ) THEN
* ABS( UR ) <= ABS( UI )
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
ELSE
* ABS( UR ) > ABS( UI )
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
END IF
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
ELSE
CALL CSCAL( N, CMPLX( SAFMAX / UR, -SAFMAX / UI ),
$ X, INCX )
END IF
END IF
ELSE
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
END IF
END IF
*
RETURN
*
* End of CRSCL
*
END

View File

@ -101,7 +101,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup getf2
*
* =====================================================================
SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO )
@ -127,7 +127,7 @@
* ..
* .. Local Scalars ..
DOUBLE PRECISION SFMIN
INTEGER I, J, JP
INTEGER J, JP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
@ -135,7 +135,7 @@
EXTERNAL DLAMCH, IZAMAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
EXTERNAL XERBLA, ZGERU, ZRSCL, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
@ -181,15 +181,8 @@
*
* Compute elements J+1:M of J-th column.
*
IF( J.LT.M ) THEN
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
ELSE
DO 20 I = 1, M-J
A( J+I, J ) = A( J+I, J ) / A( J, J )
20 CONTINUE
END IF
END IF
IF( J.LT.M )
$ CALL ZRSCL( M-J, A( J, J ), A( J+1, J ), 1 )
*
ELSE IF( INFO.EQ.0 ) THEN
*

203
lapack-netlib/SRC/zrscl.f Normal file
View File

@ -0,0 +1,203 @@
*> \brief \b ZDRSCL multiplies a vector by the reciprocal of a real scalar.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZDRSCL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zdrscl.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zdrscl.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zdrscl.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZRSCL( N, A, X, INCX )
*
* .. Scalar Arguments ..
* INTEGER INCX, N
* COMPLEX*16 A
* ..
* .. Array Arguments ..
* COMPLEX*16 X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZRSCL multiplies an n-element complex vector x by the complex scalar
*> 1/a. This is done without overflow or underflow as long as
*> the final result x/a does not overflow or underflow.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of components of the vector x.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16
*> The scalar a which is used to divide each component of x.
*> A must not be 0, or the subroutine will divide by zero.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension
*> (1+(N-1)*abs(INCX))
*> The n-element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between successive values of the vector SX.
*> > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZRSCL( N, A, X, INCX )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX, N
COMPLEX*16 A
* ..
* .. Array Arguments ..
COMPLEX*16 X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR, UI
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
COMPLEX*16 ZLADIV
EXTERNAL DLAMCH, ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, ZDSCAL, ZDRSCL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
* Get machine parameters
*
SAFMIN = DLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
OV = DLAMCH( 'O' )
*
* Initialize constants related to A.
*
AR = DBLE( A )
AI = DIMAG( A )
ABSR = ABS( AR )
ABSI = ABS( AI )
*
IF( AI.EQ.ZERO ) THEN
* If alpha is real, then we can use csrscl
CALL ZDRSCL( N, AR, X, INCX )
*
ELSE IF( AR.EQ.ZERO ) THEN
* If alpha has a zero real part, then we follow the same rules as if
* alpha were real.
IF( ABSI.GT.SAFMAX ) THEN
CALL ZDSCAL( N, SAFMIN, X, INCX )
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMAX / AI ), X, INCX )
ELSE IF( ABSI.LT.SAFMIN ) THEN
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMIN / AI ), X, INCX )
CALL ZDSCAL( N, SAFMAX, X, INCX )
ELSE
CALL ZSCAL( N, DCMPLX( ZERO, -ONE / AI ), X, INCX )
END IF
*
ELSE
* The following numbers can be computed.
* They are the inverse of the real and imaginary parts of 1/alpha.
* Note that a and b are always different from zero.
* NaNs are only possible if either:
* 1. alphaR or alphaI is NaN.
* 2. alphaR and alphaI are both infinite, in which case it makes sense
* to propagate a NaN.
UR = AR + AI * ( AI / AR )
UI = AI + AR * ( AR / AI )
*
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
* This means that both alphaR and alphaI are very small.
CALL ZSCAL( N, DCMPLX( SAFMIN / UR, -SAFMIN / UI ), X,
$ INCX )
CALL ZDSCAL( N, SAFMAX, X, INCX )
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
* This means that a and b are both Inf. No need for scaling.
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
ELSE
CALL ZDSCAL( N, SAFMIN, X, INCX )
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
* Infs were generated. We do proper scaling to avoid them.
IF( ABSR.GE.ABSI ) THEN
* ABS( UR ) <= ABS( UI )
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
ELSE
* ABS( UR ) > ABS( UI )
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
END IF
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X,
$ INCX )
ELSE
CALL ZSCAL( N, DCMPLX( SAFMAX / UR, -SAFMAX / UI ),
$ X, INCX )
END IF
END IF
ELSE
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
END IF
END IF
*
RETURN
*
* End of ZRSCL
*
END