Add reciprocal scaling of a complex vector and use it in C/ZGETF2 (Reference-LAPACK PR839)
This commit is contained in:
parent
4d0b7fbec0
commit
069353bd44
|
@ -101,7 +101,7 @@
|
|||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup complexGEcomputational
|
||||
*> \ingroup getf2
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
|
||||
|
@ -126,16 +126,14 @@
|
|||
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL SFMIN
|
||||
INTEGER I, J, JP
|
||||
INTEGER J, JP
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
REAL SLAMCH
|
||||
INTEGER ICAMAX
|
||||
EXTERNAL SLAMCH, ICAMAX
|
||||
EXTERNAL ICAMAX
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CGERU, CSCAL, CSWAP, XERBLA
|
||||
EXTERNAL CGERU, CRSCL, CSWAP, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
|
@ -161,10 +159,6 @@
|
|||
*
|
||||
IF( M.EQ.0 .OR. N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Compute machine safe minimum
|
||||
*
|
||||
SFMIN = SLAMCH('S')
|
||||
*
|
||||
DO 10 J = 1, MIN( M, N )
|
||||
*
|
||||
|
@ -181,15 +175,8 @@
|
|||
*
|
||||
* Compute elements J+1:M of J-th column.
|
||||
*
|
||||
IF( J.LT.M ) THEN
|
||||
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
|
||||
CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
|
||||
ELSE
|
||||
DO 20 I = 1, M-J
|
||||
A( J+I, J ) = A( J+I, J ) / A( J, J )
|
||||
20 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
IF( J.LT.M )
|
||||
$ CALL CRSCL( M-J, A( J, J ), A( J+1, J ), 1 )
|
||||
*
|
||||
ELSE IF( INFO.EQ.0 ) THEN
|
||||
*
|
||||
|
|
|
@ -0,0 +1,202 @@
|
|||
*> \brief \b CRSCL multiplies a vector by the reciprocal of a real scalar.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download CRSCL + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/crscl.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/crscl.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/crscl.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE CRSCL( N, A, X, INCX )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX, N
|
||||
* COMPLEX A
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* COMPLEX X( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> CRSCL multiplies an n-element complex vector x by the complex scalar
|
||||
*> 1/a. This is done without overflow or underflow as long as
|
||||
*> the final result x/a does not overflow or underflow.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of components of the vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is COMPLEX
|
||||
*> The scalar a which is used to divide each component of x.
|
||||
*> A must not be 0, or the subroutine will divide by zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is COMPLEX array, dimension
|
||||
*> (1+(N-1)*abs(INCX))
|
||||
*> The n-element vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> The increment between successive values of the vector X.
|
||||
*> > 0: X(1) = X(1) and X(1+(i-1)*INCX) = x(i), 1< i<= n
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup complexOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE CRSCL( N, A, X, INCX )
|
||||
*
|
||||
* -- LAPACK auxiliary routine --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX, N
|
||||
COMPLEX A
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX X( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR
|
||||
% , UI
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
REAL SLAMCH
|
||||
COMPLEX CLADIV
|
||||
EXTERNAL SLAMCH, CLADIV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CSCAL, CSSCAL, CSRSCL
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.LE.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Get machine parameters
|
||||
*
|
||||
SAFMIN = SLAMCH( 'S' )
|
||||
SAFMAX = ONE / SAFMIN
|
||||
OV = SLAMCH( 'O' )
|
||||
*
|
||||
* Initialize constants related to A.
|
||||
*
|
||||
AR = REAL( A )
|
||||
AI = AIMAG( A )
|
||||
ABSR = ABS( AR )
|
||||
ABSI = ABS( AI )
|
||||
*
|
||||
IF( AI.EQ.ZERO ) THEN
|
||||
* If alpha is real, then we can use csrscl
|
||||
CALL CSRSCL( N, AR, X, INCX )
|
||||
*
|
||||
ELSE IF( AR.EQ.ZERO ) THEN
|
||||
* If alpha has a zero real part, then we follow the same rules as if
|
||||
* alpha were real.
|
||||
IF( ABSI.GT.SAFMAX ) THEN
|
||||
CALL CSSCAL( N, SAFMIN, X, INCX )
|
||||
CALL CSCAL( N, CMPLX( ZERO, -SAFMAX / AI ), X, INCX )
|
||||
ELSE IF( ABSI.LT.SAFMIN ) THEN
|
||||
CALL CSCAL( N, CMPLX( ZERO, -SAFMIN / AI ), X, INCX )
|
||||
CALL CSSCAL( N, SAFMAX, X, INCX )
|
||||
ELSE
|
||||
CALL CSCAL( N, CMPLX( ZERO, -ONE / AI ), X, INCX )
|
||||
END IF
|
||||
*
|
||||
ELSE
|
||||
* The following numbers can be computed.
|
||||
* They are the inverse of the real and imaginary parts of 1/alpha.
|
||||
* Note that a and b are always different from zero.
|
||||
* NaNs are only possible if either:
|
||||
* 1. alphaR or alphaI is NaN.
|
||||
* 2. alphaR and alphaI are both infinite, in which case it makes sense
|
||||
* to propagate a NaN.
|
||||
UR = AR + AI * ( AI / AR )
|
||||
UI = AI + AR * ( AR / AI )
|
||||
*
|
||||
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
|
||||
* This means that both alphaR and alphaI are very small.
|
||||
CALL CSCAL( N, CMPLX( SAFMIN / UR, -SAFMIN / UI ), X, INCX )
|
||||
CALL CSSCAL( N, SAFMAX, X, INCX )
|
||||
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
|
||||
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
|
||||
* This means that a and b are both Inf. No need for scaling.
|
||||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
|
||||
ELSE
|
||||
CALL CSSCAL( N, SAFMIN, X, INCX )
|
||||
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
|
||||
* Infs were generated. We do proper scaling to avoid them.
|
||||
IF( ABSR.GE.ABSI ) THEN
|
||||
* ABS( UR ) <= ABS( UI )
|
||||
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
|
||||
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
|
||||
ELSE
|
||||
* ABS( UR ) > ABS( UI )
|
||||
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
|
||||
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
|
||||
END IF
|
||||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
|
||||
ELSE
|
||||
CALL CSCAL( N, CMPLX( SAFMAX / UR, -SAFMAX / UI ),
|
||||
$ X, INCX )
|
||||
END IF
|
||||
END IF
|
||||
ELSE
|
||||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of CRSCL
|
||||
*
|
||||
END
|
|
@ -101,7 +101,7 @@
|
|||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup complex16GEcomputational
|
||||
*> \ingroup getf2
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO )
|
||||
|
@ -127,7 +127,7 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION SFMIN
|
||||
INTEGER I, J, JP
|
||||
INTEGER J, JP
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION DLAMCH
|
||||
|
@ -135,7 +135,7 @@
|
|||
EXTERNAL DLAMCH, IZAMAX
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
|
||||
EXTERNAL XERBLA, ZGERU, ZRSCL, ZSWAP
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
|
@ -181,15 +181,8 @@
|
|||
*
|
||||
* Compute elements J+1:M of J-th column.
|
||||
*
|
||||
IF( J.LT.M ) THEN
|
||||
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
|
||||
CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
|
||||
ELSE
|
||||
DO 20 I = 1, M-J
|
||||
A( J+I, J ) = A( J+I, J ) / A( J, J )
|
||||
20 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
IF( J.LT.M )
|
||||
$ CALL ZRSCL( M-J, A( J, J ), A( J+1, J ), 1 )
|
||||
*
|
||||
ELSE IF( INFO.EQ.0 ) THEN
|
||||
*
|
||||
|
|
|
@ -0,0 +1,203 @@
|
|||
*> \brief \b ZDRSCL multiplies a vector by the reciprocal of a real scalar.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download ZDRSCL + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zdrscl.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zdrscl.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zdrscl.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE ZRSCL( N, A, X, INCX )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX, N
|
||||
* COMPLEX*16 A
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* COMPLEX*16 X( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> ZRSCL multiplies an n-element complex vector x by the complex scalar
|
||||
*> 1/a. This is done without overflow or underflow as long as
|
||||
*> the final result x/a does not overflow or underflow.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of components of the vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is COMPLEX*16
|
||||
*> The scalar a which is used to divide each component of x.
|
||||
*> A must not be 0, or the subroutine will divide by zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is COMPLEX*16 array, dimension
|
||||
*> (1+(N-1)*abs(INCX))
|
||||
*> The n-element vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> The increment between successive values of the vector SX.
|
||||
*> > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup complex16OTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE ZRSCL( N, A, X, INCX )
|
||||
*
|
||||
* -- LAPACK auxiliary routine --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX, N
|
||||
COMPLEX*16 A
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX*16 X( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR, UI
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION DLAMCH
|
||||
COMPLEX*16 ZLADIV
|
||||
EXTERNAL DLAMCH, ZLADIV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DSCAL, ZDSCAL, ZDRSCL
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.LE.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Get machine parameters
|
||||
*
|
||||
SAFMIN = DLAMCH( 'S' )
|
||||
SAFMAX = ONE / SAFMIN
|
||||
OV = DLAMCH( 'O' )
|
||||
*
|
||||
* Initialize constants related to A.
|
||||
*
|
||||
AR = DBLE( A )
|
||||
AI = DIMAG( A )
|
||||
ABSR = ABS( AR )
|
||||
ABSI = ABS( AI )
|
||||
*
|
||||
IF( AI.EQ.ZERO ) THEN
|
||||
* If alpha is real, then we can use csrscl
|
||||
CALL ZDRSCL( N, AR, X, INCX )
|
||||
*
|
||||
ELSE IF( AR.EQ.ZERO ) THEN
|
||||
* If alpha has a zero real part, then we follow the same rules as if
|
||||
* alpha were real.
|
||||
IF( ABSI.GT.SAFMAX ) THEN
|
||||
CALL ZDSCAL( N, SAFMIN, X, INCX )
|
||||
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMAX / AI ), X, INCX )
|
||||
ELSE IF( ABSI.LT.SAFMIN ) THEN
|
||||
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMIN / AI ), X, INCX )
|
||||
CALL ZDSCAL( N, SAFMAX, X, INCX )
|
||||
ELSE
|
||||
CALL ZSCAL( N, DCMPLX( ZERO, -ONE / AI ), X, INCX )
|
||||
END IF
|
||||
*
|
||||
ELSE
|
||||
* The following numbers can be computed.
|
||||
* They are the inverse of the real and imaginary parts of 1/alpha.
|
||||
* Note that a and b are always different from zero.
|
||||
* NaNs are only possible if either:
|
||||
* 1. alphaR or alphaI is NaN.
|
||||
* 2. alphaR and alphaI are both infinite, in which case it makes sense
|
||||
* to propagate a NaN.
|
||||
UR = AR + AI * ( AI / AR )
|
||||
UI = AI + AR * ( AR / AI )
|
||||
*
|
||||
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
|
||||
* This means that both alphaR and alphaI are very small.
|
||||
CALL ZSCAL( N, DCMPLX( SAFMIN / UR, -SAFMIN / UI ), X,
|
||||
$ INCX )
|
||||
CALL ZDSCAL( N, SAFMAX, X, INCX )
|
||||
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
|
||||
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
|
||||
* This means that a and b are both Inf. No need for scaling.
|
||||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
|
||||
ELSE
|
||||
CALL ZDSCAL( N, SAFMIN, X, INCX )
|
||||
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
|
||||
* Infs were generated. We do proper scaling to avoid them.
|
||||
IF( ABSR.GE.ABSI ) THEN
|
||||
* ABS( UR ) <= ABS( UI )
|
||||
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
|
||||
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
|
||||
ELSE
|
||||
* ABS( UR ) > ABS( UI )
|
||||
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
|
||||
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
|
||||
END IF
|
||||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X,
|
||||
$ INCX )
|
||||
ELSE
|
||||
CALL ZSCAL( N, DCMPLX( SAFMAX / UR, -SAFMAX / UI ),
|
||||
$ X, INCX )
|
||||
END IF
|
||||
END IF
|
||||
ELSE
|
||||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of ZRSCL
|
||||
*
|
||||
END
|
Loading…
Reference in New Issue