forked from xuos/xiuos
				
			
		
			
				
	
	
		
			98 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
#include <cstdio>
 | 
						|
// #include <transform.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include "tensorflow/lite/micro/all_ops_resolver.h"
 | 
						|
#include "tensorflow/lite/micro/micro_error_reporter.h"
 | 
						|
#include "tensorflow/lite/micro/micro_interpreter.h"
 | 
						|
#include "tensorflow/lite/schema/schema_generated.h"
 | 
						|
#include "tensorflow/lite/version.h"
 | 
						|
 | 
						|
#include "digit.h"
 | 
						|
#include "model.h"
 | 
						|
 | 
						|
namespace {
 | 
						|
tflite::ErrorReporter* error_reporter = nullptr;
 | 
						|
const tflite::Model* model = nullptr;
 | 
						|
tflite::MicroInterpreter* interpreter = nullptr;
 | 
						|
TfLiteTensor* input = nullptr;
 | 
						|
TfLiteTensor* output = nullptr;
 | 
						|
constexpr int kTensorArenaSize = 110 * 1024;
 | 
						|
uint8_t *tensor_arena = nullptr;
 | 
						|
//uint8_t tensor_arena[kTensorArenaSize];
 | 
						|
}
 | 
						|
 | 
						|
extern "C" void mnist_app() {
 | 
						|
  tflite::MicroErrorReporter micro_error_reporter;
 | 
						|
  error_reporter = µ_error_reporter;
 | 
						|
 | 
						|
  model = tflite::GetModel(mnist_model);
 | 
						|
  if (model->version() != TFLITE_SCHEMA_VERSION) {
 | 
						|
    TF_LITE_REPORT_ERROR(error_reporter,
 | 
						|
                         "Model provided is schema version %d not equal "
 | 
						|
                         "to supported version %d.",
 | 
						|
                         model->version(), TFLITE_SCHEMA_VERSION);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  tensor_arena = (uint8_t *)malloc(kTensorArenaSize);
 | 
						|
  if (tensor_arena == nullptr) {
 | 
						|
    TF_LITE_REPORT_ERROR(error_reporter, "malloc for tensor_arena failed");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  tflite::AllOpsResolver resolver;
 | 
						|
  tflite::MicroInterpreter static_interpreter(
 | 
						|
      model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
 | 
						|
  interpreter = &static_interpreter;
 | 
						|
 | 
						|
  // Allocate memory from the tensor_arena for the model's tensors.
 | 
						|
  TfLiteStatus allocate_status = interpreter->AllocateTensors();
 | 
						|
  if (allocate_status != kTfLiteOk) {
 | 
						|
    TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  input = interpreter->input(0);
 | 
						|
  output = interpreter->output(0);
 | 
						|
 | 
						|
  printf("------- Input Digit -------\n");
 | 
						|
  for (int i = 0; i < 28; i++) {
 | 
						|
    for (int j = 0; j < 28; j++) {
 | 
						|
      if (mnist_digit[i*28+j] > 0.3)
 | 
						|
        printf("#");
 | 
						|
      else
 | 
						|
        printf(".");
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
  }
 | 
						|
 | 
						|
  for (int i = 0; i < 28*28; i++) {
 | 
						|
        input->data.f[i] = mnist_digit[i];
 | 
						|
    }
 | 
						|
 | 
						|
  TfLiteStatus invoke_status = interpreter->Invoke();
 | 
						|
  if (invoke_status != kTfLiteOk) {
 | 
						|
    TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed on x_val\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Read the predicted y value from the model's output tensor
 | 
						|
  float max = 0.0;
 | 
						|
  int index;
 | 
						|
  for (int i = 0; i < 10; i++) {
 | 
						|
         if(output->data.f[i]>max){
 | 
						|
           max = output->data.f[i];
 | 
						|
           index = i;
 | 
						|
         }
 | 
						|
  }
 | 
						|
  printf("------- Output Result -------\n");
 | 
						|
  printf("result is %d\n", index);
 | 
						|
}
 | 
						|
 | 
						|
extern "C" {
 | 
						|
#ifdef __RT_THREAD_H__
 | 
						|
MSH_CMD_EXPORT(mnist_app, run mnist app);
 | 
						|
#endif
 | 
						|
}
 |