forked from xuos/xiuos
				
			
		
			
				
	
	
		
			203 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright JS Foundation and other contributors, http://js.foundation
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  * This file is based on work under the following copyright and permission
 | |
|  * notice:
 | |
|  *
 | |
|  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  *     Permission to use, copy, modify, and distribute this
 | |
|  *     software is freely granted, provided that this notice
 | |
|  *     is preserved.
 | |
|  *
 | |
|  *     @(#)e_log.c 1.3 95/01/18
 | |
|  */
 | |
| 
 | |
| #include "jerry-math-internal.h"
 | |
| 
 | |
| /* log(x)
 | |
|  * Return the logrithm of x
 | |
|  *
 | |
|  * Method :
 | |
|  *   1. Argument Reduction: find k and f such that
 | |
|  *                      x = 2^k * (1+f),
 | |
|  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 | |
|  *
 | |
|  *   2. Approximation of log(1+f).
 | |
|  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 | |
|  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 | |
|  *               = 2s + s*R
 | |
|  *      We use a special Reme algorithm on [0,0.1716] to generate
 | |
|  *      a polynomial of degree 14 to approximate R The maximum error
 | |
|  *      of this polynomial approximation is bounded by 2**-58.45. In
 | |
|  *      other words,
 | |
|  *                      2      4      6      8      10      12      14
 | |
|  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 | |
|  *      (the values of Lg1 to Lg7 are listed in the program)
 | |
|  *      and
 | |
|  *          |      2          14          |     -58.45
 | |
|  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 | |
|  *          |                             |
 | |
|  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 | |
|  *      In order to guarantee error in log below 1ulp, we compute log
 | |
|  *      by
 | |
|  *              log(1+f) = f - s*(f - R)                (if f is not too large)
 | |
|  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
 | |
|  *
 | |
|  *      3. Finally,  log(x) = k*ln2 + log(1+f).
 | |
|  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 | |
|  *         Here ln2 is split into two floating point number:
 | |
|  *                      ln2_hi + ln2_lo,
 | |
|  *         where n*ln2_hi is always exact for |n| < 2000.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      log(x) is NaN with signal if x < 0 (including -INF) ;
 | |
|  *      log(+INF) is +INF; log(0) is -INF with signal;
 | |
|  *      log(NaN) is that NaN with no signal.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *      according to an error analysis, the error is always less than
 | |
|  *      1 ulp (unit in the last place).
 | |
|  *
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following
 | |
|  * constants. The decimal values may be used, provided that the
 | |
|  * compiler will convert from decimal to binary accurately enough
 | |
|  * to produce the hexadecimal values shown.
 | |
|  */
 | |
| 
 | |
| #define zero   0.0
 | |
| #define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
 | |
| #define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
 | |
| #define two54  1.80143985094819840000e+16 /* 43500000 00000000 */
 | |
| #define Lg1    6.666666666666735130e-01 /* 3FE55555 55555593 */
 | |
| #define Lg2    3.999999999940941908e-01 /* 3FD99999 9997FA04 */
 | |
| #define Lg3    2.857142874366239149e-01 /* 3FD24924 94229359 */
 | |
| #define Lg4    2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
 | |
| #define Lg5    1.818357216161805012e-01 /* 3FC74664 96CB03DE */
 | |
| #define Lg6    1.531383769920937332e-01 /* 3FC39A09 D078C69F */
 | |
| #define Lg7    1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
 | |
| 
 | |
| double
 | |
| log (double x)
 | |
| {
 | |
|   double hfsq, f, s, z, R, w, t1, t2, dk;
 | |
|   int k, hx, i, j;
 | |
|   unsigned lx;
 | |
| 
 | |
|   hx = __HI (x); /* high word of x */
 | |
|   lx = __LO (x); /* low  word of x */
 | |
| 
 | |
|   k = 0;
 | |
|   if (hx < 0x00100000) /* x < 2**-1022  */
 | |
|   {
 | |
|     if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */
 | |
|     {
 | |
|       return -two54 / zero;
 | |
|     }
 | |
|     if (hx < 0) /* log(-#) = NaN */
 | |
|     {
 | |
|       return (x - x) / zero;
 | |
|     }
 | |
|     k -= 54;
 | |
|     x *= two54; /* subnormal number, scale up x */
 | |
|     hx = __HI (x); /* high word of x */
 | |
|   }
 | |
|   if (hx >= 0x7ff00000)
 | |
|   {
 | |
|     return x + x;
 | |
|   }
 | |
|   k += (hx >> 20) - 1023;
 | |
|   hx &= 0x000fffff;
 | |
|   i = (hx + 0x95f64) & 0x100000;
 | |
| 
 | |
|   double_accessor temp;
 | |
|   temp.dbl = x;
 | |
|   temp.as_int.hi = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */
 | |
|   k += (i >> 20);
 | |
|   f = temp.dbl - 1.0;
 | |
| 
 | |
|   if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */
 | |
|   {
 | |
|     if (f == zero)
 | |
|     {
 | |
|       if (k == 0)
 | |
|       {
 | |
|         return zero;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         dk = (double) k;
 | |
|         return dk * ln2_hi + dk * ln2_lo;
 | |
|       }
 | |
|     }
 | |
|     R = f * f * (0.5 - 0.33333333333333333 * f);
 | |
|     if (k == 0)
 | |
|     {
 | |
|       return f - R;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       dk = (double) k;
 | |
|       return dk * ln2_hi - ((R - dk * ln2_lo) - f);
 | |
|     }
 | |
|   }
 | |
|   s = f / (2.0 + f);
 | |
|   dk = (double) k;
 | |
|   z = s * s;
 | |
|   i = hx - 0x6147a;
 | |
|   w = z * z;
 | |
|   j = 0x6b851 - hx;
 | |
|   t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
 | |
|   t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
 | |
|   i |= j;
 | |
|   R = t2 + t1;
 | |
|   if (i > 0)
 | |
|   {
 | |
|     hfsq = 0.5 * f * f;
 | |
|     if (k == 0)
 | |
|     {
 | |
|       return f - (hfsq - s * (hfsq + R));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     if (k == 0)
 | |
|     {
 | |
|       return f - s * (f - R);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
 | |
|     }
 | |
|   }
 | |
| } /* log */
 | |
| 
 | |
| #undef zero
 | |
| #undef ln2_hi
 | |
| #undef ln2_lo
 | |
| #undef two54
 | |
| #undef Lg1
 | |
| #undef Lg2
 | |
| #undef Lg3
 | |
| #undef Lg4
 | |
| #undef Lg5
 | |
| #undef Lg6
 | |
| #undef Lg7
 |