forked from xuos/xiuos
				
			
		
			
				
	
	
		
			233 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright JS Foundation and other contributors, http://js.foundation
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  * This file is based on work under the following copyright and permission
 | |
|  * notice:
 | |
|  *
 | |
|  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  *     Permission to use, copy, modify, and distribute this
 | |
|  *     software is freely granted, provided that this notice
 | |
|  *     is preserved.
 | |
|  *
 | |
|  *     @(#)e_fmod.c 1.3 95/01/18
 | |
|  */
 | |
| 
 | |
| #include "jerry-math-internal.h"
 | |
| 
 | |
| /* fmod(x,y)
 | |
|  * Return x mod y in exact arithmetic
 | |
|  *
 | |
|  * Method: shift and subtract
 | |
|  */
 | |
| 
 | |
| static const double Zero[] = { 0.0, -0.0, };
 | |
| 
 | |
| double
 | |
| fmod (double x, double y)
 | |
| {
 | |
|   int n, hx, hy, hz, ix, iy, sx, i;
 | |
|   unsigned lx, ly, lz;
 | |
| 
 | |
|   hx = __HI (x); /* high word of x */
 | |
|   lx = __LO (x); /* low  word of x */
 | |
|   hy = __HI (y); /* high word of y */
 | |
|   ly = __LO (y); /* low  word of y */
 | |
|   sx = hx & 0x80000000; /* sign of x */
 | |
|   hx ^= sx; /* |x| */
 | |
|   hy &= 0x7fffffff; /* |y| */
 | |
| 
 | |
|   /* purge off exception values */
 | |
|   if ((hy | ly) == 0 || (hx >= 0x7ff00000) || /* y = 0, or x not finite */
 | |
|       ((hy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* or y is NaN */
 | |
|   {
 | |
|     return NAN;
 | |
|   }
 | |
|   if (hx <= hy)
 | |
|   {
 | |
|     if ((hx < hy) || (lx < ly)) /* |x| < |y| return x */
 | |
|     {
 | |
|       return x;
 | |
|     }
 | |
|     if (lx == ly) /* |x| = |y| return x * 0 */
 | |
|     {
 | |
|       return Zero[(unsigned) sx >> 31];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine ix = ilogb(x) */
 | |
|   if (hx < 0x00100000) /* subnormal x */
 | |
|   {
 | |
|     if (hx == 0)
 | |
|     {
 | |
|       for (ix = -1043, i = lx; i > 0; i <<= 1)
 | |
|       {
 | |
|         ix -= 1;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       for (ix = -1022, i = (hx << 11); i > 0; i <<= 1)
 | |
|       {
 | |
|         ix -= 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     ix = (hx >> 20) - 1023;
 | |
|   }
 | |
| 
 | |
|   /* determine iy = ilogb(y) */
 | |
|   if (hy < 0x00100000) /* subnormal y */
 | |
|   {
 | |
|     if (hy == 0)
 | |
|     {
 | |
|       for (iy = -1043, i = ly; i > 0; i <<= 1)
 | |
|       {
 | |
|         iy -= 1;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       for (iy = -1022, i = (hy << 11); i > 0; i <<= 1)
 | |
|       {
 | |
|         iy -= 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     iy = (hy >> 20) - 1023;
 | |
|   }
 | |
| 
 | |
|   /* set up {hx,lx}, {hy,ly} and align y to x */
 | |
|   if (ix >= -1022)
 | |
|   {
 | |
|     hx = 0x00100000 | (0x000fffff & hx);
 | |
|   }
 | |
|   else /* subnormal x, shift x to normal */
 | |
|   {
 | |
|     n = -1022 - ix;
 | |
|     if (n <= 31)
 | |
|     {
 | |
|       hx = (((unsigned int) hx) << n) | (lx >> (32 - n));
 | |
|       lx <<= n;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       hx = lx << (n - 32);
 | |
|       lx = 0;
 | |
|     }
 | |
|   }
 | |
|   if (iy >= -1022)
 | |
|   {
 | |
|     hy = 0x00100000 | (0x000fffff & hy);
 | |
|   }
 | |
|   else /* subnormal y, shift y to normal */
 | |
|   {
 | |
|     n = -1022 - iy;
 | |
|     if (n <= 31)
 | |
|     {
 | |
|       hy = (((unsigned int) hy) << n) | (ly >> (32 - n));
 | |
|       ly <<= n;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       hy = ly << (n - 32);
 | |
|       ly = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* fix point fmod */
 | |
|   n = ix - iy;
 | |
|   while (n--)
 | |
|   {
 | |
|     hz = hx - hy;
 | |
|     lz = lx - ly;
 | |
|     if (lx < ly)
 | |
|     {
 | |
|       hz -= 1;
 | |
|     }
 | |
|     if (hz < 0)
 | |
|     {
 | |
|       hx = hx + hx + (lx >> 31);
 | |
|       lx = lx + lx;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if ((hz | lz) == 0) /* return sign(x) * 0 */
 | |
|       {
 | |
|         return Zero[(unsigned) sx >> 31];
 | |
|       }
 | |
|       hx = hz + hz + (lz >> 31);
 | |
|       lx = lz + lz;
 | |
|     }
 | |
|   }
 | |
|   hz = hx - hy;
 | |
|   lz = lx - ly;
 | |
|   if (lx < ly)
 | |
|   {
 | |
|     hz -= 1;
 | |
|   }
 | |
|   if (hz >= 0)
 | |
|   {
 | |
|     hx = hz;
 | |
|     lx = lz;
 | |
|   }
 | |
| 
 | |
|   /* convert back to floating value and restore the sign */
 | |
|   if ((hx | lx) == 0) /* return sign(x) * 0 */
 | |
|   {
 | |
|     return Zero[(unsigned) sx >> 31];
 | |
|   }
 | |
|   while (hx < 0x00100000) /* normalize x */
 | |
|   {
 | |
|     hx = hx + hx + (lx >> 31);
 | |
|     lx = lx + lx;
 | |
|     iy -= 1;
 | |
|   }
 | |
| 
 | |
|   double_accessor ret;
 | |
|   if (iy >= -1022) /* normalize output */
 | |
|   {
 | |
|     hx = ((hx - 0x00100000) | ((iy + 1023) << 20));
 | |
|     ret.as_int.hi = hx | sx;
 | |
|     ret.as_int.lo = lx;
 | |
|   }
 | |
|   else /* subnormal output */
 | |
|   {
 | |
|     n = -1022 - iy;
 | |
|     if (n <= 20)
 | |
|     {
 | |
|       lx = (lx >> n) | ((unsigned) hx << (32 - n));
 | |
|       hx >>= n;
 | |
|     }
 | |
|     else if (n <= 31)
 | |
|     {
 | |
|       lx = (hx << (32 - n)) | (lx >> n);
 | |
|       hx = sx;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       lx = hx >> (n - 32);
 | |
|       hx = sx;
 | |
|     }
 | |
|     ret.as_int.hi = hx | sx;
 | |
|     ret.as_int.lo = lx;
 | |
|   }
 | |
|   return ret.dbl; /* exact output */
 | |
| } /* fmod */
 |