forked from xuos/xiuos
				
			
		
			
				
	
	
		
			306 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright JS Foundation and other contributors, http://js.foundation
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  * This file is based on work under the following copyright and permission
 | |
|  * notice:
 | |
|  *
 | |
|  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  *     Permission to use, copy, modify, and distribute this
 | |
|  *     software is freely granted, provided that this notice
 | |
|  *     is preserved.
 | |
|  *
 | |
|  *     @(#)s_expm1.c 5.1 93/09/24
 | |
|  */
 | |
| 
 | |
| #include "jerry-math-internal.h"
 | |
| 
 | |
| /* expm1(x)
 | |
|  * Returns exp(x)-1, the exponential of x minus 1.
 | |
|  *
 | |
|  * Method
 | |
|  *   1. Argument reduction:
 | |
|  *  Given x, find r and integer k such that
 | |
|  *
 | |
|  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
 | |
|  *
 | |
|  *      Here a correction term c will be computed to compensate
 | |
|  *  the error in r when rounded to a floating-point number.
 | |
|  *
 | |
|  *   2. Approximating expm1(r) by a special rational function on
 | |
|  *  the interval [0,0.34658]:
 | |
|  *  Since
 | |
|  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
 | |
|  *  we define R1(r*r) by
 | |
|  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
 | |
|  *  That is,
 | |
|  *      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
 | |
|  *         = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
 | |
|  *         = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
 | |
|  *      We use a special Reme algorithm on [0,0.347] to generate
 | |
|  *   a polynomial of degree 5 in r*r to approximate R1. The
 | |
|  *  maximum error of this polynomial approximation is bounded
 | |
|  *  by 2**-61. In other words,
 | |
|  *      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
 | |
|  *  where   Q1  =  -1.6666666666666567384E-2,
 | |
|  *     Q2  =   3.9682539681370365873E-4,
 | |
|  *     Q3  =  -9.9206344733435987357E-6,
 | |
|  *     Q4  =   2.5051361420808517002E-7,
 | |
|  *     Q5  =  -6.2843505682382617102E-9;
 | |
|  *    z   =  r*r,
 | |
|  *  with error bounded by
 | |
|  *      |                  5           |     -61
 | |
|  *      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
 | |
|  *      |                              |
 | |
|  *
 | |
|  *  expm1(r) = exp(r)-1 is then computed by the following
 | |
|  *   specific way which minimize the accumulation rounding error:
 | |
|  *                        2     3
 | |
|  *                        r     r    [ 3 - (R1 + R1*r/2)  ]
 | |
|  *        expm1(r) = r + --- + --- * [--------------------]
 | |
|  *                        2     2    [ 6 - r*(3 - R1*r/2) ]
 | |
|  *
 | |
|  *  To compensate the error in the argument reduction, we use
 | |
|  *    expm1(r+c) = expm1(r) + c + expm1(r)*c
 | |
|  *         ~ expm1(r) + c + r*c
 | |
|  *  Thus c+r*c will be added in as the correction terms for
 | |
|  *  expm1(r+c). Now rearrange the term to avoid optimization
 | |
|  *   screw up:
 | |
|  *                  (      2                                    2 )
 | |
|  *                  ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
 | |
|  *   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
 | |
|  *                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
 | |
|  *                  (                                             )
 | |
|  *
 | |
|  *       = r - E
 | |
|  *   3. Scale back to obtain expm1(x):
 | |
|  *  From step 1, we have
 | |
|  *     expm1(x) = either 2^k*[expm1(r)+1] - 1
 | |
|  *              = or     2^k*[expm1(r) + (1-2^-k)]
 | |
|  *   4. Implementation notes:
 | |
|  *  (A). To save one multiplication, we scale the coefficient Qi
 | |
|  *       to Qi*2^i, and replace z by (x^2)/2.
 | |
|  *  (B). To achieve maximum accuracy, we compute expm1(x) by
 | |
|  *    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
 | |
|  *    (ii)  if k=0, return r-E
 | |
|  *    (iii) if k=-1, return 0.5*(r-E)-0.5
 | |
|  *    (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
 | |
|  *                  else       return  1.0+2.0*(r-E);
 | |
|  *    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
 | |
|  *    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
 | |
|  *    (vii) return 2^k(1-((E+2^-k)-r))
 | |
|  *
 | |
|  * Special cases:
 | |
|  *  expm1(INF) is INF, expm1(NaN) is NaN;
 | |
|  *  expm1(-INF) is -1, and
 | |
|  *  for finite argument, only expm1(0)=0 is exact.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *  according to an error analysis, the error is always less than
 | |
|  *  1 ulp (unit in the last place).
 | |
|  *
 | |
|  * Misc. info.
 | |
|  *  For IEEE double
 | |
|  *      if x >  7.09782712893383973096e+02 then expm1(x) overflow
 | |
|  *
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following
 | |
|  * constants. The decimal values may be used, provided that the
 | |
|  * compiler will convert from decimal to binary accurately enough
 | |
|  * to produce the hexadecimal values shown.
 | |
|  */
 | |
| 
 | |
| #define one 1.0
 | |
| #define huge 1.0e+300
 | |
| #define tiny 1.0e-300
 | |
| #define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
 | |
| #define ln2_hi 6.93147180369123816490e-01      /* 0x3fe62e42, 0xfee00000 */
 | |
| #define ln2_lo 1.90821492927058770002e-10      /* 0x3dea39ef, 0x35793c76 */
 | |
| #define invln2 1.44269504088896338700e+00      /* 0x3ff71547, 0x652b82fe */
 | |
| 
 | |
| /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
 | |
| #define Q1 -3.33333333333331316428e-02 /* BFA11111 111110F4 */
 | |
| #define Q2 1.58730158725481460165e-03  /* 3F5A01A0 19FE5585 */
 | |
| #define Q3 -7.93650757867487942473e-05 /* BF14CE19 9EAADBB7 */
 | |
| #define Q4 4.00821782732936239552e-06  /* 3ED0CFCA 86E65239 */
 | |
| #define Q5 -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */
 | |
| 
 | |
| double
 | |
| expm1 (double x)
 | |
| {
 | |
|   double y, hi, lo, c, e, hxs, hfx, r1;
 | |
|   double_accessor t, twopk;
 | |
|   int k, xsb;
 | |
|   unsigned int hx;
 | |
| 
 | |
|   hx = __HI (x);
 | |
|   xsb = hx & 0x80000000; /* sign bit of x */
 | |
|   hx &= 0x7fffffff;      /* high word of |x| */
 | |
| 
 | |
|   /* filter out huge and non-finite argument */
 | |
|   if (hx >= 0x4043687A)
 | |
|   {
 | |
|     /* if |x|>=56*ln2 */
 | |
|     if (hx >= 0x40862E42)
 | |
|     {
 | |
|       /* if |x|>=709.78... */
 | |
|       if (hx >= 0x7ff00000)
 | |
|       {
 | |
|         unsigned int low;
 | |
|         low = __LO (x);
 | |
|         if (((hx & 0xfffff) | low) != 0)
 | |
|         {
 | |
|           /* NaN */
 | |
|           return x + x;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           /* exp(+-inf)-1={inf,-1} */
 | |
|           return (xsb == 0) ? x : -1.0;
 | |
|         }
 | |
|       }
 | |
|       if (x > o_threshold)
 | |
|       {
 | |
|         /* overflow */
 | |
|         return huge * huge;
 | |
|       }
 | |
|     }
 | |
|     if (xsb != 0)
 | |
|     {
 | |
|       /* x < -56*ln2, return -1.0 with inexact */
 | |
|       if (x + tiny < 0.0) /* raise inexact */
 | |
|       {
 | |
|         /* return -1 */
 | |
|         return tiny - one;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* argument reduction */
 | |
|   if (hx > 0x3fd62e42)
 | |
|   {
 | |
|     /* if  |x| > 0.5 ln2 */
 | |
|     if (hx < 0x3FF0A2B2)
 | |
|     {
 | |
|       /* and |x| < 1.5 ln2 */
 | |
|       if (xsb == 0)
 | |
|       {
 | |
|         hi = x - ln2_hi;
 | |
|         lo = ln2_lo;
 | |
|         k = 1;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         hi = x + ln2_hi;
 | |
|         lo = -ln2_lo;
 | |
|         k = -1;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5));
 | |
|       t.dbl = k;
 | |
|       hi = x - t.dbl * ln2_hi; /* t*ln2_hi is exact here */
 | |
|       lo = t.dbl * ln2_lo;
 | |
|     }
 | |
|     x = hi - lo;
 | |
|     c = (hi - x) - lo;
 | |
|   }
 | |
|   else if (hx < 0x3c900000)
 | |
|   {
 | |
|     /* when |x|<2**-54, return x */
 | |
|     return x;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     k = 0;
 | |
|   }
 | |
| 
 | |
|   /* x is now in primary range */
 | |
|   hfx = 0.5 * x;
 | |
|   hxs = x * hfx;
 | |
|   r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
 | |
|   t.dbl = 3.0 - r1 * hfx;
 | |
|   e = hxs * ((r1 - t.dbl) / (6.0 - x * t.dbl));
 | |
|   if (k == 0)
 | |
|   {
 | |
|     /* c is 0 */
 | |
|     return x - (x * e - hxs);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     twopk.as_int.hi = 0x3ff00000 + ((unsigned int) k << 20); /* 2^k */
 | |
|     twopk.as_int.lo = 0;
 | |
|     e = (x * (e - c) - c);
 | |
|     e -= hxs;
 | |
|     if (k == -1)
 | |
|     {
 | |
|       return 0.5 * (x - e) - 0.5;
 | |
|     }
 | |
|     if (k == 1)
 | |
|     {
 | |
|       if (x < -0.25)
 | |
|       {
 | |
|         return -2.0 * (e - (x + 0.5));
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         return one + 2.0 * (x - e);
 | |
|       }
 | |
|     }
 | |
|     if ((k <= -2) || (k > 56))
 | |
|     {
 | |
|       /* suffice to return exp(x)-1 */
 | |
|       y = one - (e - x);
 | |
|       if (k == 1024)
 | |
|       {
 | |
|         y = y * 2.0 * 0x1p1023;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         y = y * twopk.dbl;
 | |
|       }
 | |
|       return y - one;
 | |
|     }
 | |
|     t.dbl = one;
 | |
|     if (k < 20)
 | |
|     {
 | |
|       t.as_int.hi = (0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */
 | |
|       y = t.dbl - (e - x);
 | |
|       y = y * twopk.dbl;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       t.as_int.hi = ((0x3ff - k) << 20); /* 2^-k */
 | |
|       y = x - (e + t.dbl);
 | |
|       y += one;
 | |
|       y = y * twopk.dbl;
 | |
|     }
 | |
|   }
 | |
|   return y;
 | |
| } /* expm1 */
 | |
| 
 | |
| #undef one
 | |
| #undef huge
 | |
| #undef tiny
 | |
| #undef o_threshold
 | |
| #undef ln2_hi
 | |
| #undef ln2_lo
 | |
| #undef invln2
 | |
| #undef Q1
 | |
| #undef Q2
 | |
| #undef Q3
 | |
| #undef Q4
 | |
| #undef Q5
 |