forked from xuos/xiuos
				
			
		
			
				
	
	
		
			155 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright JS Foundation and other contributors, http://js.foundation
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  * This file is based on work under the following copyright and permission
 | |
|  * notice:
 | |
|  *
 | |
|  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  *     Permission to use, copy, modify, and distribute this
 | |
|  *     software is freely granted, provided that this notice
 | |
|  *     is preserved.
 | |
|  *
 | |
|  *     @(#)e_asin.c 1.3 95/01/18
 | |
|  */
 | |
| 
 | |
| #include "jerry-math-internal.h"
 | |
| 
 | |
| /* asin(x)
 | |
|  *
 | |
|  * Method:
 | |
|  *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 | |
|  *      we approximate asin(x) on [0,0.5] by
 | |
|  *              asin(x) = x + x*x^2*R(x^2)
 | |
|  *      where
 | |
|  *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
 | |
|  *      and its remez error is bounded by
 | |
|  *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
 | |
|  *
 | |
|  *      For x in [0.5,1]
 | |
|  *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 | |
|  *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 | |
|  *      then for x>0.98
 | |
|  *              asin(x) = pi/2 - 2*(s+s*z*R(z))
 | |
|  *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 | |
|  *      For x<=0.98, let pio4_hi = pio2_hi/2, then
 | |
|  *              f = hi part of s;
 | |
|  *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
 | |
|  *      and
 | |
|  *              asin(x) = pi/2 - 2*(s+s*z*R(z))
 | |
|  *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 | |
|  *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      if x is NaN, return x itself;
 | |
|  *      if |x|>1, return NaN with invalid signal.
 | |
|  */
 | |
| 
 | |
| #define one      1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */
 | |
| #define huge     1.000e+300
 | |
| #define pio2_hi  1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */
 | |
| #define pio2_lo  6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */
 | |
| #define pio4_hi  7.85398163397448278999e-01 /* 0x3FE921FB, 0x54442D18 */
 | |
| /* coefficient for R(x^2) */
 | |
| #define pS0      1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */
 | |
| #define pS1     -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */
 | |
| #define pS2      2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */
 | |
| #define pS3     -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */
 | |
| #define pS4      7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */
 | |
| #define pS5      3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */
 | |
| #define qS1     -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */
 | |
| #define qS2      2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */
 | |
| #define qS3     -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */
 | |
| #define qS4      7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */
 | |
| 
 | |
| double
 | |
| asin (double x)
 | |
| {
 | |
|   double t, p, q, c, r, s;
 | |
|   double_accessor w;
 | |
|   int hx, ix;
 | |
| 
 | |
|   hx = __HI (x);
 | |
|   ix = hx & 0x7fffffff;
 | |
|   if (ix >= 0x3ff00000) /* |x| >= 1 */
 | |
|   {
 | |
|     if (((ix - 0x3ff00000) | __LO (x)) == 0) /* asin(1) = +-pi/2 with inexact */
 | |
|     {
 | |
|       return x * pio2_hi + x * pio2_lo;
 | |
|     }
 | |
|     return NAN; /* asin(|x|>1) is NaN */
 | |
|   }
 | |
|   else if (ix < 0x3fe00000) /* |x| < 0.5 */
 | |
|   {
 | |
|     if (ix < 0x3e400000) /* if |x| < 2**-27 */
 | |
|     {
 | |
|       if (huge + x > one) /* return x with inexact if x != 0 */
 | |
|       {
 | |
|         return x;
 | |
|       }
 | |
|     }
 | |
|     t = x * x;
 | |
|     p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
 | |
|     q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
 | |
|     w.dbl = p / q;
 | |
|     return x + x * w.dbl;
 | |
|   }
 | |
|   /* 1 > |x| >= 0.5 */
 | |
|   w.dbl = one - fabs (x);
 | |
|   t = w.dbl * 0.5;
 | |
|   p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
 | |
|   q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
 | |
|   s = sqrt (t);
 | |
|   if (ix >= 0x3FEF3333) /* if |x| > 0.975 */
 | |
|   {
 | |
|     w.dbl = p / q;
 | |
|     t = pio2_hi - (2.0 * (s + s * w.dbl) - pio2_lo);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     w.dbl = s;
 | |
|     w.as_int.lo = 0;
 | |
|     c = (t - w.dbl * w.dbl) / (s + w.dbl);
 | |
|     r = p / q;
 | |
|     p = 2.0 * s * r - (pio2_lo - 2.0 * c);
 | |
|     q = pio4_hi - 2.0 * w.dbl;
 | |
|     t = pio4_hi - (p - q);
 | |
|   }
 | |
|   if (hx > 0)
 | |
|   {
 | |
|     return t;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     return -t;
 | |
|   }
 | |
| } /* asin */
 | |
| 
 | |
| #undef one
 | |
| #undef huge
 | |
| #undef pio2_hi
 | |
| #undef pio2_lo
 | |
| #undef pio4_hi
 | |
| #undef pS0
 | |
| #undef pS1
 | |
| #undef pS2
 | |
| #undef pS3
 | |
| #undef pS4
 | |
| #undef pS5
 | |
| #undef qS1
 | |
| #undef qS2
 | |
| #undef qS3
 | |
| #undef qS4
 |