forked from xuos/xiuos
update knowing framework and ov2640 dirver from Tian_Chunyu
it is OK
This commit is contained in:
commit
aa27dea6e9
|
@ -1,4 +1,4 @@
|
|||
unsigned char mnist_model[] = {
|
||||
const unsigned char mnist_model[] = {
|
||||
0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x14, 0x00, 0x20, 0x00,
|
||||
0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, 0x00, 0x00,
|
||||
0x18, 0x00, 0x1c, 0x00, 0x14, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
menuconfig SUPPORT_KNOWING_FRAMEWORK
|
||||
bool "support knowing framework"
|
||||
default n
|
||||
select TRANSFORM_LAYER_ATTRIUBUTE
|
||||
|
||||
if SUPPORT_KNOWING_FRAMEWORK
|
||||
source "$APP_DIR/Framework/knowing/tensorflow-lite/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/filter/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/ota/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/image_processing/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/cmsis_5/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/kpu/Kconfig"
|
||||
endif
|
||||
menuconfig SUPPORT_KNOWING_FRAMEWORK
|
||||
bool "support knowing framework"
|
||||
default n
|
||||
select TRANSFORM_LAYER_ATTRIUBUTE
|
||||
|
||||
if SUPPORT_KNOWING_FRAMEWORK
|
||||
source "$APP_DIR/Framework/knowing/tensorflow-lite/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/filter/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/ota/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/image_processing/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/cmsis_5/Kconfig"
|
||||
source "$APP_DIR/Framework/knowing/kpu/Kconfig"
|
||||
endif
|
||||
|
|
|
@ -27,7 +27,8 @@
|
|||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include <inttypes.h>
|
||||
#include "../../../Core/Include/cmsis_gcc.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
|
|
|
@ -27,7 +27,8 @@
|
|||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include <inttypes.h>
|
||||
#include "../../../Core/Include/cmsis_gcc.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
|
|
|
@ -28,7 +28,8 @@
|
|||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include <inttypes.h>
|
||||
#include "../../../Core/Include/cmsis_gcc.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
|
|
|
@ -46,8 +46,8 @@ void k210_detect(char *json_file_path)
|
|||
printf("open ov2640 fail !!");
|
||||
return;
|
||||
}
|
||||
_ioctl_set_dvp_reso set_dvp_reso = {detect_params.sensor_output_size[1], detect_params.sensor_output_size[0]};
|
||||
ioctl(g_fd, IOCTRL_CAMERA_SET_DVP_RESO, &set_dvp_reso);
|
||||
_ioctl_set_reso set_dvp_reso = {detect_params.sensor_output_size[1], detect_params.sensor_output_size[0]};
|
||||
ioctl(g_fd, IOCTRL_CAMERA_OUT_SIZE_RESO, &set_dvp_reso);
|
||||
showbuffer =
|
||||
(unsigned char *)rt_malloc_align(detect_params.sensor_output_size[0] * detect_params.sensor_output_size[1] * 2, 64);
|
||||
if (NULL == showbuffer) {
|
||||
|
|
|
@ -102,75 +102,76 @@ tensorflow-lite-for-mcu/source/tensorflow/lite/micro/kernels/cmsis-nn/svdf.cc
|
|||
''')
|
||||
|
||||
cmsis = Split('''
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_add_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_mul_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_x.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_1x_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c
|
||||
tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_with_batch_q7.c
|
||||
../cmsis_5/NN/Source/ActivationFunctions/arm_nn_activations_q15.c
|
||||
../cmsis_5/NN/Source/ActivationFunctions/arm_nn_activations_q7.c
|
||||
../cmsis_5/NN/Source/ActivationFunctions/arm_relu6_s8.c
|
||||
../cmsis_5/NN/Source/ActivationFunctions/arm_relu_q15.c
|
||||
../cmsis_5/NN/Source/ActivationFunctions/arm_relu_q7.c
|
||||
../cmsis_5/NN/Source/BasicMathFunctions/arm_elementwise_add_s8.c
|
||||
../cmsis_5/NN/Source/BasicMathFunctions/arm_elementwise_mul_s8.c
|
||||
../cmsis_5/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c
|
||||
../cmsis_5/NN/Source/ConcatenationFunctions/arm_concatenation_s8_x.c
|
||||
../cmsis_5/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c
|
||||
../cmsis_5/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c
|
||||
../cmsis_5/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_s8.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c
|
||||
../cmsis_5/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_add_q7.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_1x_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_s8.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nntables.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c
|
||||
../cmsis_5/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_svdf_s8.c
|
||||
../cmsis_5/NN/Source/PoolingFunctions/arm_avgpool_s8.c
|
||||
../cmsis_5/NN/Source/PoolingFunctions/arm_max_pool_s8.c
|
||||
../cmsis_5/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
|
||||
../cmsis_5/NN/Source/ReshapeFunctions/arm_reshape_s8.c
|
||||
../cmsis_5/NN/Source/SVDFunctions/arm_svdf_s8.c
|
||||
../cmsis_5/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
|
||||
../cmsis_5/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
|
||||
../cmsis_5/NN/Source/SoftmaxFunctions/arm_softmax_s8.c
|
||||
../cmsis_5/NN/Source/SoftmaxFunctions/arm_softmax_u8.c
|
||||
../cmsis_5/NN/Source/SoftmaxFunctions/arm_softmax_with_batch_q7.c
|
||||
''')
|
||||
|
||||
CPPPATH = [
|
||||
|
@ -179,10 +180,10 @@ CPPPATH = [
|
|||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/third_party/gemmlowp'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/third_party/flatbuffers/include'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/third_party/ruy'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include'),
|
||||
os.path.join(cwd, 'tensorflow-lite-for-mcu/source/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/Core/Include'),
|
||||
os.path.join(cwd, '../cmsis_5/'),
|
||||
os.path.join(cwd, '../cmsis_5/DSP/Include'),
|
||||
os.path.join(cwd, '../cmsis_5/NN/Include'),
|
||||
os.path.join(cwd, '../cmsis_5/Core/Include'),
|
||||
]
|
||||
|
||||
# embedded C++ std don't have some math functions, use global math functions instead
|
||||
|
|
|
@ -76,6 +76,7 @@ limitations under the License.
|
|||
#define TFLITE_CHECK_LT(x, y) ((x) < (y)) ? (void)0 : TFLITE_ABORT
|
||||
#endif
|
||||
|
||||
/*
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
// TODO(b/162019032): Consider removing these type-aliases.
|
||||
using int8 = std::int8_t;
|
||||
|
@ -85,6 +86,7 @@ using uint16 = std::uint16_t;
|
|||
using int32 = std::int32_t;
|
||||
using uint32 = std::uint32_t;
|
||||
#endif // !defined(TF_LITE_STATIC_MEMORY)
|
||||
*/
|
||||
|
||||
// TFLITE_DEPRECATED()
|
||||
//
|
||||
|
|
|
@ -15,7 +15,7 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/add.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
|
||||
|
|
|
@ -15,8 +15,8 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/conv.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nn_types.h"
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nn_types.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
|
|
|
@ -15,7 +15,7 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
|
|
|
@ -15,7 +15,7 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
|
|
|
@ -15,7 +15,7 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/mul.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
|
|
|
@ -14,7 +14,7 @@ limitations under the License.
|
|||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "flatbuffers/base.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
|
||||
|
|
|
@ -15,7 +15,7 @@ limitations under the License.
|
|||
|
||||
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
|
|
|
@ -16,8 +16,8 @@ limitations under the License.
|
|||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include "CMSIS/NN/Include/arm_nn_types.h"
|
||||
#include "CMSIS/NN/Include/arm_nnfunctions.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nn_types.h"
|
||||
#include "../../../../../../../../cmsis_5/NN/Include/arm_nnfunctions.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
|
|
|
@ -1,283 +0,0 @@
|
|||
/**************************************************************************//**
|
||||
* @file cmsis_compiler.h
|
||||
* @brief CMSIS compiler generic header file
|
||||
* @version V5.1.0
|
||||
* @date 09. October 2018
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef __CMSIS_COMPILER_H
|
||||
#define __CMSIS_COMPILER_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/*
|
||||
* Arm Compiler 4/5
|
||||
*/
|
||||
#if defined ( __CC_ARM )
|
||||
#include "cmsis_armcc.h"
|
||||
|
||||
|
||||
/*
|
||||
* Arm Compiler 6.6 LTM (armclang)
|
||||
*/
|
||||
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
|
||||
#include "cmsis_armclang_ltm.h"
|
||||
|
||||
/*
|
||||
* Arm Compiler above 6.10.1 (armclang)
|
||||
*/
|
||||
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
|
||||
#include "cmsis_armclang.h"
|
||||
|
||||
|
||||
/*
|
||||
* GNU Compiler
|
||||
*/
|
||||
#elif defined ( __GNUC__ )
|
||||
#include "cmsis_gcc.h"
|
||||
|
||||
|
||||
/*
|
||||
* IAR Compiler
|
||||
*/
|
||||
#elif defined ( __ICCARM__ )
|
||||
#include <cmsis_iccarm.h>
|
||||
|
||||
|
||||
/*
|
||||
* TI Arm Compiler
|
||||
*/
|
||||
#elif defined ( __TI_ARM__ )
|
||||
#include <cmsis_ccs.h>
|
||||
|
||||
#ifndef __ASM
|
||||
#define __ASM __asm
|
||||
#endif
|
||||
#ifndef __INLINE
|
||||
#define __INLINE inline
|
||||
#endif
|
||||
#ifndef __STATIC_INLINE
|
||||
#define __STATIC_INLINE static inline
|
||||
#endif
|
||||
#ifndef __STATIC_FORCEINLINE
|
||||
#define __STATIC_FORCEINLINE __STATIC_INLINE
|
||||
#endif
|
||||
#ifndef __NO_RETURN
|
||||
#define __NO_RETURN __attribute__((noreturn))
|
||||
#endif
|
||||
#ifndef __USED
|
||||
#define __USED __attribute__((used))
|
||||
#endif
|
||||
#ifndef __WEAK
|
||||
#define __WEAK __attribute__((weak))
|
||||
#endif
|
||||
#ifndef __PACKED
|
||||
#define __PACKED __attribute__((packed))
|
||||
#endif
|
||||
#ifndef __PACKED_STRUCT
|
||||
#define __PACKED_STRUCT struct __attribute__((packed))
|
||||
#endif
|
||||
#ifndef __PACKED_UNION
|
||||
#define __PACKED_UNION union __attribute__((packed))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32 /* deprecated */
|
||||
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_WRITE
|
||||
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_READ
|
||||
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_WRITE
|
||||
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_READ
|
||||
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __ALIGNED
|
||||
#define __ALIGNED(x) __attribute__((aligned(x)))
|
||||
#endif
|
||||
#ifndef __RESTRICT
|
||||
#define __RESTRICT __restrict
|
||||
#endif
|
||||
#ifndef __COMPILER_BARRIER
|
||||
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
|
||||
#define __COMPILER_BARRIER() (void)0
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* TASKING Compiler
|
||||
*/
|
||||
#elif defined ( __TASKING__ )
|
||||
/*
|
||||
* The CMSIS functions have been implemented as intrinsics in the compiler.
|
||||
* Please use "carm -?i" to get an up to date list of all intrinsics,
|
||||
* Including the CMSIS ones.
|
||||
*/
|
||||
|
||||
#ifndef __ASM
|
||||
#define __ASM __asm
|
||||
#endif
|
||||
#ifndef __INLINE
|
||||
#define __INLINE inline
|
||||
#endif
|
||||
#ifndef __STATIC_INLINE
|
||||
#define __STATIC_INLINE static inline
|
||||
#endif
|
||||
#ifndef __STATIC_FORCEINLINE
|
||||
#define __STATIC_FORCEINLINE __STATIC_INLINE
|
||||
#endif
|
||||
#ifndef __NO_RETURN
|
||||
#define __NO_RETURN __attribute__((noreturn))
|
||||
#endif
|
||||
#ifndef __USED
|
||||
#define __USED __attribute__((used))
|
||||
#endif
|
||||
#ifndef __WEAK
|
||||
#define __WEAK __attribute__((weak))
|
||||
#endif
|
||||
#ifndef __PACKED
|
||||
#define __PACKED __packed__
|
||||
#endif
|
||||
#ifndef __PACKED_STRUCT
|
||||
#define __PACKED_STRUCT struct __packed__
|
||||
#endif
|
||||
#ifndef __PACKED_UNION
|
||||
#define __PACKED_UNION union __packed__
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32 /* deprecated */
|
||||
struct __packed__ T_UINT32 { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_WRITE
|
||||
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_READ
|
||||
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_WRITE
|
||||
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_READ
|
||||
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __ALIGNED
|
||||
#define __ALIGNED(x) __align(x)
|
||||
#endif
|
||||
#ifndef __RESTRICT
|
||||
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
|
||||
#define __RESTRICT
|
||||
#endif
|
||||
#ifndef __COMPILER_BARRIER
|
||||
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
|
||||
#define __COMPILER_BARRIER() (void)0
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* COSMIC Compiler
|
||||
*/
|
||||
#elif defined ( __CSMC__ )
|
||||
#include <cmsis_csm.h>
|
||||
|
||||
#ifndef __ASM
|
||||
#define __ASM _asm
|
||||
#endif
|
||||
#ifndef __INLINE
|
||||
#define __INLINE inline
|
||||
#endif
|
||||
#ifndef __STATIC_INLINE
|
||||
#define __STATIC_INLINE static inline
|
||||
#endif
|
||||
#ifndef __STATIC_FORCEINLINE
|
||||
#define __STATIC_FORCEINLINE __STATIC_INLINE
|
||||
#endif
|
||||
#ifndef __NO_RETURN
|
||||
// NO RETURN is automatically detected hence no warning here
|
||||
#define __NO_RETURN
|
||||
#endif
|
||||
#ifndef __USED
|
||||
#warning No compiler specific solution for __USED. __USED is ignored.
|
||||
#define __USED
|
||||
#endif
|
||||
#ifndef __WEAK
|
||||
#define __WEAK __weak
|
||||
#endif
|
||||
#ifndef __PACKED
|
||||
#define __PACKED @packed
|
||||
#endif
|
||||
#ifndef __PACKED_STRUCT
|
||||
#define __PACKED_STRUCT @packed struct
|
||||
#endif
|
||||
#ifndef __PACKED_UNION
|
||||
#define __PACKED_UNION @packed union
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32 /* deprecated */
|
||||
@packed struct T_UINT32 { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_WRITE
|
||||
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT16_READ
|
||||
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
|
||||
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_WRITE
|
||||
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
|
||||
#endif
|
||||
#ifndef __UNALIGNED_UINT32_READ
|
||||
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
|
||||
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
|
||||
#endif
|
||||
#ifndef __ALIGNED
|
||||
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
|
||||
#define __ALIGNED(x)
|
||||
#endif
|
||||
#ifndef __RESTRICT
|
||||
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
|
||||
#define __RESTRICT
|
||||
#endif
|
||||
#ifndef __COMPILER_BARRIER
|
||||
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
|
||||
#define __COMPILER_BARRIER() (void)0
|
||||
#endif
|
||||
|
||||
|
||||
#else
|
||||
#error Unknown compiler.
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* __CMSIS_COMPILER_H */
|
||||
|
|
@ -1,529 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_common_tables.h
|
||||
* Description: Extern declaration for common tables
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_COMMON_TABLES_H
|
||||
#define _ARM_COMMON_TABLES_H
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "dsp/fast_math_functions.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
|
||||
/* Double Precision Float CFFT twiddles */
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREV_1024)
|
||||
extern const uint16_t armBitRevTable[1024];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_16)
|
||||
extern const uint64_t twiddleCoefF64_16[32];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_32)
|
||||
extern const uint64_t twiddleCoefF64_32[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_64)
|
||||
extern const uint64_t twiddleCoefF64_64[128];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_128)
|
||||
extern const uint64_t twiddleCoefF64_128[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_256)
|
||||
extern const uint64_t twiddleCoefF64_256[512];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_512)
|
||||
extern const uint64_t twiddleCoefF64_512[1024];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_1024)
|
||||
extern const uint64_t twiddleCoefF64_1024[2048];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_2048)
|
||||
extern const uint64_t twiddleCoefF64_2048[4096];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_4096)
|
||||
extern const uint64_t twiddleCoefF64_4096[8192];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16)
|
||||
extern const float32_t twiddleCoef_16[32];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_32)
|
||||
extern const float32_t twiddleCoef_32[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64)
|
||||
extern const float32_t twiddleCoef_64[128];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_128)
|
||||
extern const float32_t twiddleCoef_128[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256)
|
||||
extern const float32_t twiddleCoef_256[512];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_512)
|
||||
extern const float32_t twiddleCoef_512[1024];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024)
|
||||
extern const float32_t twiddleCoef_1024[2048];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048)
|
||||
extern const float32_t twiddleCoef_2048[4096];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096)
|
||||
extern const float32_t twiddleCoef_4096[8192];
|
||||
#define twiddleCoef twiddleCoef_4096
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
/* Q31 */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16)
|
||||
extern const q31_t twiddleCoef_16_q31[24];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32)
|
||||
extern const q31_t twiddleCoef_32_q31[48];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64)
|
||||
extern const q31_t twiddleCoef_64_q31[96];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128)
|
||||
extern const q31_t twiddleCoef_128_q31[192];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256)
|
||||
extern const q31_t twiddleCoef_256_q31[384];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512)
|
||||
extern const q31_t twiddleCoef_512_q31[768];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024)
|
||||
extern const q31_t twiddleCoef_1024_q31[1536];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048)
|
||||
extern const q31_t twiddleCoef_2048_q31[3072];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096)
|
||||
extern const q31_t twiddleCoef_4096_q31[6144];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16)
|
||||
extern const q15_t twiddleCoef_16_q15[24];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32)
|
||||
extern const q15_t twiddleCoef_32_q15[48];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64)
|
||||
extern const q15_t twiddleCoef_64_q15[96];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128)
|
||||
extern const q15_t twiddleCoef_128_q15[192];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256)
|
||||
extern const q15_t twiddleCoef_256_q15[384];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512)
|
||||
extern const q15_t twiddleCoef_512_q15[768];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024)
|
||||
extern const q15_t twiddleCoef_1024_q15[1536];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048)
|
||||
extern const q15_t twiddleCoef_2048_q15[3072];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096)
|
||||
extern const q15_t twiddleCoef_4096_q15[6144];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
/* Double Precision Float RFFT twiddles */
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32)
|
||||
extern const uint64_t twiddleCoefF64_rfft_32[32];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64)
|
||||
extern const uint64_t twiddleCoefF64_rfft_64[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128)
|
||||
extern const uint64_t twiddleCoefF64_rfft_128[128];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256)
|
||||
extern const uint64_t twiddleCoefF64_rfft_256[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512)
|
||||
extern const uint64_t twiddleCoefF64_rfft_512[512];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024)
|
||||
extern const uint64_t twiddleCoefF64_rfft_1024[1024];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048)
|
||||
extern const uint64_t twiddleCoefF64_rfft_2048[2048];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096)
|
||||
extern const uint64_t twiddleCoefF64_rfft_4096[4096];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_32)
|
||||
extern const float32_t twiddleCoef_rfft_32[32];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_64)
|
||||
extern const float32_t twiddleCoef_rfft_64[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_128)
|
||||
extern const float32_t twiddleCoef_rfft_128[128];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_256)
|
||||
extern const float32_t twiddleCoef_rfft_256[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_512)
|
||||
extern const float32_t twiddleCoef_rfft_512[512];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_1024)
|
||||
extern const float32_t twiddleCoef_rfft_1024[1024];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_2048)
|
||||
extern const float32_t twiddleCoef_rfft_2048[2048];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096)
|
||||
extern const float32_t twiddleCoef_rfft_4096[4096];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
|
||||
/* Double precision floating-point bit reversal tables */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_16)
|
||||
#define ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH ((uint16_t)12)
|
||||
extern const uint16_t armBitRevIndexTableF64_16[ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_32)
|
||||
#define ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH ((uint16_t)24)
|
||||
extern const uint16_t armBitRevIndexTableF64_32[ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_64)
|
||||
#define ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH ((uint16_t)56)
|
||||
extern const uint16_t armBitRevIndexTableF64_64[ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_128)
|
||||
#define ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH ((uint16_t)112)
|
||||
extern const uint16_t armBitRevIndexTableF64_128[ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_256)
|
||||
#define ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH ((uint16_t)240)
|
||||
extern const uint16_t armBitRevIndexTableF64_256[ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_512)
|
||||
#define ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH ((uint16_t)480)
|
||||
extern const uint16_t armBitRevIndexTableF64_512[ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_1024)
|
||||
#define ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH ((uint16_t)992)
|
||||
extern const uint16_t armBitRevIndexTableF64_1024[ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_2048)
|
||||
#define ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH ((uint16_t)1984)
|
||||
extern const uint16_t armBitRevIndexTableF64_2048[ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_4096)
|
||||
#define ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH ((uint16_t)4032)
|
||||
extern const uint16_t armBitRevIndexTableF64_4096[ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
/* floating-point bit reversal tables */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_16)
|
||||
#define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20)
|
||||
extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_32)
|
||||
#define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48)
|
||||
extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_64)
|
||||
#define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56)
|
||||
extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_128)
|
||||
#define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208)
|
||||
extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_256)
|
||||
#define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440)
|
||||
extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_512)
|
||||
#define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448)
|
||||
extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_1024)
|
||||
#define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800)
|
||||
extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_2048)
|
||||
#define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808)
|
||||
extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_4096)
|
||||
#define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032)
|
||||
extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
|
||||
/* fixed-point bit reversal tables */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_16)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_32)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_64)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_128)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_256)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_512)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_1024)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_2048)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_4096)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
|
||||
extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_F32)
|
||||
extern const float32_t realCoefA[8192];
|
||||
extern const float32_t realCoefB[8192];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q31)
|
||||
extern const q31_t realCoefAQ31[8192];
|
||||
extern const q31_t realCoefBQ31[8192];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q15)
|
||||
extern const q15_t realCoefAQ15[8192];
|
||||
extern const q15_t realCoefBQ15[8192];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_128)
|
||||
extern const float32_t Weights_128[256];
|
||||
extern const float32_t cos_factors_128[128];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_512)
|
||||
extern const float32_t Weights_512[1024];
|
||||
extern const float32_t cos_factors_512[512];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_2048)
|
||||
extern const float32_t Weights_2048[4096];
|
||||
extern const float32_t cos_factors_2048[2048];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_8192)
|
||||
extern const float32_t Weights_8192[16384];
|
||||
extern const float32_t cos_factors_8192[8192];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_128)
|
||||
extern const q15_t WeightsQ15_128[256];
|
||||
extern const q15_t cos_factorsQ15_128[128];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_512)
|
||||
extern const q15_t WeightsQ15_512[1024];
|
||||
extern const q15_t cos_factorsQ15_512[512];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_2048)
|
||||
extern const q15_t WeightsQ15_2048[4096];
|
||||
extern const q15_t cos_factorsQ15_2048[2048];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_8192)
|
||||
extern const q15_t WeightsQ15_8192[16384];
|
||||
extern const q15_t cos_factorsQ15_8192[8192];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_128)
|
||||
extern const q31_t WeightsQ31_128[256];
|
||||
extern const q31_t cos_factorsQ31_128[128];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_512)
|
||||
extern const q31_t WeightsQ31_512[1024];
|
||||
extern const q31_t cos_factorsQ31_512[512];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_2048)
|
||||
extern const q31_t WeightsQ31_2048[4096];
|
||||
extern const q31_t cos_factorsQ31_2048[2048];
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_8192)
|
||||
extern const q31_t WeightsQ31_8192[16384];
|
||||
extern const q31_t cos_factorsQ31_8192[8192];
|
||||
#endif
|
||||
|
||||
#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_ALLOW_TABLES)
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q15)
|
||||
extern const q15_t armRecipTableQ15[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q31)
|
||||
extern const q31_t armRecipTableQ31[64];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
|
||||
/* Tables for Fast Math Sine and Cosine */
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_F32)
|
||||
extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q31)
|
||||
extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q15)
|
||||
extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
|
||||
extern const q31_t sqrtTable_Q31[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
#endif
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
|
||||
extern const q15_t sqrtTable_Q15[256];
|
||||
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
|
||||
#endif
|
||||
|
||||
#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_TABLES) */
|
||||
|
||||
#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
extern const float32_t exp_tab[8];
|
||||
extern const float32_t __logf_lut_f32[8];
|
||||
#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
||||
|
||||
#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM))
|
||||
extern const unsigned char hwLUT[256];
|
||||
#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ARM_COMMON_TABLES_H */
|
||||
|
|
@ -1,748 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_helium_utils.h
|
||||
* Description: Utility functions for Helium development
|
||||
*
|
||||
* $Date: 09. September 2019
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_UTILS_HELIUM_H_
|
||||
#define _ARM_UTILS_HELIUM_H_
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
/***************************************
|
||||
|
||||
Definitions available for MVEF and MVEI
|
||||
|
||||
***************************************/
|
||||
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)
|
||||
|
||||
#define INACTIVELANE 0 /* inactive lane content */
|
||||
|
||||
|
||||
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
|
||||
|
||||
/***************************************
|
||||
|
||||
Definitions available for MVEF only
|
||||
|
||||
***************************************/
|
||||
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)
|
||||
|
||||
__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
|
||||
{
|
||||
float32_t acc;
|
||||
|
||||
acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
|
||||
vgetq_lane(in, 2) + vgetq_lane(in, 3);
|
||||
|
||||
return acc;
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in)
|
||||
{
|
||||
float16x8_t tmpVec;
|
||||
_Float16 acc;
|
||||
|
||||
tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in);
|
||||
in = vaddq_f16(tmpVec, in);
|
||||
tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in);
|
||||
in = vaddq_f16(tmpVec, in);
|
||||
acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4);
|
||||
|
||||
return acc;
|
||||
}
|
||||
|
||||
|
||||
/* newton initial guess */
|
||||
#define INVSQRT_MAGIC_F32 0x5f3759df
|
||||
#define INV_NEWTON_INIT_F32 0x7EF127EA
|
||||
|
||||
|
||||
#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
|
||||
{ \
|
||||
float32x4_t tmp; \
|
||||
\
|
||||
/* tmp = xhalf * x * x */ \
|
||||
tmp = vmulq(xStart, xStart); \
|
||||
tmp = vmulq(tmp, xHalf); \
|
||||
/* (1.5f - xhalf * x * x) */ \
|
||||
tmp = vsubq(vdupq_n_f32(1.5f), tmp); \
|
||||
/* x = x*(1.5f-xhalf*x*x); */ \
|
||||
invSqrt = vmulq(tmp, xStart); \
|
||||
}
|
||||
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
|
||||
|
||||
|
||||
/***************************************
|
||||
|
||||
Definitions available for f16 datatype with HW acceleration only
|
||||
|
||||
***************************************/
|
||||
#if defined (ARM_MATH_MVE_FLOAT16)
|
||||
__STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16(
|
||||
float16x8_t vecIn)
|
||||
{
|
||||
float16x8_t vecTmp, vecOut;
|
||||
uint32_t tmp;
|
||||
|
||||
vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn);
|
||||
// TO TRACK : using canonical addition leads to unefficient code generation for f16
|
||||
// vecTmp = vecTmp + vecAccCpx0;
|
||||
/*
|
||||
* Compute
|
||||
* re0+re1 | im0+im1 | re0+re1 | im0+im1
|
||||
* re2+re3 | im2+im3 | re2+re3 | im2+im3
|
||||
*/
|
||||
vecTmp = vaddq(vecTmp, vecIn);
|
||||
vecOut = vecTmp;
|
||||
/*
|
||||
* shift left, random tmp insertion in bottom
|
||||
*/
|
||||
vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut) , &tmp, 32));
|
||||
/*
|
||||
* Compute:
|
||||
* DONTCARE | DONTCARE | re0+re1+re0+re1 |im0+im1+im0+im1
|
||||
* re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3
|
||||
*/
|
||||
vecOut = vaddq(vecOut, vecTmp);
|
||||
/*
|
||||
* Cmplx sum is in 4rd & 5th f16 elt
|
||||
* return full vector
|
||||
*/
|
||||
return vecOut;
|
||||
}
|
||||
|
||||
|
||||
#define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im) \
|
||||
{ \
|
||||
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vec); \
|
||||
Re = vgetq_lane(vecOut, 4); \
|
||||
Im = vgetq_lane(vecOut, 5); \
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16(
|
||||
float16x8_t vecIn,
|
||||
float16_t *pOut)
|
||||
{
|
||||
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn);
|
||||
/*
|
||||
* Cmplx sum is in 4rd & 5th f16 elt
|
||||
* use 32-bit extraction
|
||||
*/
|
||||
*(float32_t *) pOut = ((float32x4_t) vecOut)[2];
|
||||
}
|
||||
|
||||
|
||||
#define INVSQRT_MAGIC_F16 0x59ba /* ( 0x1ba = 0x3759df >> 13) */
|
||||
|
||||
/* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */
|
||||
#define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart) \
|
||||
{ \
|
||||
float16x8_t tmp; \
|
||||
\
|
||||
/* tmp = xhalf * x * x */ \
|
||||
tmp = vmulq(xStart, xStart); \
|
||||
tmp = vmulq(tmp, xHalf); \
|
||||
/* (1.5f - xhalf * x * x) */ \
|
||||
tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp); \
|
||||
/* x = x*(1.5f-xhalf*x*x); */ \
|
||||
invSqrt = vmulq(tmp, xStart); \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/***************************************
|
||||
|
||||
Definitions available for MVEI and MVEF only
|
||||
|
||||
***************************************/
|
||||
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)
|
||||
/* Following functions are used to transpose matrix in f32 and q31 cases */
|
||||
__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
|
||||
uint32_t * pDataSrc,
|
||||
uint32_t * pDataDest)
|
||||
{
|
||||
static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
|
||||
/*
|
||||
*
|
||||
* | 0 1 | => | 0 2 |
|
||||
* | 2 3 | | 1 3 |
|
||||
*
|
||||
*/
|
||||
uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
|
||||
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
|
||||
uint32_t * pDataSrc,
|
||||
uint32_t * pDataDest)
|
||||
{
|
||||
const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
|
||||
const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
|
||||
/*
|
||||
*
|
||||
* | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 |
|
||||
* | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 |
|
||||
* | 6 7 8 | | 2 5 8 | (row major) | 8 . . . |
|
||||
*
|
||||
*/
|
||||
uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
|
||||
uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
|
||||
|
||||
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
|
||||
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
|
||||
|
||||
pDataDest[8] = pDataSrc[8];
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
|
||||
{
|
||||
/*
|
||||
* 4x4 Matrix transposition
|
||||
* is 4 x de-interleave operation
|
||||
*
|
||||
* 0 1 2 3 0 4 8 12
|
||||
* 4 5 6 7 1 5 9 13
|
||||
* 8 9 10 11 2 6 10 14
|
||||
* 12 13 14 15 3 7 11 15
|
||||
*/
|
||||
|
||||
uint32x4x4_t vecIn;
|
||||
|
||||
vecIn = vld4q((uint32_t const *) pDataSrc);
|
||||
vstrwq(pDataDest, vecIn.val[0]);
|
||||
pDataDest += 4;
|
||||
vstrwq(pDataDest, vecIn.val[1]);
|
||||
pDataDest += 4;
|
||||
vstrwq(pDataDest, vecIn.val[2]);
|
||||
pDataDest += 4;
|
||||
vstrwq(pDataDest, vecIn.val[3]);
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
|
||||
uint16_t srcRows,
|
||||
uint16_t srcCols,
|
||||
uint32_t * pDataSrc,
|
||||
uint32_t * pDataDest)
|
||||
{
|
||||
uint32x4_t vecOffs;
|
||||
uint32_t i;
|
||||
uint32_t blkCnt;
|
||||
uint32_t const *pDataC;
|
||||
uint32_t *pDataDestR;
|
||||
uint32x4_t vecIn;
|
||||
|
||||
vecOffs = vidupq_u32((uint32_t)0, 1);
|
||||
vecOffs = vecOffs * srcCols;
|
||||
|
||||
i = srcCols;
|
||||
do
|
||||
{
|
||||
pDataC = (uint32_t const *) pDataSrc;
|
||||
pDataDestR = pDataDest;
|
||||
|
||||
blkCnt = srcRows >> 2;
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
|
||||
vstrwq(pDataDestR, vecIn);
|
||||
pDataDestR += 4;
|
||||
pDataC = pDataC + srcCols * 4;
|
||||
/*
|
||||
* Decrement the blockSize loop counter
|
||||
*/
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/*
|
||||
* tail
|
||||
*/
|
||||
blkCnt = srcRows & 3;
|
||||
if (blkCnt > 0U)
|
||||
{
|
||||
mve_pred16_t p0 = vctp32q(blkCnt);
|
||||
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
|
||||
vstrwq_p(pDataDestR, vecIn, p0);
|
||||
}
|
||||
|
||||
pDataSrc += 1;
|
||||
pDataDest += srcRows;
|
||||
}
|
||||
while (--i);
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit(
|
||||
uint16_t srcRows,
|
||||
uint16_t srcCols,
|
||||
uint32_t *pDataSrc,
|
||||
uint16_t dstRows,
|
||||
uint16_t dstCols,
|
||||
uint32_t *pDataDest)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t const *pDataC;
|
||||
uint32_t *pDataRow;
|
||||
uint32_t *pDataDestR, *pDataDestRow;
|
||||
uint32x4_t vecOffsRef, vecOffsCur;
|
||||
uint32_t blkCnt;
|
||||
uint32x4_t vecIn;
|
||||
|
||||
#ifdef ARM_MATH_MATRIX_CHECK
|
||||
/*
|
||||
* Check for matrix mismatch condition
|
||||
*/
|
||||
if ((srcRows != dstCols) || (srcCols != dstRows))
|
||||
{
|
||||
/*
|
||||
* Set status as ARM_MATH_SIZE_MISMATCH
|
||||
*/
|
||||
return = ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
#else
|
||||
(void)dstRows;
|
||||
(void)dstCols;
|
||||
#endif
|
||||
|
||||
/* 2x2, 3x3 and 4x4 specialization to be added */
|
||||
|
||||
vecOffsRef[0] = 0;
|
||||
vecOffsRef[1] = 1;
|
||||
vecOffsRef[2] = srcCols << 1;
|
||||
vecOffsRef[3] = (srcCols << 1) + 1;
|
||||
|
||||
pDataRow = pDataSrc;
|
||||
pDataDestRow = pDataDest;
|
||||
i = srcCols;
|
||||
do
|
||||
{
|
||||
pDataC = (uint32_t const *) pDataRow;
|
||||
pDataDestR = pDataDestRow;
|
||||
vecOffsCur = vecOffsRef;
|
||||
|
||||
blkCnt = (srcRows * CMPLX_DIM) >> 2;
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
|
||||
vstrwq(pDataDestR, vecIn);
|
||||
pDataDestR += 4;
|
||||
vecOffsCur = vaddq(vecOffsCur, (srcCols << 2));
|
||||
/*
|
||||
* Decrement the blockSize loop counter
|
||||
*/
|
||||
blkCnt--;
|
||||
}
|
||||
/*
|
||||
* tail
|
||||
* (will be merged thru tail predication)
|
||||
*/
|
||||
blkCnt = (srcRows * CMPLX_DIM) & 3;
|
||||
if (blkCnt > 0U)
|
||||
{
|
||||
mve_pred16_t p0 = vctp32q(blkCnt);
|
||||
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
|
||||
vstrwq_p(pDataDestR, vecIn, p0);
|
||||
}
|
||||
|
||||
pDataRow += CMPLX_DIM;
|
||||
pDataDestRow += (srcRows * CMPLX_DIM);
|
||||
}
|
||||
while (--i);
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest)
|
||||
{
|
||||
pDataDest[0] = pDataSrc[0];
|
||||
pDataDest[3] = pDataSrc[3];
|
||||
pDataDest[2] = pDataSrc[1];
|
||||
pDataDest[1] = pDataSrc[2];
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
|
||||
{
|
||||
static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 };
|
||||
uint16x8_t vecOffs1;
|
||||
uint16x8_t vecIn1;
|
||||
/*
|
||||
*
|
||||
* | 0 1 2 | | 0 3 6 | 8 x 16 flattened version | 0 3 6 1 4 7 2 5 |
|
||||
* | 3 4 5 | => | 1 4 7 | => | 8 . . . . . . . |
|
||||
* | 6 7 8 | | 2 5 8 | (row major)
|
||||
*
|
||||
*/
|
||||
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33);
|
||||
vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc);
|
||||
|
||||
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
|
||||
|
||||
pDataDest[8] = pDataSrc[8];
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
|
||||
{
|
||||
static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 };
|
||||
static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 };
|
||||
uint16x8_t vecOffs1, vecOffs2;
|
||||
uint16x8_t vecIn1, vecIn2;
|
||||
uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc;
|
||||
|
||||
/*
|
||||
* 4x4 Matrix transposition
|
||||
*
|
||||
* | 0 1 2 3 | | 0 4 8 12 | 8 x 16 flattened version
|
||||
* | 4 5 6 7 | => | 1 5 9 13 | => [0 4 8 12 1 5 9 13]
|
||||
* | 8 9 10 11 | | 2 6 10 14 | [2 6 10 14 3 7 11 15]
|
||||
* | 12 13 14 15 | | 3 7 11 15 |
|
||||
*/
|
||||
|
||||
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1);
|
||||
vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2);
|
||||
vecIn1 = vldrhq_u16(pDataSrcVec);
|
||||
pDataSrcVec += 8;
|
||||
vecIn2 = vldrhq_u16(pDataSrcVec);
|
||||
|
||||
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
|
||||
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2);
|
||||
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_trans_16bit_generic(
|
||||
uint16_t srcRows,
|
||||
uint16_t srcCols,
|
||||
uint16_t * pDataSrc,
|
||||
uint16_t * pDataDest)
|
||||
{
|
||||
uint16x8_t vecOffs;
|
||||
uint32_t i;
|
||||
uint32_t blkCnt;
|
||||
uint16_t const *pDataC;
|
||||
uint16_t *pDataDestR;
|
||||
uint16x8_t vecIn;
|
||||
|
||||
vecOffs = vidupq_u16((uint32_t)0, 1);
|
||||
vecOffs = vecOffs * srcCols;
|
||||
|
||||
i = srcCols;
|
||||
while(i > 0U)
|
||||
{
|
||||
pDataC = (uint16_t const *) pDataSrc;
|
||||
pDataDestR = pDataDest;
|
||||
|
||||
blkCnt = srcRows >> 3;
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
|
||||
vstrhq_u16(pDataDestR, vecIn);
|
||||
pDataDestR += 8;
|
||||
pDataC = pDataC + srcCols * 8;
|
||||
/*
|
||||
* Decrement the blockSize loop counter
|
||||
*/
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/*
|
||||
* tail
|
||||
*/
|
||||
blkCnt = srcRows & 7;
|
||||
if (blkCnt > 0U)
|
||||
{
|
||||
mve_pred16_t p0 = vctp16q(blkCnt);
|
||||
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
|
||||
vstrhq_p_u16(pDataDestR, vecIn, p0);
|
||||
}
|
||||
pDataSrc += 1;
|
||||
pDataDest += srcRows;
|
||||
i--;
|
||||
}
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
|
||||
__STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit(
|
||||
uint16_t srcRows,
|
||||
uint16_t srcCols,
|
||||
uint16_t *pDataSrc,
|
||||
uint16_t dstRows,
|
||||
uint16_t dstCols,
|
||||
uint16_t *pDataDest)
|
||||
{
|
||||
static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
|
||||
int i;
|
||||
uint16x8_t vecOffsRef, vecOffsCur;
|
||||
uint16_t const *pDataC;
|
||||
uint16_t *pDataRow;
|
||||
uint16_t *pDataDestR, *pDataDestRow;
|
||||
uint32_t blkCnt;
|
||||
uint16x8_t vecIn;
|
||||
|
||||
#ifdef ARM_MATH_MATRIX_CHECK
|
||||
/*
|
||||
* Check for matrix mismatch condition
|
||||
*/
|
||||
if ((srcRows != dstCols) || (srcCols != dstRows))
|
||||
{
|
||||
/*
|
||||
* Set status as ARM_MATH_SIZE_MISMATCH
|
||||
*/
|
||||
return = ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
#else
|
||||
(void)dstRows;
|
||||
(void)dstCols;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* 2x2, 3x3 and 4x4 specialization to be added
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* build [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1]
|
||||
*/
|
||||
vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol);
|
||||
vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM))
|
||||
+ viwdupq_u16((uint32_t)0, (uint16_t) 2, 1);
|
||||
|
||||
pDataRow = pDataSrc;
|
||||
pDataDestRow = pDataDest;
|
||||
i = srcCols;
|
||||
do
|
||||
{
|
||||
pDataC = (uint16_t const *) pDataRow;
|
||||
pDataDestR = pDataDestRow;
|
||||
vecOffsCur = vecOffsRef;
|
||||
|
||||
blkCnt = (srcRows * CMPLX_DIM) >> 3;
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
|
||||
vstrhq(pDataDestR, vecIn);
|
||||
pDataDestR+= 8; // VEC_LANES_U16
|
||||
vecOffsCur = vaddq(vecOffsCur, (srcCols << 3));
|
||||
/*
|
||||
* Decrement the blockSize loop counter
|
||||
*/
|
||||
blkCnt--;
|
||||
}
|
||||
/*
|
||||
* tail
|
||||
* (will be merged thru tail predication)
|
||||
*/
|
||||
blkCnt = (srcRows * CMPLX_DIM) & 0x7;
|
||||
if (blkCnt > 0U)
|
||||
{
|
||||
mve_pred16_t p0 = vctp16q(blkCnt);
|
||||
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
|
||||
vstrhq_p(pDataDestR, vecIn, p0);
|
||||
}
|
||||
|
||||
pDataRow += CMPLX_DIM;
|
||||
pDataDestRow += (srcRows * CMPLX_DIM);
|
||||
}
|
||||
while (--i);
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
#endif /* MVEF and MVEI */
|
||||
|
||||
/***************************************
|
||||
|
||||
Definitions available for MVEI only
|
||||
|
||||
***************************************/
|
||||
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)
|
||||
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
|
||||
#define MVE_ASRL_SAT32(acc, shift) ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff)
|
||||
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
|
||||
__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
|
||||
{
|
||||
q63x2_t vecTmpLL;
|
||||
q31x4_t vecTmp0, vecTmp1;
|
||||
q31_t scale;
|
||||
q63_t tmp64;
|
||||
q31x4_t vecNrm, vecDst, vecIdx, vecSignBits;
|
||||
|
||||
|
||||
vecSignBits = vclsq(vecIn);
|
||||
vecSignBits = vbicq(vecSignBits, 1);
|
||||
/*
|
||||
* in = in << no_of_sign_bits;
|
||||
*/
|
||||
vecNrm = vshlq(vecIn, vecSignBits);
|
||||
/*
|
||||
* index = in >> 24;
|
||||
*/
|
||||
vecIdx = vecNrm >> 24;
|
||||
vecIdx = vecIdx << 1;
|
||||
|
||||
vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
|
||||
|
||||
vecIdx = vecIdx + 1;
|
||||
|
||||
vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
|
||||
|
||||
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
|
||||
vecTmp0 = vecTmp0 - vecTmp1;
|
||||
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
|
||||
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
|
||||
vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
|
||||
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
|
||||
vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
|
||||
|
||||
/*
|
||||
* scale elements 0, 2
|
||||
*/
|
||||
scale = 26 + (vecSignBits[0] >> 1);
|
||||
tmp64 = asrl(vecTmpLL[0], scale);
|
||||
vecDst[0] = (q31_t) tmp64;
|
||||
|
||||
scale = 26 + (vecSignBits[2] >> 1);
|
||||
tmp64 = asrl(vecTmpLL[1], scale);
|
||||
vecDst[2] = (q31_t) tmp64;
|
||||
|
||||
vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
|
||||
|
||||
/*
|
||||
* scale elements 1, 3
|
||||
*/
|
||||
scale = 26 + (vecSignBits[1] >> 1);
|
||||
tmp64 = asrl(vecTmpLL[0], scale);
|
||||
vecDst[1] = (q31_t) tmp64;
|
||||
|
||||
scale = 26 + (vecSignBits[3] >> 1);
|
||||
tmp64 = asrl(vecTmpLL[1], scale);
|
||||
vecDst[3] = (q31_t) tmp64;
|
||||
/*
|
||||
* set negative values to 0
|
||||
*/
|
||||
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
|
||||
|
||||
return vecDst;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
|
||||
__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
|
||||
{
|
||||
q31x4_t vecTmpLev, vecTmpLodd, vecSignL;
|
||||
q15x8_t vecTmp0, vecTmp1;
|
||||
q15x8_t vecNrm, vecDst, vecIdx, vecSignBits;
|
||||
|
||||
vecDst = vuninitializedq_s16();
|
||||
|
||||
vecSignBits = vclsq(vecIn);
|
||||
vecSignBits = vbicq(vecSignBits, 1);
|
||||
/*
|
||||
* in = in << no_of_sign_bits;
|
||||
*/
|
||||
vecNrm = vshlq(vecIn, vecSignBits);
|
||||
|
||||
vecIdx = vecNrm >> 8;
|
||||
vecIdx = vecIdx << 1;
|
||||
|
||||
vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
|
||||
|
||||
vecIdx = vecIdx + 1;
|
||||
|
||||
vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
|
||||
|
||||
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
|
||||
vecTmp0 = vecTmp0 - vecTmp1;
|
||||
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
|
||||
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
|
||||
vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
|
||||
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
|
||||
|
||||
vecSignBits = vecSignBits >> 1;
|
||||
|
||||
vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
|
||||
vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
|
||||
|
||||
vecTmp0 = vecSignBits + 10;
|
||||
/*
|
||||
* negate sign to apply register based vshl
|
||||
*/
|
||||
vecTmp0 = -vecTmp0;
|
||||
|
||||
/*
|
||||
* shift even elements
|
||||
*/
|
||||
vecSignL = vmovlbq(vecTmp0);
|
||||
vecTmpLev = vshlq(vecTmpLev, vecSignL);
|
||||
/*
|
||||
* shift odd elements
|
||||
*/
|
||||
vecSignL = vmovltq(vecTmp0);
|
||||
vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
|
||||
/*
|
||||
* merge and narrow odd and even parts
|
||||
*/
|
||||
vecDst = vmovnbq_s32(vecDst, vecTmpLev);
|
||||
vecDst = vmovntq_s32(vecDst, vecTmpLodd);
|
||||
/*
|
||||
* set negative values to 0
|
||||
*/
|
||||
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
|
||||
|
||||
return vecDst;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -1,246 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file arm_math.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.7.0
|
||||
* @date 18. March 2019
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/**
|
||||
\mainpage CMSIS DSP Software Library
|
||||
*
|
||||
* \section intro Introduction
|
||||
*
|
||||
* This user manual describes the CMSIS DSP software library,
|
||||
* a suite of common signal processing functions for use on Cortex-M and Cortex-A processor
|
||||
* based devices.
|
||||
*
|
||||
* The library is divided into a number of functions each covering a specific category:
|
||||
* - Basic math functions
|
||||
* - Fast math functions
|
||||
* - Complex math functions
|
||||
* - Filtering functions
|
||||
* - Matrix functions
|
||||
* - Transform functions
|
||||
* - Motor control functions
|
||||
* - Statistical functions
|
||||
* - Support functions
|
||||
* - Interpolation functions
|
||||
* - Support Vector Machine functions (SVM)
|
||||
* - Bayes classifier functions
|
||||
* - Distance functions
|
||||
*
|
||||
* The library has generally separate functions for operating on 8-bit integers, 16-bit integers,
|
||||
* 32-bit integer and 32-bit floating-point values.
|
||||
*
|
||||
* \section using Using the Library
|
||||
*
|
||||
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
|
||||
*
|
||||
* Here is the list of pre-built libraries :
|
||||
* - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
|
||||
* - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
|
||||
* - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
|
||||
* - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
|
||||
* - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
|
||||
* - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
|
||||
* - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
|
||||
* - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
|
||||
* - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
|
||||
* - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
|
||||
* - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
|
||||
* - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
|
||||
* - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
|
||||
* - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
|
||||
* - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian)
|
||||
* - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian)
|
||||
* - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit)
|
||||
* - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions)
|
||||
* - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
|
||||
*
|
||||
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
|
||||
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
|
||||
* public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
|
||||
*
|
||||
*
|
||||
* \section example Examples
|
||||
*
|
||||
* The library ships with a number of examples which demonstrate how to use the library functions.
|
||||
*
|
||||
* \section toolchain Toolchain Support
|
||||
*
|
||||
* The library is now tested on Fast Models building with cmake.
|
||||
* Core M0, M7, A5 are tested.
|
||||
*
|
||||
*
|
||||
*
|
||||
* \section building Building the Library
|
||||
*
|
||||
* The library installer contains a project file to rebuild libraries on MDK toolchain in the <code>CMSIS\\DSP\\Projects\\ARM</code> folder.
|
||||
* - arm_cortexM_math.uvprojx
|
||||
*
|
||||
*
|
||||
* The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above.
|
||||
*
|
||||
* There is also a work in progress cmake build. The README file is giving more details.
|
||||
*
|
||||
* \section preprocessor Preprocessor Macros
|
||||
*
|
||||
* Each library project have different preprocessor macros.
|
||||
*
|
||||
* - ARM_MATH_BIG_ENDIAN:
|
||||
*
|
||||
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
|
||||
*
|
||||
* - ARM_MATH_MATRIX_CHECK:
|
||||
*
|
||||
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
|
||||
*
|
||||
* - ARM_MATH_ROUNDING:
|
||||
*
|
||||
* Define macro ARM_MATH_ROUNDING for rounding on support functions
|
||||
*
|
||||
* - ARM_MATH_LOOPUNROLL:
|
||||
*
|
||||
* Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions
|
||||
*
|
||||
* - ARM_MATH_NEON:
|
||||
*
|
||||
* Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions.
|
||||
* It is not enabled by default when Neon is available because performances are
|
||||
* dependent on the compiler and target architecture.
|
||||
*
|
||||
* - ARM_MATH_NEON_EXPERIMENTAL:
|
||||
*
|
||||
* Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of
|
||||
* of some DSP functions. Experimental Neon versions currently do not have better
|
||||
* performances than the scalar versions.
|
||||
*
|
||||
* - ARM_MATH_HELIUM:
|
||||
*
|
||||
* It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_FLOAT16.
|
||||
*
|
||||
* - ARM_MATH_MVEF:
|
||||
*
|
||||
* Select Helium versions of the f32 algorithms.
|
||||
* It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI.
|
||||
*
|
||||
* - ARM_MATH_MVEI:
|
||||
*
|
||||
* Select Helium versions of the int and fixed point algorithms.
|
||||
*
|
||||
* - ARM_MATH_MVE_FLOAT16:
|
||||
*
|
||||
* MVE Float16 implementations of some algorithms (Requires MVE extension).
|
||||
*
|
||||
* - DISABLEFLOAT16:
|
||||
*
|
||||
* Disable float16 algorithms when __fp16 is not supported for a
|
||||
* specific compiler / core configuration
|
||||
*
|
||||
* <hr>
|
||||
* \section pack CMSIS-DSP in ARM::CMSIS Pack
|
||||
*
|
||||
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
|
||||
* |File/Folder |Content |
|
||||
* |---------------------------------|------------------------------------------------------------------------|
|
||||
* |\b CMSIS\\Documentation\\DSP | This documentation |
|
||||
* |\b CMSIS\\DSP\\DSP_Lib_TestSuite | DSP_Lib deprecated test suite |
|
||||
* |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions |
|
||||
* |\b CMSIS\\DSP\\Include | DSP_Lib include files for using and building the lib
|
||||
* |\b CMSIS\\DSP\\PrivateInclude | DSP_Lib private include files for building the lib |
|
||||
* |\b CMSIS\\DSP\\Lib | DSP_Lib binaries |
|
||||
* |\b CMSIS\\DSP\\Projects | Projects to rebuild DSP_Lib binaries |
|
||||
* |\b CMSIS\\DSP\\Source | DSP_Lib source files |
|
||||
*
|
||||
* <hr>
|
||||
* \section rev Revision History of CMSIS-DSP
|
||||
* Please refer to \ref ChangeLog_pg.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupExamples Examples
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef _ARM_MATH_H
|
||||
#define _ARM_MATH_H
|
||||
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#include "dsp/basic_math_functions.h"
|
||||
#include "dsp/interpolation_functions.h"
|
||||
#include "dsp/bayes_functions.h"
|
||||
#include "dsp/matrix_functions.h"
|
||||
#include "dsp/complex_math_functions.h"
|
||||
#include "dsp/statistics_functions.h"
|
||||
#include "dsp/controller_functions.h"
|
||||
#include "dsp/support_functions.h"
|
||||
#include "dsp/distance_functions.h"
|
||||
#include "dsp/svm_functions.h"
|
||||
#include "dsp/fast_math_functions.h"
|
||||
#include "dsp/transform_functions.h"
|
||||
#include "dsp/filtering_functions.h"
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
//#define TABLE_SPACING_Q31 0x400000
|
||||
//#define TABLE_SPACING_Q15 0x80
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* _ARM_MATH_H */
|
||||
|
||||
/**
|
||||
*
|
||||
* End of file.
|
||||
*/
|
|
@ -1,240 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file arm_math_memory.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_MATH_MEMORY_H_
|
||||
|
||||
#define _ARM_MATH_MEMORY_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
@brief definition to read/write two 16 bit values.
|
||||
@deprecated
|
||||
*/
|
||||
#if defined ( __CC_ARM )
|
||||
#define __SIMD32_TYPE int32_t __packed
|
||||
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
||||
#define __SIMD32_TYPE int32_t
|
||||
#elif defined ( __GNUC__ )
|
||||
#define __SIMD32_TYPE int32_t
|
||||
#elif defined ( __ICCARM__ )
|
||||
#define __SIMD32_TYPE int32_t __packed
|
||||
#elif defined ( __TI_ARM__ )
|
||||
#define __SIMD32_TYPE int32_t
|
||||
#elif defined ( __CSMC__ )
|
||||
#define __SIMD32_TYPE int32_t
|
||||
#elif defined ( __TASKING__ )
|
||||
#define __SIMD32_TYPE __un(aligned) int32_t
|
||||
#elif defined(_MSC_VER )
|
||||
#define __SIMD32_TYPE int32_t
|
||||
#else
|
||||
#error Unknown compiler
|
||||
#endif
|
||||
|
||||
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
|
||||
#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr))
|
||||
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr))
|
||||
#define __SIMD64(addr) (*( int64_t **) & (addr))
|
||||
|
||||
|
||||
/* SIMD replacement */
|
||||
|
||||
|
||||
/**
|
||||
@brief Read 2 Q15 from Q15 pointer.
|
||||
@param[in] pQ15 points to input value
|
||||
@return Q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t read_q15x2 (
|
||||
q15_t * pQ15)
|
||||
{
|
||||
q31_t val;
|
||||
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (&val, pQ15, 4);
|
||||
#else
|
||||
val = (pQ15[1] << 16) | (pQ15[0] & 0x0FFFF) ;
|
||||
#endif
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 2 Q15 from Q15 pointer and increment pointer afterwards.
|
||||
@param[in] pQ15 points to input value
|
||||
@return Q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t read_q15x2_ia (
|
||||
q15_t ** pQ15)
|
||||
{
|
||||
q31_t val;
|
||||
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (&val, *pQ15, 4);
|
||||
#else
|
||||
val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF);
|
||||
#endif
|
||||
|
||||
*pQ15 += 2;
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards.
|
||||
@param[in] pQ15 points to input value
|
||||
@return Q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t read_q15x2_da (
|
||||
q15_t ** pQ15)
|
||||
{
|
||||
q31_t val;
|
||||
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (&val, *pQ15, 4);
|
||||
#else
|
||||
val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF);
|
||||
#endif
|
||||
|
||||
*pQ15 -= 2;
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Write 2 Q15 to Q15 pointer and increment pointer afterwards.
|
||||
@param[in] pQ15 points to input value
|
||||
@param[in] value Q31 value
|
||||
@return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void write_q15x2_ia (
|
||||
q15_t ** pQ15,
|
||||
q31_t value)
|
||||
{
|
||||
q31_t val = value;
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (*pQ15, &val, 4);
|
||||
#else
|
||||
(*pQ15)[0] = (val & 0x0FFFF);
|
||||
(*pQ15)[1] = (val >> 16) & 0x0FFFF;
|
||||
#endif
|
||||
|
||||
*pQ15 += 2;
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Write 2 Q15 to Q15 pointer.
|
||||
@param[in] pQ15 points to input value
|
||||
@param[in] value Q31 value
|
||||
@return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void write_q15x2 (
|
||||
q15_t * pQ15,
|
||||
q31_t value)
|
||||
{
|
||||
q31_t val = value;
|
||||
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (pQ15, &val, 4);
|
||||
#else
|
||||
pQ15[0] = val & 0x0FFFF;
|
||||
pQ15[1] = val >> 16;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Read 4 Q7 from Q7 pointer and increment pointer afterwards.
|
||||
@param[in] pQ7 points to input value
|
||||
@return Q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t read_q7x4_ia (
|
||||
q7_t ** pQ7)
|
||||
{
|
||||
q31_t val;
|
||||
|
||||
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (&val, *pQ7, 4);
|
||||
#else
|
||||
val =(((*pQ7)[3] & 0x0FF) << 24) | (((*pQ7)[2] & 0x0FF) << 16) | (((*pQ7)[1] & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF);
|
||||
#endif
|
||||
|
||||
*pQ7 += 4;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards.
|
||||
@param[in] pQ7 points to input value
|
||||
@return Q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t read_q7x4_da (
|
||||
q7_t ** pQ7)
|
||||
{
|
||||
q31_t val;
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (&val, *pQ7, 4);
|
||||
#else
|
||||
val = ((((*pQ7)[3]) & 0x0FF) << 24) | ((((*pQ7)[2]) & 0x0FF) << 16) | ((((*pQ7)[1]) & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF);
|
||||
#endif
|
||||
*pQ7 -= 4;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Write 4 Q7 to Q7 pointer and increment pointer afterwards.
|
||||
@param[in] pQ7 points to input value
|
||||
@param[in] value Q31 value
|
||||
@return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void write_q7x4_ia (
|
||||
q7_t ** pQ7,
|
||||
q31_t value)
|
||||
{
|
||||
q31_t val = value;
|
||||
#ifdef __ARM_FEATURE_UNALIGNED
|
||||
memcpy (*pQ7, &val, 4);
|
||||
#else
|
||||
(*pQ7)[0] = val & 0x0FF;
|
||||
(*pQ7)[1] = (val >> 8) & 0x0FF;
|
||||
(*pQ7)[2] = (val >> 16) & 0x0FF;
|
||||
(*pQ7)[3] = (val >> 24) & 0x0FF;
|
||||
|
||||
#endif
|
||||
*pQ7 += 4;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /*ifndef _ARM_MATH_MEMORY_H_ */
|
|
@ -1,598 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file arm_math_types.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_MATH_TYPES_H_
|
||||
|
||||
#define _ARM_MATH_TYPES_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Compiler specific diagnostic adjustment */
|
||||
#if defined ( __CC_ARM )
|
||||
|
||||
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
||||
|
||||
#elif defined ( __GNUC__ )
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
||||
#pragma GCC diagnostic ignored "-Wconversion"
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
|
||||
#elif defined ( __TI_ARM__ )
|
||||
|
||||
#elif defined ( __CSMC__ )
|
||||
|
||||
#elif defined ( __TASKING__ )
|
||||
|
||||
#elif defined ( _MSC_VER )
|
||||
|
||||
#else
|
||||
#error Unknown compiler
|
||||
#endif
|
||||
|
||||
|
||||
/* Included for instrinsics definitions */
|
||||
#if defined (_MSC_VER )
|
||||
#include <stdint.h>
|
||||
#define __STATIC_FORCEINLINE static __forceinline
|
||||
#define __STATIC_INLINE static __inline
|
||||
#define __ALIGNED(x) __declspec(align(x))
|
||||
|
||||
#elif defined (__GNUC_PYTHON__)
|
||||
#include <stdint.h>
|
||||
#define __ALIGNED(x) __attribute__((aligned(x)))
|
||||
#define __STATIC_FORCEINLINE static __attribute__((inline))
|
||||
#define __STATIC_INLINE static __attribute__((inline))
|
||||
#pragma GCC diagnostic ignored "-Wunused-function"
|
||||
#pragma GCC diagnostic ignored "-Wattributes"
|
||||
|
||||
#else
|
||||
#include "cmsis_compiler.h"
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
|
||||
/* evaluate ARM DSP feature */
|
||||
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
|
||||
#define ARM_MATH_DSP 1
|
||||
#endif
|
||||
|
||||
#if defined(ARM_MATH_NEON)
|
||||
#include <arm_neon.h>
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
#if !defined(ARM_MATH_NEON_FLOAT16)
|
||||
#define ARM_MATH_NEON_FLOAT16
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
|
||||
#if __ARM_FEATURE_MVE
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
#define ARM_MATH_MVEI
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (__ARM_FEATURE_MVE & 2)
|
||||
#if !defined(ARM_MATH_MVEF)
|
||||
#define ARM_MATH_MVEF
|
||||
#endif
|
||||
#if !defined(ARM_MATH_MVE_FLOAT16)
|
||||
/* HW Float16 not yet well supported on gcc for M55 */
|
||||
#if !defined(__CMSIS_GCC_H)
|
||||
#define ARM_MATH_MVE_FLOAT16
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /*!defined(ARM_MATH_AUTOVECTORIZE)*/
|
||||
|
||||
|
||||
#if defined (ARM_MATH_HELIUM)
|
||||
#if !defined(ARM_MATH_MVEF)
|
||||
#define ARM_MATH_MVEF
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
#define ARM_MATH_MVEI
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_MATH_MVE_FLOAT16)
|
||||
/* HW Float16 not yet well supported on gcc for M55 */
|
||||
#if !defined(__CMSIS_GCC_H)
|
||||
#define ARM_MATH_MVE_FLOAT16
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#if defined ( __CC_ARM )
|
||||
/* Enter low optimization region - place directly above function definition */
|
||||
#if defined( __ARM_ARCH_7EM__ )
|
||||
#define LOW_OPTIMIZATION_ENTER \
|
||||
_Pragma ("push") \
|
||||
_Pragma ("O1")
|
||||
#else
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#endif
|
||||
|
||||
/* Exit low optimization region - place directly after end of function definition */
|
||||
#if defined ( __ARM_ARCH_7EM__ )
|
||||
#define LOW_OPTIMIZATION_EXIT \
|
||||
_Pragma ("pop")
|
||||
#else
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#endif
|
||||
|
||||
/* Enter low optimization region - place directly above function definition */
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
|
||||
/* Exit low optimization region - place directly after end of function definition */
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( __GNUC__ )
|
||||
#define LOW_OPTIMIZATION_ENTER \
|
||||
__attribute__(( optimize("-O1") ))
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
/* Enter low optimization region - place directly above function definition */
|
||||
#if defined ( __ARM_ARCH_7EM__ )
|
||||
#define LOW_OPTIMIZATION_ENTER \
|
||||
_Pragma ("optimize=low")
|
||||
#else
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#endif
|
||||
|
||||
/* Exit low optimization region - place directly after end of function definition */
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
|
||||
/* Enter low optimization region - place directly above function definition */
|
||||
#if defined ( __ARM_ARCH_7EM__ )
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
|
||||
_Pragma ("optimize=low")
|
||||
#else
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#endif
|
||||
|
||||
/* Exit low optimization region - place directly after end of function definition */
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( __TI_ARM__ )
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( __CSMC__ )
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( __TASKING__ )
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
|
||||
#elif defined ( _MSC_VER ) || defined(__GNUC_PYTHON__)
|
||||
#define LOW_OPTIMIZATION_ENTER
|
||||
#define LOW_OPTIMIZATION_EXIT
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
||||
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/* Compiler specific diagnostic adjustment */
|
||||
#if defined ( __CC_ARM )
|
||||
|
||||
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
||||
|
||||
#elif defined ( __GNUC__ )
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
|
||||
#elif defined ( __TI_ARM__ )
|
||||
|
||||
#elif defined ( __CSMC__ )
|
||||
|
||||
#elif defined ( __TASKING__ )
|
||||
|
||||
#elif defined ( _MSC_VER )
|
||||
|
||||
#else
|
||||
#error Unknown compiler
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#if __ARM_FEATURE_MVE
|
||||
#include <arm_mve.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional data type in 1.7 format.
|
||||
*/
|
||||
typedef int8_t q7_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional data type in 1.15 format.
|
||||
*/
|
||||
typedef int16_t q15_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional data type in 1.31 format.
|
||||
*/
|
||||
typedef int32_t q31_t;
|
||||
|
||||
/**
|
||||
* @brief 64-bit fractional data type in 1.63 format.
|
||||
*/
|
||||
typedef int64_t q63_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point type definition.
|
||||
*/
|
||||
typedef float float32_t;
|
||||
|
||||
/**
|
||||
* @brief 64-bit floating-point type definition.
|
||||
*/
|
||||
typedef double float64_t;
|
||||
|
||||
/**
|
||||
* @brief vector types
|
||||
*/
|
||||
#if defined(ARM_MATH_NEON) || defined (ARM_MATH_MVEI)
|
||||
/**
|
||||
* @brief 64-bit fractional 128-bit vector data type in 1.63 format
|
||||
*/
|
||||
typedef int64x2_t q63x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 128-bit vector data type in 1.31 format.
|
||||
*/
|
||||
typedef int32x4_t q31x4_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 128-bit vector data type with 16-bit alignement in 1.15 format.
|
||||
*/
|
||||
typedef __ALIGNED(2) int16x8_t q15x8_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 128-bit vector data type with 8-bit alignement in 1.7 format.
|
||||
*/
|
||||
typedef __ALIGNED(1) int8x16_t q7x16_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 128-bit vector pair data type in 1.31 format.
|
||||
*/
|
||||
typedef int32x4x2_t q31x4x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 128-bit vector quadruplet data type in 1.31 format.
|
||||
*/
|
||||
typedef int32x4x4_t q31x4x4_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 128-bit vector pair data type in 1.15 format.
|
||||
*/
|
||||
typedef int16x8x2_t q15x8x2_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 128-bit vector quadruplet data type in 1.15 format.
|
||||
*/
|
||||
typedef int16x8x4_t q15x8x4_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 128-bit vector pair data type in 1.7 format.
|
||||
*/
|
||||
typedef int8x16x2_t q7x16x2_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 128-bit vector quadruplet data type in 1.7 format.
|
||||
*/
|
||||
typedef int8x16x4_t q7x16x4_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional data type in 9.23 format.
|
||||
*/
|
||||
typedef int32_t q23_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 128-bit vector data type in 9.23 format.
|
||||
*/
|
||||
typedef int32x4_t q23x4_t;
|
||||
|
||||
/**
|
||||
* @brief 64-bit status 128-bit vector data type.
|
||||
*/
|
||||
typedef int64x2_t status64x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit status 128-bit vector data type.
|
||||
*/
|
||||
typedef int32x4_t status32x4_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit status 128-bit vector data type.
|
||||
*/
|
||||
typedef int16x8_t status16x8_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit status 128-bit vector data type.
|
||||
*/
|
||||
typedef int8x16_t status8x16_t;
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(ARM_MATH_NEON) || defined(ARM_MATH_MVEF) /* floating point vector*/
|
||||
/**
|
||||
* @brief 32-bit floating-point 128-bit vector type
|
||||
*/
|
||||
typedef float32x4_t f32x4_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 128-bit vector pair data type
|
||||
*/
|
||||
typedef float32x4x2_t f32x4x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 128-bit vector quadruplet data type
|
||||
*/
|
||||
typedef float32x4x4_t f32x4x4_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit ubiquitous 128-bit vector data type
|
||||
*/
|
||||
typedef union _any32x4_t
|
||||
{
|
||||
float32x4_t f;
|
||||
int32x4_t i;
|
||||
} any32x4_t;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(ARM_MATH_NEON)
|
||||
/**
|
||||
* @brief 32-bit fractional 64-bit vector data type in 1.31 format.
|
||||
*/
|
||||
typedef int32x2_t q31x2_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 64-bit vector data type in 1.15 format.
|
||||
*/
|
||||
typedef __ALIGNED(2) int16x4_t q15x4_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 64-bit vector data type in 1.7 format.
|
||||
*/
|
||||
typedef __ALIGNED(1) int8x8_t q7x8_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit float 64-bit vector data type.
|
||||
*/
|
||||
typedef float32x2_t f32x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 128-bit vector triplet data type
|
||||
*/
|
||||
typedef float32x4x3_t f32x4x3_t;
|
||||
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 128-bit vector triplet data type in 1.31 format
|
||||
*/
|
||||
typedef int32x4x3_t q31x4x3_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 128-bit vector triplet data type in 1.15 format
|
||||
*/
|
||||
typedef int16x8x3_t q15x8x3_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 128-bit vector triplet data type in 1.7 format
|
||||
*/
|
||||
typedef int8x16x3_t q7x16x3_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 64-bit vector pair data type
|
||||
*/
|
||||
typedef float32x2x2_t f32x2x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 64-bit vector triplet data type
|
||||
*/
|
||||
typedef float32x2x3_t f32x2x3_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit floating-point 64-bit vector quadruplet data type
|
||||
*/
|
||||
typedef float32x2x4_t f32x2x4_t;
|
||||
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 64-bit vector pair data type in 1.31 format
|
||||
*/
|
||||
typedef int32x2x2_t q31x2x2_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 64-bit vector triplet data type in 1.31 format
|
||||
*/
|
||||
typedef int32x2x3_t q31x2x3_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit fractional 64-bit vector quadruplet data type in 1.31 format
|
||||
*/
|
||||
typedef int32x4x3_t q31x2x4_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 64-bit vector pair data type in 1.15 format
|
||||
*/
|
||||
typedef int16x4x2_t q15x4x2_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 64-bit vector triplet data type in 1.15 format
|
||||
*/
|
||||
typedef int16x4x2_t q15x4x3_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit fractional 64-bit vector quadruplet data type in 1.15 format
|
||||
*/
|
||||
typedef int16x4x3_t q15x4x4_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 64-bit vector pair data type in 1.7 format
|
||||
*/
|
||||
typedef int8x8x2_t q7x8x2_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 64-bit vector triplet data type in 1.7 format
|
||||
*/
|
||||
typedef int8x8x3_t q7x8x3_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit fractional 64-bit vector quadruplet data type in 1.7 format
|
||||
*/
|
||||
typedef int8x8x4_t q7x8x4_t;
|
||||
|
||||
/**
|
||||
* @brief 32-bit ubiquitous 64-bit vector data type
|
||||
*/
|
||||
typedef union _any32x2_t
|
||||
{
|
||||
float32x2_t f;
|
||||
int32x2_t i;
|
||||
} any32x2_t;
|
||||
|
||||
|
||||
/**
|
||||
* @brief 32-bit status 64-bit vector data type.
|
||||
*/
|
||||
typedef int32x4_t status32x2_t;
|
||||
|
||||
/**
|
||||
* @brief 16-bit status 64-bit vector data type.
|
||||
*/
|
||||
typedef int16x8_t status16x4_t;
|
||||
|
||||
/**
|
||||
* @brief 8-bit status 64-bit vector data type.
|
||||
*/
|
||||
typedef int8x16_t status8x8_t;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#define F64_MAX ((float64_t)DBL_MAX)
|
||||
#define F32_MAX ((float32_t)FLT_MAX)
|
||||
|
||||
|
||||
|
||||
#define F64_MIN (-DBL_MAX)
|
||||
#define F32_MIN (-FLT_MAX)
|
||||
|
||||
|
||||
|
||||
#define F64_ABSMAX ((float64_t)DBL_MAX)
|
||||
#define F32_ABSMAX ((float32_t)FLT_MAX)
|
||||
|
||||
|
||||
|
||||
#define F64_ABSMIN ((float64_t)0.0)
|
||||
#define F32_ABSMIN ((float32_t)0.0)
|
||||
|
||||
|
||||
#define Q31_MAX ((q31_t)(0x7FFFFFFFL))
|
||||
#define Q15_MAX ((q15_t)(0x7FFF))
|
||||
#define Q7_MAX ((q7_t)(0x7F))
|
||||
#define Q31_MIN ((q31_t)(0x80000000L))
|
||||
#define Q15_MIN ((q15_t)(0x8000))
|
||||
#define Q7_MIN ((q7_t)(0x80))
|
||||
|
||||
#define Q31_ABSMAX ((q31_t)(0x7FFFFFFFL))
|
||||
#define Q15_ABSMAX ((q15_t)(0x7FFF))
|
||||
#define Q7_ABSMAX ((q7_t)(0x7F))
|
||||
#define Q31_ABSMIN ((q31_t)0)
|
||||
#define Q15_ABSMIN ((q15_t)0)
|
||||
#define Q7_ABSMIN ((q7_t)0)
|
||||
|
||||
/* Dimension C vector space */
|
||||
#define CMPLX_DIM 2
|
||||
|
||||
/**
|
||||
* @brief Error status returned by some functions in the library.
|
||||
*/
|
||||
|
||||
typedef enum
|
||||
{
|
||||
ARM_MATH_SUCCESS = 0, /**< No error */
|
||||
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
|
||||
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
|
||||
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */
|
||||
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
|
||||
ARM_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */
|
||||
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
|
||||
} arm_status;
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /*ifndef _ARM_MATH_TYPES_H_ */
|
|
@ -1,699 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file basic_math_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _BASIC_MATH_FUNCTIONS_H_
|
||||
#define _BASIC_MATH_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup groupMath Basic Math Functions
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_mult_q7(
|
||||
const q7_t * pSrcA,
|
||||
const q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 vector multiplication.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_mult_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector multiplication.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_mult_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector multiplication.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_mult_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector addition.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_add_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q7 vector addition.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_add_q7(
|
||||
const q7_t * pSrcA,
|
||||
const q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 vector addition.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_add_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector addition.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_add_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector subtraction.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_sub_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q7 vector subtraction.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_sub_q7(
|
||||
const q7_t * pSrcA,
|
||||
const q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 vector subtraction.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_sub_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector subtraction.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_sub_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Multiplies a floating-point vector by a scalar.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] scale scale factor to be applied
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_scale_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t scale,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q7 vector by a scalar.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_scale_q7(
|
||||
const q7_t * pSrc,
|
||||
q7_t scaleFract,
|
||||
int8_t shift,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q15 vector by a scalar.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_scale_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t scaleFract,
|
||||
int8_t shift,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q31 vector by a scalar.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_scale_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t scaleFract,
|
||||
int8_t shift,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q7 vector absolute value.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[out] pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_abs_q7(
|
||||
const q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector absolute value.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[out] pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_abs_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 vector absolute value.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[out] pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_abs_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector absolute value.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[out] pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*/
|
||||
void arm_abs_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Dot product of floating-point vectors.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] result output result returned here
|
||||
*/
|
||||
void arm_dot_prod_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
float32_t * result);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q7 vectors.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] result output result returned here
|
||||
*/
|
||||
void arm_dot_prod_q7(
|
||||
const q7_t * pSrcA,
|
||||
const q7_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q31_t * result);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q15 vectors.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] result output result returned here
|
||||
*/
|
||||
void arm_dot_prod_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q63_t * result);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q31 vectors.
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] result output result returned here
|
||||
*/
|
||||
void arm_dot_prod_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q63_t * result);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q7 vector a specified number of bits.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_shift_q7(
|
||||
const q7_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q15 vector a specified number of bits.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_shift_q15(
|
||||
const q15_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q31 vector a specified number of bits.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_shift_q31(
|
||||
const q31_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a floating-point vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_offset_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t offset,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q7 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_offset_q7(
|
||||
const q7_t * pSrc,
|
||||
q7_t offset,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q15 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_offset_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t offset,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q31 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_offset_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t offset,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a floating-point vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_negate_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q7 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_negate_q7(
|
||||
const q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q15 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_negate_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q31 vector.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
*/
|
||||
void arm_negate_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise AND of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_and_u16(
|
||||
const uint16_t * pSrcA,
|
||||
const uint16_t * pSrcB,
|
||||
uint16_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise AND of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_and_u32(
|
||||
const uint32_t * pSrcA,
|
||||
const uint32_t * pSrcB,
|
||||
uint32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise AND of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_and_u8(
|
||||
const uint8_t * pSrcA,
|
||||
const uint8_t * pSrcB,
|
||||
uint8_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise OR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_or_u16(
|
||||
const uint16_t * pSrcA,
|
||||
const uint16_t * pSrcB,
|
||||
uint16_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise OR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_or_u32(
|
||||
const uint32_t * pSrcA,
|
||||
const uint32_t * pSrcB,
|
||||
uint32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise OR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_or_u8(
|
||||
const uint8_t * pSrcA,
|
||||
const uint8_t * pSrcB,
|
||||
uint8_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise NOT of a fixed-point vector.
|
||||
* @param[in] pSrc points to input vector
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_not_u16(
|
||||
const uint16_t * pSrc,
|
||||
uint16_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise NOT of a fixed-point vector.
|
||||
* @param[in] pSrc points to input vector
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_not_u32(
|
||||
const uint32_t * pSrc,
|
||||
uint32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise NOT of a fixed-point vector.
|
||||
* @param[in] pSrc points to input vector
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_not_u8(
|
||||
const uint8_t * pSrc,
|
||||
uint8_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise XOR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_xor_u16(
|
||||
const uint16_t * pSrcA,
|
||||
const uint16_t * pSrcB,
|
||||
uint16_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise XOR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_xor_u32(
|
||||
const uint32_t * pSrcA,
|
||||
const uint32_t * pSrcB,
|
||||
uint32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Compute the logical bitwise XOR of two fixed-point vectors.
|
||||
* @param[in] pSrcA points to input vector A
|
||||
* @param[in] pSrcB points to input vector B
|
||||
* @param[out] pDst points to output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none
|
||||
*/
|
||||
void arm_xor_u8(
|
||||
const uint8_t * pSrcA,
|
||||
const uint8_t * pSrcB,
|
||||
uint8_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _BASIC_MATH_FUNCTIONS_H_ */
|
|
@ -1,86 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file bayes_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _BAYES_FUNCTIONS_H_
|
||||
#define _BAYES_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#include "dsp/statistics_functions.h"
|
||||
|
||||
/**
|
||||
* @defgroup groupBayes Bayesian estimators
|
||||
*
|
||||
* Implement the naive gaussian Bayes estimator.
|
||||
* The training must be done from scikit-learn.
|
||||
*
|
||||
* The parameters can be easily
|
||||
* generated from the scikit-learn object. Some examples are given in
|
||||
* DSP/Testing/PatternGeneration/Bayes.py
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Instance structure for Naive Gaussian Bayesian estimator.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t vectorDimension; /**< Dimension of vector space */
|
||||
uint32_t numberOfClasses; /**< Number of different classes */
|
||||
const float32_t *theta; /**< Mean values for the Gaussians */
|
||||
const float32_t *sigma; /**< Variances for the Gaussians */
|
||||
const float32_t *classPriors; /**< Class prior probabilities */
|
||||
float32_t epsilon; /**< Additive value to variances */
|
||||
} arm_gaussian_naive_bayes_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Naive Gaussian Bayesian Estimator
|
||||
*
|
||||
* @param[in] S points to a naive bayes instance structure
|
||||
* @param[in] in points to the elements of the input vector.
|
||||
* @param[in] pBuffer points to a buffer of length numberOfClasses
|
||||
* @return The predicted class
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
|
||||
const float32_t * in,
|
||||
float32_t *pBuffer);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _BAYES_FUNCTIONS_H_ */
|
|
@ -1,294 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file complex_math_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _COMPLEX_MATH_FUNCTIONS_H_
|
||||
#define _COMPLEX_MATH_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
#include "dsp/fast_math_functions.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup groupCmplxMath Complex Math Functions
|
||||
* This set of functions operates on complex data vectors.
|
||||
* The data in the complex arrays is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* In the API functions, the number of samples in a complex array refers
|
||||
* to the number of complex values; the array contains twice this number of
|
||||
* real values.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex conjugate.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_conj_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
/**
|
||||
* @brief Q31 complex conjugate.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_conj_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex conjugate.
|
||||
* @param[in] pSrc points to the input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_conj_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex magnitude squared
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_squared_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex magnitude squared
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_squared_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex magnitude squared
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_squared_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex magnitude
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex magnitude
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex magnitude
|
||||
* @param[in] pSrc points to the complex input vector
|
||||
* @param[out] pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
*/
|
||||
void arm_cmplx_mag_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex dot product
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @param[out] realResult real part of the result returned here
|
||||
* @param[out] imagResult imaginary part of the result returned here
|
||||
*/
|
||||
void arm_cmplx_dot_prod_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
q31_t * realResult,
|
||||
q31_t * imagResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex dot product
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @param[out] realResult real part of the result returned here
|
||||
* @param[out] imagResult imaginary part of the result returned here
|
||||
*/
|
||||
void arm_cmplx_dot_prod_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
q63_t * realResult,
|
||||
q63_t * imagResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex dot product
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @param[out] realResult real part of the result returned here
|
||||
* @param[out] imagResult imaginary part of the result returned here
|
||||
*/
|
||||
void arm_cmplx_dot_prod_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
float32_t * realResult,
|
||||
float32_t * imagResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex-by-real multiplication
|
||||
* @param[in] pSrcCmplx points to the complex input vector
|
||||
* @param[in] pSrcReal points to the real input vector
|
||||
* @param[out] pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_real_q15(
|
||||
const q15_t * pSrcCmplx,
|
||||
const q15_t * pSrcReal,
|
||||
q15_t * pCmplxDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex-by-real multiplication
|
||||
* @param[in] pSrcCmplx points to the complex input vector
|
||||
* @param[in] pSrcReal points to the real input vector
|
||||
* @param[out] pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_real_q31(
|
||||
const q31_t * pSrcCmplx,
|
||||
const q31_t * pSrcReal,
|
||||
q31_t * pCmplxDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex-by-real multiplication
|
||||
* @param[in] pSrcCmplx points to the complex input vector
|
||||
* @param[in] pSrcReal points to the real input vector
|
||||
* @param[out] pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_real_f32(
|
||||
const float32_t * pSrcCmplx,
|
||||
const float32_t * pSrcReal,
|
||||
float32_t * pCmplxDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
/**
|
||||
* @brief Q15 complex-by-complex multiplication
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_cmplx_q15(
|
||||
const q15_t * pSrcA,
|
||||
const q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex-by-complex multiplication
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_cmplx_q31(
|
||||
const q31_t * pSrcA,
|
||||
const q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex-by-complex multiplication
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[out] pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
*/
|
||||
void arm_cmplx_mult_cmplx_f32(
|
||||
const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples);
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_H_ */
|
|
@ -1,790 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file controller_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _CONTROLLER_FUNCTIONS_H_
|
||||
#define _CONTROLLER_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Macros required for SINE and COSINE Controller functions
|
||||
*/
|
||||
|
||||
#define CONTROLLER_Q31_SHIFT (32 - 9)
|
||||
/* 1.31(q31) Fixed value of 2/360 */
|
||||
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
|
||||
#define INPUT_SPACING 0xB60B61
|
||||
|
||||
/**
|
||||
* @defgroup groupController Controller Functions
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SinCos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point sin_cos function.
|
||||
* @param[in] theta input value in degrees
|
||||
* @param[out] pSinVal points to the processed sine output.
|
||||
* @param[out] pCosVal points to the processed cos output.
|
||||
*/
|
||||
void arm_sin_cos_f32(
|
||||
float32_t theta,
|
||||
float32_t * pSinVal,
|
||||
float32_t * pCosVal);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 sin_cos function.
|
||||
* @param[in] theta scaled input value in degrees
|
||||
* @param[out] pSinVal points to the processed sine output.
|
||||
* @param[out] pCosVal points to the processed cosine output.
|
||||
*/
|
||||
void arm_sin_cos_q31(
|
||||
q31_t theta,
|
||||
q31_t * pSinVal,
|
||||
q31_t * pCosVal);
|
||||
|
||||
/**
|
||||
* @} end of SinCos group
|
||||
*/
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup PID PID Motor Control
|
||||
*
|
||||
* A Proportional Integral Derivative (PID) controller is a generic feedback control
|
||||
* loop mechanism widely used in industrial control systems.
|
||||
* A PID controller is the most commonly used type of feedback controller.
|
||||
*
|
||||
* This set of functions implements (PID) controllers
|
||||
* for Q15, Q31, and floating-point data types. The functions operate on a single sample
|
||||
* of data and each call to the function returns a single processed value.
|
||||
* <code>S</code> points to an instance of the PID control data structure. <code>in</code>
|
||||
* is the input sample value. The functions return the output value.
|
||||
*
|
||||
* \par Algorithm:
|
||||
* <pre>
|
||||
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
|
||||
* A0 = Kp + Ki + Kd
|
||||
* A1 = (-Kp ) - (2 * Kd )
|
||||
* A2 = Kd
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
|
||||
*
|
||||
* \par
|
||||
* \image html PID.gif "Proportional Integral Derivative Controller"
|
||||
*
|
||||
* \par
|
||||
* The PID controller calculates an "error" value as the difference between
|
||||
* the measured output and the reference input.
|
||||
* The controller attempts to minimize the error by adjusting the process control inputs.
|
||||
* The proportional value determines the reaction to the current error,
|
||||
* the integral value determines the reaction based on the sum of recent errors,
|
||||
* and the derivative value determines the reaction based on the rate at which the error has been changing.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each PID Controller.
|
||||
* There are separate instance structure declarations for each of the 3 supported data types.
|
||||
*
|
||||
* \par Reset Functions
|
||||
* There is also an associated reset function for each data type which clears the state array.
|
||||
*
|
||||
* \par Initialization Functions
|
||||
* There is also an associated initialization function for each data type.
|
||||
* The initialization function performs the following operations:
|
||||
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
|
||||
* - Zeros out the values in the state buffer.
|
||||
*
|
||||
* \par
|
||||
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
|
||||
*
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the fixed-point versions of the PID Controller functions.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 PID Control.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
||||
#if !defined (ARM_MATH_DSP)
|
||||
q15_t A1; /**< The derived gain A1 = -Kp - 2Kd */
|
||||
q15_t A2; /**< The derived gain A1 = Kd. */
|
||||
#else
|
||||
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
|
||||
#endif
|
||||
q15_t state[3]; /**< The state array of length 3. */
|
||||
q15_t Kp; /**< The proportional gain. */
|
||||
q15_t Ki; /**< The integral gain. */
|
||||
q15_t Kd; /**< The derivative gain. */
|
||||
} arm_pid_instance_q15;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 PID Control.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
||||
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
||||
q31_t A2; /**< The derived gain, A2 = Kd . */
|
||||
q31_t state[3]; /**< The state array of length 3. */
|
||||
q31_t Kp; /**< The proportional gain. */
|
||||
q31_t Ki; /**< The integral gain. */
|
||||
q31_t Kd; /**< The derivative gain. */
|
||||
} arm_pid_instance_q31;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point PID Control.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
||||
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
||||
float32_t A2; /**< The derived gain, A2 = Kd . */
|
||||
float32_t state[3]; /**< The state array of length 3. */
|
||||
float32_t Kp; /**< The proportional gain. */
|
||||
float32_t Ki; /**< The integral gain. */
|
||||
float32_t Kd; /**< The derivative gain. */
|
||||
} arm_pid_instance_f32;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point PID Control.
|
||||
* @param[in,out] S points to an instance of the PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
||||
*/
|
||||
void arm_pid_init_f32(
|
||||
arm_pid_instance_f32 * S,
|
||||
int32_t resetStateFlag);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Reset function for the floating-point PID Control.
|
||||
* @param[in,out] S is an instance of the floating-point PID Control structure
|
||||
*/
|
||||
void arm_pid_reset_f32(
|
||||
arm_pid_instance_f32 * S);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the Q31 PID Control.
|
||||
* @param[in,out] S points to an instance of the Q15 PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
||||
*/
|
||||
void arm_pid_init_q31(
|
||||
arm_pid_instance_q31 * S,
|
||||
int32_t resetStateFlag);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Reset function for the Q31 PID Control.
|
||||
* @param[in,out] S points to an instance of the Q31 PID Control structure
|
||||
*/
|
||||
|
||||
void arm_pid_reset_q31(
|
||||
arm_pid_instance_q31 * S);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the Q15 PID Control.
|
||||
* @param[in,out] S points to an instance of the Q15 PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
||||
*/
|
||||
void arm_pid_init_q15(
|
||||
arm_pid_instance_q15 * S,
|
||||
int32_t resetStateFlag);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Reset function for the Q15 PID Control.
|
||||
* @param[in,out] S points to an instance of the q15 PID Control structure
|
||||
*/
|
||||
void arm_pid_reset_q15(
|
||||
arm_pid_instance_q15 * S);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Process function for the floating-point PID Control.
|
||||
* @param[in,out] S is an instance of the floating-point PID Control structure
|
||||
* @param[in] in input sample to process
|
||||
* @return processed output sample.
|
||||
*/
|
||||
__STATIC_FORCEINLINE float32_t arm_pid_f32(
|
||||
arm_pid_instance_f32 * S,
|
||||
float32_t in)
|
||||
{
|
||||
float32_t out;
|
||||
|
||||
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
|
||||
out = (S->A0 * in) +
|
||||
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
|
||||
|
||||
/* Update state */
|
||||
S->state[1] = S->state[0];
|
||||
S->state[0] = in;
|
||||
S->state[2] = out;
|
||||
|
||||
/* return to application */
|
||||
return (out);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Process function for the Q31 PID Control.
|
||||
@param[in,out] S points to an instance of the Q31 PID Control structure
|
||||
@param[in] in input sample to process
|
||||
@return processed output sample.
|
||||
|
||||
\par Scaling and Overflow Behavior
|
||||
The function is implemented using an internal 64-bit accumulator.
|
||||
The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
Thus, if the accumulator result overflows it wraps around rather than clip.
|
||||
In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
|
||||
After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_pid_q31(
|
||||
arm_pid_instance_q31 * S,
|
||||
q31_t in)
|
||||
{
|
||||
q63_t acc;
|
||||
q31_t out;
|
||||
|
||||
/* acc = A0 * x[n] */
|
||||
acc = (q63_t) S->A0 * in;
|
||||
|
||||
/* acc += A1 * x[n-1] */
|
||||
acc += (q63_t) S->A1 * S->state[0];
|
||||
|
||||
/* acc += A2 * x[n-2] */
|
||||
acc += (q63_t) S->A2 * S->state[1];
|
||||
|
||||
/* convert output to 1.31 format to add y[n-1] */
|
||||
out = (q31_t) (acc >> 31U);
|
||||
|
||||
/* out += y[n-1] */
|
||||
out += S->state[2];
|
||||
|
||||
/* Update state */
|
||||
S->state[1] = S->state[0];
|
||||
S->state[0] = in;
|
||||
S->state[2] = out;
|
||||
|
||||
/* return to application */
|
||||
return (out);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Process function for the Q15 PID Control.
|
||||
@param[in,out] S points to an instance of the Q15 PID Control structure
|
||||
@param[in] in input sample to process
|
||||
@return processed output sample.
|
||||
|
||||
\par Scaling and Overflow Behavior
|
||||
The function is implemented using a 64-bit internal accumulator.
|
||||
Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
||||
The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
||||
There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
||||
After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
||||
Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q15_t arm_pid_q15(
|
||||
arm_pid_instance_q15 * S,
|
||||
q15_t in)
|
||||
{
|
||||
q63_t acc;
|
||||
q15_t out;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Implementation of PID controller */
|
||||
|
||||
/* acc = A0 * x[n] */
|
||||
acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
|
||||
|
||||
/* acc += A1 * x[n-1] + A2 * x[n-2] */
|
||||
acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)read_q15x2 (S->state), (uint64_t)acc);
|
||||
#else
|
||||
/* acc = A0 * x[n] */
|
||||
acc = ((q31_t) S->A0) * in;
|
||||
|
||||
/* acc += A1 * x[n-1] + A2 * x[n-2] */
|
||||
acc += (q31_t) S->A1 * S->state[0];
|
||||
acc += (q31_t) S->A2 * S->state[1];
|
||||
#endif
|
||||
|
||||
/* acc += y[n-1] */
|
||||
acc += (q31_t) S->state[2] << 15;
|
||||
|
||||
/* saturate the output */
|
||||
out = (q15_t) (__SSAT((q31_t)(acc >> 15), 16));
|
||||
|
||||
/* Update state */
|
||||
S->state[1] = S->state[0];
|
||||
S->state[0] = in;
|
||||
S->state[2] = out;
|
||||
|
||||
/* return to application */
|
||||
return (out);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup park Vector Park Transform
|
||||
*
|
||||
* Forward Park transform converts the input two-coordinate vector to flux and torque components.
|
||||
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
|
||||
* from the stationary to the moving reference frame and control the spatial relationship between
|
||||
* the stator vector current and rotor flux vector.
|
||||
* If we consider the d axis aligned with the rotor flux, the diagram below shows the
|
||||
* current vector and the relationship from the two reference frames:
|
||||
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
|
||||
*
|
||||
* The function operates on a single sample of data and each call to the function returns the processed output.
|
||||
* The library provides separate functions for Q31 and floating-point data types.
|
||||
* \par Algorithm
|
||||
* \image html parkFormula.gif
|
||||
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
|
||||
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
||||
* cosine and sine values of theta (rotor flux position).
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the Q31 version of the Park transform.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup park
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point Park transform
|
||||
* @param[in] Ialpha input two-phase vector coordinate alpha
|
||||
* @param[in] Ibeta input two-phase vector coordinate beta
|
||||
* @param[out] pId points to output rotor reference frame d
|
||||
* @param[out] pIq points to output rotor reference frame q
|
||||
* @param[in] sinVal sine value of rotation angle theta
|
||||
* @param[in] cosVal cosine value of rotation angle theta
|
||||
* @return none
|
||||
*
|
||||
* The function implements the forward Park transform.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_park_f32(
|
||||
float32_t Ialpha,
|
||||
float32_t Ibeta,
|
||||
float32_t * pId,
|
||||
float32_t * pIq,
|
||||
float32_t sinVal,
|
||||
float32_t cosVal)
|
||||
{
|
||||
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
|
||||
*pId = Ialpha * cosVal + Ibeta * sinVal;
|
||||
|
||||
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
|
||||
*pIq = -Ialpha * sinVal + Ibeta * cosVal;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Park transform for Q31 version
|
||||
@param[in] Ialpha input two-phase vector coordinate alpha
|
||||
@param[in] Ibeta input two-phase vector coordinate beta
|
||||
@param[out] pId points to output rotor reference frame d
|
||||
@param[out] pIq points to output rotor reference frame q
|
||||
@param[in] sinVal sine value of rotation angle theta
|
||||
@param[in] cosVal cosine value of rotation angle theta
|
||||
@return none
|
||||
|
||||
\par Scaling and Overflow Behavior
|
||||
The function is implemented using an internal 32-bit accumulator.
|
||||
The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
||||
There is saturation on the addition and subtraction, hence there is no risk of overflow.
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_park_q31(
|
||||
q31_t Ialpha,
|
||||
q31_t Ibeta,
|
||||
q31_t * pId,
|
||||
q31_t * pIq,
|
||||
q31_t sinVal,
|
||||
q31_t cosVal)
|
||||
{
|
||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
||||
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
||||
|
||||
/* Intermediate product is calculated by (Ialpha * cosVal) */
|
||||
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
|
||||
|
||||
/* Intermediate product is calculated by (Ibeta * sinVal) */
|
||||
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
|
||||
|
||||
|
||||
/* Intermediate product is calculated by (Ialpha * sinVal) */
|
||||
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
|
||||
|
||||
/* Intermediate product is calculated by (Ibeta * cosVal) */
|
||||
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
|
||||
|
||||
/* Calculate pId by adding the two intermediate products 1 and 2 */
|
||||
*pId = __QADD(product1, product2);
|
||||
|
||||
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */
|
||||
*pIq = __QSUB(product4, product3);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of park group
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup inv_park Vector Inverse Park transform
|
||||
* Inverse Park transform converts the input flux and torque components to two-coordinate vector.
|
||||
*
|
||||
* The function operates on a single sample of data and each call to the function returns the processed output.
|
||||
* The library provides separate functions for Q31 and floating-point data types.
|
||||
* \par Algorithm
|
||||
* \image html parkInvFormula.gif
|
||||
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
|
||||
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
||||
* cosine and sine values of theta (rotor flux position).
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the Q31 version of the Park transform.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup inv_park
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point Inverse Park transform
|
||||
* @param[in] Id input coordinate of rotor reference frame d
|
||||
* @param[in] Iq input coordinate of rotor reference frame q
|
||||
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
||||
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
||||
* @param[in] sinVal sine value of rotation angle theta
|
||||
* @param[in] cosVal cosine value of rotation angle theta
|
||||
* @return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_inv_park_f32(
|
||||
float32_t Id,
|
||||
float32_t Iq,
|
||||
float32_t * pIalpha,
|
||||
float32_t * pIbeta,
|
||||
float32_t sinVal,
|
||||
float32_t cosVal)
|
||||
{
|
||||
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
|
||||
*pIalpha = Id * cosVal - Iq * sinVal;
|
||||
|
||||
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
|
||||
*pIbeta = Id * sinVal + Iq * cosVal;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Inverse Park transform for Q31 version
|
||||
@param[in] Id input coordinate of rotor reference frame d
|
||||
@param[in] Iq input coordinate of rotor reference frame q
|
||||
@param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
||||
@param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
||||
@param[in] sinVal sine value of rotation angle theta
|
||||
@param[in] cosVal cosine value of rotation angle theta
|
||||
@return none
|
||||
|
||||
@par Scaling and Overflow Behavior
|
||||
The function is implemented using an internal 32-bit accumulator.
|
||||
The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
||||
There is saturation on the addition, hence there is no risk of overflow.
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_inv_park_q31(
|
||||
q31_t Id,
|
||||
q31_t Iq,
|
||||
q31_t * pIalpha,
|
||||
q31_t * pIbeta,
|
||||
q31_t sinVal,
|
||||
q31_t cosVal)
|
||||
{
|
||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
||||
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
||||
|
||||
/* Intermediate product is calculated by (Id * cosVal) */
|
||||
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
|
||||
|
||||
/* Intermediate product is calculated by (Iq * sinVal) */
|
||||
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
|
||||
|
||||
|
||||
/* Intermediate product is calculated by (Id * sinVal) */
|
||||
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
|
||||
|
||||
/* Intermediate product is calculated by (Iq * cosVal) */
|
||||
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
|
||||
|
||||
/* Calculate pIalpha by using the two intermediate products 1 and 2 */
|
||||
*pIalpha = __QSUB(product1, product2);
|
||||
|
||||
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
|
||||
*pIbeta = __QADD(product4, product3);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Inverse park group
|
||||
*/
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup clarke Vector Clarke Transform
|
||||
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
|
||||
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
|
||||
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
|
||||
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
|
||||
* \image html clarke.gif Stator current space vector and its components in (a,b).
|
||||
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
|
||||
* can be calculated using only <code>Ia</code> and <code>Ib</code>.
|
||||
*
|
||||
* The function operates on a single sample of data and each call to the function returns the processed output.
|
||||
* The library provides separate functions for Q31 and floating-point data types.
|
||||
* \par Algorithm
|
||||
* \image html clarkeFormula.gif
|
||||
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
|
||||
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the Q31 version of the Clarke transform.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup clarke
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
*
|
||||
* @brief Floating-point Clarke transform
|
||||
* @param[in] Ia input three-phase coordinate <code>a</code>
|
||||
* @param[in] Ib input three-phase coordinate <code>b</code>
|
||||
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
||||
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
||||
* @return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_clarke_f32(
|
||||
float32_t Ia,
|
||||
float32_t Ib,
|
||||
float32_t * pIalpha,
|
||||
float32_t * pIbeta)
|
||||
{
|
||||
/* Calculate pIalpha using the equation, pIalpha = Ia */
|
||||
*pIalpha = Ia;
|
||||
|
||||
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
|
||||
*pIbeta = (0.57735026919f * Ia + 1.15470053838f * Ib);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Clarke transform for Q31 version
|
||||
@param[in] Ia input three-phase coordinate <code>a</code>
|
||||
@param[in] Ib input three-phase coordinate <code>b</code>
|
||||
@param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
||||
@param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
||||
@return none
|
||||
|
||||
\par Scaling and Overflow Behavior
|
||||
The function is implemented using an internal 32-bit accumulator.
|
||||
The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
||||
There is saturation on the addition, hence there is no risk of overflow.
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_clarke_q31(
|
||||
q31_t Ia,
|
||||
q31_t Ib,
|
||||
q31_t * pIalpha,
|
||||
q31_t * pIbeta)
|
||||
{
|
||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
||||
|
||||
/* Calculating pIalpha from Ia by equation pIalpha = Ia */
|
||||
*pIalpha = Ia;
|
||||
|
||||
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
|
||||
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
|
||||
|
||||
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
|
||||
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
|
||||
|
||||
/* pIbeta is calculated by adding the intermediate products */
|
||||
*pIbeta = __QADD(product1, product2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of clarke group
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup inv_clarke Vector Inverse Clarke Transform
|
||||
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
|
||||
*
|
||||
* The function operates on a single sample of data and each call to the function returns the processed output.
|
||||
* The library provides separate functions for Q31 and floating-point data types.
|
||||
* \par Algorithm
|
||||
* \image html clarkeInvFormula.gif
|
||||
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
|
||||
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the Q31 version of the Clarke transform.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup inv_clarke
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point Inverse Clarke transform
|
||||
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
||||
* @param[in] Ibeta input two-phase orthogonal vector axis beta
|
||||
* @param[out] pIa points to output three-phase coordinate <code>a</code>
|
||||
* @param[out] pIb points to output three-phase coordinate <code>b</code>
|
||||
* @return none
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_inv_clarke_f32(
|
||||
float32_t Ialpha,
|
||||
float32_t Ibeta,
|
||||
float32_t * pIa,
|
||||
float32_t * pIb)
|
||||
{
|
||||
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
||||
*pIa = Ialpha;
|
||||
|
||||
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
|
||||
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Inverse Clarke transform for Q31 version
|
||||
@param[in] Ialpha input two-phase orthogonal vector axis alpha
|
||||
@param[in] Ibeta input two-phase orthogonal vector axis beta
|
||||
@param[out] pIa points to output three-phase coordinate <code>a</code>
|
||||
@param[out] pIb points to output three-phase coordinate <code>b</code>
|
||||
@return none
|
||||
|
||||
\par Scaling and Overflow Behavior
|
||||
The function is implemented using an internal 32-bit accumulator.
|
||||
The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
||||
There is saturation on the subtraction, hence there is no risk of overflow.
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_inv_clarke_q31(
|
||||
q31_t Ialpha,
|
||||
q31_t Ibeta,
|
||||
q31_t * pIa,
|
||||
q31_t * pIb)
|
||||
{
|
||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
||||
|
||||
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
||||
*pIa = Ialpha;
|
||||
|
||||
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
|
||||
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
|
||||
|
||||
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
|
||||
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
|
||||
|
||||
/* pIb is calculated by subtracting the products */
|
||||
*pIb = __QSUB(product2, product1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of inv_clarke group
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _CONTROLLER_FUNCTIONS_H_ */
|
|
@ -1,296 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file distance_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _DISTANCE_FUNCTIONS_H_
|
||||
#define _DISTANCE_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#include "dsp/statistics_functions.h"
|
||||
#include "dsp/basic_math_functions.h"
|
||||
#include "dsp/fast_math_functions.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupDistance Distance functions
|
||||
*
|
||||
* Distance functions for use with clustering algorithms.
|
||||
* There are distance functions for float vectors and boolean vectors.
|
||||
*
|
||||
*/
|
||||
|
||||
/* 6.14 bug */
|
||||
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
|
||||
|
||||
__attribute__((weak)) float __powisf2(float a, int b);
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Euclidean distance between two vectors
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Bray-Curtis distance between two vectors
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Canberra distance between two vectors
|
||||
*
|
||||
* This function may divide by zero when samples pA[i] and pB[i] are both zero.
|
||||
* The result of the computation will be correct. So the division per zero may be
|
||||
* ignored.
|
||||
*
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Chebyshev distance between two vectors
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Cityblock (Manhattan) distance between two vectors
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Correlation distance between two vectors
|
||||
*
|
||||
* The input vectors are modified in place !
|
||||
*
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Cosine distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Jensen-Shannon distance between two vectors
|
||||
*
|
||||
* This function is assuming that elements of second vector are > 0
|
||||
* and 0 only when the corresponding element of first vector is 0.
|
||||
* Otherwise the result of the computation does not make sense
|
||||
* and for speed reasons, the cases returning NaN or Infinity are not
|
||||
* managed.
|
||||
*
|
||||
* When the function is computing x log (x / y) with x 0 and y 0,
|
||||
* it will compute the right value (0) but a division per zero will occur
|
||||
* and shoudl be ignored in client code.
|
||||
*
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Minkowski distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector
|
||||
* @param[in] pB Second vector
|
||||
* @param[in] n Norm order (>= 2)
|
||||
* @param[in] blockSize vector length
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
|
||||
float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Dice distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] order Distance order
|
||||
* @param[in] blockSize Number of samples
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Hamming distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Jaccard distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Kulsinski distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Roger Stanimoto distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Russell-Rao distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Sokal-Michener distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Sokal-Sneath distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
/**
|
||||
* @brief Yule distance between two vectors
|
||||
*
|
||||
* @param[in] pA First vector of packed booleans
|
||||
* @param[in] pB Second vector of packed booleans
|
||||
* @param[in] numberOfBools Number of booleans
|
||||
* @return distance
|
||||
*
|
||||
*/
|
||||
|
||||
float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _DISTANCE_FUNCTIONS_H_ */
|
|
@ -1,287 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file fast_math_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _FAST_MATH_FUNCTIONS_H_
|
||||
#define _FAST_MATH_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Macros required for SINE and COSINE Fast math approximations
|
||||
*/
|
||||
|
||||
#define FAST_MATH_TABLE_SIZE 512
|
||||
#define FAST_MATH_Q31_SHIFT (32 - 10)
|
||||
#define FAST_MATH_Q15_SHIFT (16 - 10)
|
||||
|
||||
#ifndef PI
|
||||
#define PI 3.14159265358979f
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupFastMath Fast Math Functions
|
||||
* This set of functions provides a fast approximation to sine, cosine, and square root.
|
||||
* As compared to most of the other functions in the CMSIS math library, the fast math functions
|
||||
* operate on individual values and not arrays.
|
||||
* There are separate functions for Q15, Q31, and floating-point data.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
@addtogroup sin
|
||||
@{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for floating-point data.
|
||||
* @param[in] x input value in radians.
|
||||
* @return sin(x).
|
||||
*/
|
||||
float32_t arm_sin_f32(
|
||||
float32_t x);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for Q31 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return sin(x).
|
||||
*/
|
||||
q31_t arm_sin_q31(
|
||||
q31_t x);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for Q15 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return sin(x).
|
||||
*/
|
||||
q15_t arm_sin_q15(
|
||||
q15_t x);
|
||||
|
||||
/**
|
||||
@} end of sin group
|
||||
*/
|
||||
|
||||
/**
|
||||
@addtogroup cos
|
||||
@{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
|
||||
* @param[in] x input value in radians.
|
||||
* @return cos(x).
|
||||
*/
|
||||
float32_t arm_cos_f32(
|
||||
float32_t x);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return cos(x).
|
||||
*/
|
||||
q31_t arm_cos_q31(
|
||||
q31_t x);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return cos(x).
|
||||
*/
|
||||
q15_t arm_cos_q15(
|
||||
q15_t x);
|
||||
|
||||
/**
|
||||
@} end of cos group
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
@brief Floating-point vector of log values.
|
||||
@param[in] pSrc points to the input vector
|
||||
@param[out] pDst points to the output vector
|
||||
@param[in] blockSize number of samples in each vector
|
||||
@return none
|
||||
*/
|
||||
void arm_vlog_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
@brief Floating-point vector of exp values.
|
||||
@param[in] pSrc points to the input vector
|
||||
@param[out] pDst points to the output vector
|
||||
@param[in] blockSize number of samples in each vector
|
||||
@return none
|
||||
*/
|
||||
void arm_vexp_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @defgroup SQRT Square Root
|
||||
*
|
||||
* Computes the square root of a number.
|
||||
* There are separate functions for Q15, Q31, and floating-point data types.
|
||||
* The square root function is computed using the Newton-Raphson algorithm.
|
||||
* This is an iterative algorithm of the form:
|
||||
* <pre>
|
||||
* x1 = x0 - f(x0)/f'(x0)
|
||||
* </pre>
|
||||
* where <code>x1</code> is the current estimate,
|
||||
* <code>x0</code> is the previous estimate, and
|
||||
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
|
||||
* For the square root function, the algorithm reduces to:
|
||||
* <pre>
|
||||
* x0 = in/2 [initial guess]
|
||||
* x1 = 1/2 * ( x0 + in / x0) [each iteration]
|
||||
* </pre>
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @addtogroup SQRT
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
@brief Floating-point square root function.
|
||||
@param[in] in input value
|
||||
@param[out] pOut square root of input value
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : input value is positive
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
|
||||
*/
|
||||
__STATIC_FORCEINLINE arm_status arm_sqrt_f32(
|
||||
float32_t in,
|
||||
float32_t * pOut)
|
||||
{
|
||||
if (in >= 0.0f)
|
||||
{
|
||||
#if defined ( __CC_ARM )
|
||||
#if defined __TARGET_FPU_VFP
|
||||
*pOut = __sqrtf(in);
|
||||
#else
|
||||
*pOut = sqrtf(in);
|
||||
#endif
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
#if defined __ARMVFP__
|
||||
__ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
|
||||
#else
|
||||
*pOut = sqrtf(in);
|
||||
#endif
|
||||
|
||||
#else
|
||||
*pOut = sqrtf(in);
|
||||
#endif
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
else
|
||||
{
|
||||
*pOut = 0.0f;
|
||||
return (ARM_MATH_ARGUMENT_ERROR);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
@brief Q31 square root function.
|
||||
@param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF
|
||||
@param[out] pOut points to square root of input value
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : input value is positive
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
|
||||
*/
|
||||
arm_status arm_sqrt_q31(
|
||||
q31_t in,
|
||||
q31_t * pOut);
|
||||
|
||||
|
||||
/**
|
||||
@brief Q15 square root function.
|
||||
@param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF
|
||||
@param[out] pOut points to square root of input value
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : input value is positive
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
|
||||
*/
|
||||
arm_status arm_sqrt_q15(
|
||||
q15_t in,
|
||||
q15_t * pOut);
|
||||
|
||||
/**
|
||||
* @brief Vector Floating-point square root function.
|
||||
* @param[in] pIn input vector.
|
||||
* @param[out] pOut vector of square roots of input elements.
|
||||
* @param[in] len length of input vector.
|
||||
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
||||
* <code>in</code> is negative value and returns zero output for negative values.
|
||||
*/
|
||||
void arm_vsqrt_f32(
|
||||
float32_t * pIn,
|
||||
float32_t * pOut,
|
||||
uint16_t len);
|
||||
|
||||
void arm_vsqrt_q31(
|
||||
q31_t * pIn,
|
||||
q31_t * pOut,
|
||||
uint16_t len);
|
||||
|
||||
void arm_vsqrt_q15(
|
||||
q15_t * pIn,
|
||||
q15_t * pOut,
|
||||
uint16_t len);
|
||||
|
||||
/**
|
||||
* @} end of SQRT group
|
||||
*/
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */
|
File diff suppressed because it is too large
Load Diff
|
@ -1,318 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file interpolation_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _INTERPOLATION_FUNCTIONS_H_
|
||||
#define _INTERPOLATION_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupInterpolation Interpolation Functions
|
||||
* These functions perform 1- and 2-dimensional interpolation of data.
|
||||
* Linear interpolation is used for 1-dimensional data and
|
||||
* bilinear interpolation is used for 2-dimensional data.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point Linear Interpolate function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t nValues; /**< nValues */
|
||||
float32_t x1; /**< x1 */
|
||||
float32_t xSpacing; /**< xSpacing */
|
||||
float32_t *pYData; /**< pointer to the table of Y values */
|
||||
} arm_linear_interp_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point bilinear interpolation function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows in the data table. */
|
||||
uint16_t numCols; /**< number of columns in the data table. */
|
||||
float32_t *pData; /**< points to the data table. */
|
||||
} arm_bilinear_interp_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 bilinear interpolation function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows in the data table. */
|
||||
uint16_t numCols; /**< number of columns in the data table. */
|
||||
q31_t *pData; /**< points to the data table. */
|
||||
} arm_bilinear_interp_instance_q31;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 bilinear interpolation function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows in the data table. */
|
||||
uint16_t numCols; /**< number of columns in the data table. */
|
||||
q15_t *pData; /**< points to the data table. */
|
||||
} arm_bilinear_interp_instance_q15;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 bilinear interpolation function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows in the data table. */
|
||||
uint16_t numCols; /**< number of columns in the data table. */
|
||||
q7_t *pData; /**< points to the data table. */
|
||||
} arm_bilinear_interp_instance_q7;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying cubic spline type
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_SPLINE_NATURAL = 0, /**< Natural spline */
|
||||
ARM_SPLINE_PARABOLIC_RUNOUT = 1 /**< Parabolic runout spline */
|
||||
} arm_spline_type;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point cubic spline interpolation.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
arm_spline_type type; /**< Type (boundary conditions) */
|
||||
const float32_t * x; /**< x values */
|
||||
const float32_t * y; /**< y values */
|
||||
uint32_t n_x; /**< Number of known data points */
|
||||
float32_t * coeffs; /**< Coefficients buffer (b,c, and d) */
|
||||
} arm_spline_instance_f32;
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupInterpolation
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SplineInterpolate
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Processing function for the floating-point cubic spline interpolation.
|
||||
* @param[in] S points to an instance of the floating-point spline structure.
|
||||
* @param[in] xq points to the x values ot the interpolated data points.
|
||||
* @param[out] pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples of output data.
|
||||
*/
|
||||
void arm_spline_f32(
|
||||
arm_spline_instance_f32 * S,
|
||||
const float32_t * xq,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point cubic spline interpolation.
|
||||
* @param[in,out] S points to an instance of the floating-point spline structure.
|
||||
* @param[in] type type of cubic spline interpolation (boundary conditions)
|
||||
* @param[in] x points to the x values of the known data points.
|
||||
* @param[in] y points to the y values of the known data points.
|
||||
* @param[in] n number of known data points.
|
||||
* @param[in] coeffs coefficients array for b, c, and d
|
||||
* @param[in] tempBuffer buffer array for internal computations
|
||||
*/
|
||||
void arm_spline_init_f32(
|
||||
arm_spline_instance_f32 * S,
|
||||
arm_spline_type type,
|
||||
const float32_t * x,
|
||||
const float32_t * y,
|
||||
uint32_t n,
|
||||
float32_t * coeffs,
|
||||
float32_t * tempBuffer);
|
||||
|
||||
|
||||
/**
|
||||
* @} end of SplineInterpolate group
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @addtogroup LinearInterpolate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Process function for the floating-point Linear Interpolation Function.
|
||||
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure
|
||||
* @param[in] x input sample to process
|
||||
* @return y processed output sample.
|
||||
*
|
||||
*/
|
||||
float32_t arm_linear_interp_f32(
|
||||
arm_linear_interp_instance_f32 * S,
|
||||
float32_t x);
|
||||
|
||||
/**
|
||||
*
|
||||
* @brief Process function for the Q31 Linear Interpolation Function.
|
||||
* @param[in] pYData pointer to Q31 Linear Interpolation table
|
||||
* @param[in] x input sample to process
|
||||
* @param[in] nValues number of table values
|
||||
* @return y processed output sample.
|
||||
*
|
||||
* \par
|
||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
||||
* This function can support maximum of table size 2^12.
|
||||
*
|
||||
*/
|
||||
q31_t arm_linear_interp_q31(
|
||||
q31_t * pYData,
|
||||
q31_t x,
|
||||
uint32_t nValues);
|
||||
|
||||
/**
|
||||
*
|
||||
* @brief Process function for the Q15 Linear Interpolation Function.
|
||||
* @param[in] pYData pointer to Q15 Linear Interpolation table
|
||||
* @param[in] x input sample to process
|
||||
* @param[in] nValues number of table values
|
||||
* @return y processed output sample.
|
||||
*
|
||||
* \par
|
||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
||||
* This function can support maximum of table size 2^12.
|
||||
*
|
||||
*/
|
||||
q15_t arm_linear_interp_q15(
|
||||
q15_t * pYData,
|
||||
q31_t x,
|
||||
uint32_t nValues);
|
||||
|
||||
/**
|
||||
*
|
||||
* @brief Process function for the Q7 Linear Interpolation Function.
|
||||
* @param[in] pYData pointer to Q7 Linear Interpolation table
|
||||
* @param[in] x input sample to process
|
||||
* @param[in] nValues number of table values
|
||||
* @return y processed output sample.
|
||||
*
|
||||
* \par
|
||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
||||
* This function can support maximum of table size 2^12.
|
||||
*/
|
||||
q7_t arm_linear_interp_q7(
|
||||
q7_t * pYData,
|
||||
q31_t x,
|
||||
uint32_t nValues);
|
||||
|
||||
/**
|
||||
* @} end of LinearInterpolate group
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupInterpolation
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @addtogroup BilinearInterpolate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point bilinear interpolation.
|
||||
* @param[in,out] S points to an instance of the interpolation structure.
|
||||
* @param[in] X interpolation coordinate.
|
||||
* @param[in] Y interpolation coordinate.
|
||||
* @return out interpolated value.
|
||||
*/
|
||||
float32_t arm_bilinear_interp_f32(
|
||||
const arm_bilinear_interp_instance_f32 * S,
|
||||
float32_t X,
|
||||
float32_t Y);
|
||||
|
||||
/**
|
||||
* @brief Q31 bilinear interpolation.
|
||||
* @param[in,out] S points to an instance of the interpolation structure.
|
||||
* @param[in] X interpolation coordinate in 12.20 format.
|
||||
* @param[in] Y interpolation coordinate in 12.20 format.
|
||||
* @return out interpolated value.
|
||||
*/
|
||||
q31_t arm_bilinear_interp_q31(
|
||||
arm_bilinear_interp_instance_q31 * S,
|
||||
q31_t X,
|
||||
q31_t Y);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 bilinear interpolation.
|
||||
* @param[in,out] S points to an instance of the interpolation structure.
|
||||
* @param[in] X interpolation coordinate in 12.20 format.
|
||||
* @param[in] Y interpolation coordinate in 12.20 format.
|
||||
* @return out interpolated value.
|
||||
*/
|
||||
q15_t arm_bilinear_interp_q15(
|
||||
arm_bilinear_interp_instance_q15 * S,
|
||||
q31_t X,
|
||||
q31_t Y);
|
||||
|
||||
/**
|
||||
* @brief Q7 bilinear interpolation.
|
||||
* @param[in,out] S points to an instance of the interpolation structure.
|
||||
* @param[in] X interpolation coordinate in 12.20 format.
|
||||
* @param[in] Y interpolation coordinate in 12.20 format.
|
||||
* @return out interpolated value.
|
||||
*/
|
||||
q7_t arm_bilinear_interp_q7(
|
||||
arm_bilinear_interp_instance_q7 * S,
|
||||
q31_t X,
|
||||
q31_t Y);
|
||||
/**
|
||||
* @} end of BilinearInterpolate group
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _INTERPOLATION_FUNCTIONS_H_ */
|
|
@ -1,597 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file matrix_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _MATRIX_FUNCTIONS_H_
|
||||
#define _MATRIX_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup groupMatrix Matrix Functions
|
||||
*
|
||||
* This set of functions provides basic matrix math operations.
|
||||
* The functions operate on matrix data structures. For example,
|
||||
* the type
|
||||
* definition for the floating-point matrix structure is shown
|
||||
* below:
|
||||
* <pre>
|
||||
* typedef struct
|
||||
* {
|
||||
* uint16_t numRows; // number of rows of the matrix.
|
||||
* uint16_t numCols; // number of columns of the matrix.
|
||||
* float32_t *pData; // points to the data of the matrix.
|
||||
* } arm_matrix_instance_f32;
|
||||
* </pre>
|
||||
* There are similar definitions for Q15 and Q31 data types.
|
||||
*
|
||||
* The structure specifies the size of the matrix and then points to
|
||||
* an array of data. The array is of size <code>numRows X numCols</code>
|
||||
* and the values are arranged in row order. That is, the
|
||||
* matrix element (i, j) is stored at:
|
||||
* <pre>
|
||||
* pData[i*numCols + j]
|
||||
* </pre>
|
||||
*
|
||||
* \par Init Functions
|
||||
* There is an associated initialization function for each type of matrix
|
||||
* data structure.
|
||||
* The initialization function sets the values of the internal structure fields.
|
||||
* Refer to \ref arm_mat_init_f32(), \ref arm_mat_init_q31() and \ref arm_mat_init_q15()
|
||||
* for floating-point, Q31 and Q15 types, respectively.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional. However, if initialization function is used
|
||||
* then the instance structure cannot be placed into a const data section.
|
||||
* To place the instance structure in a const data
|
||||
* section, manually initialize the data structure. For example:
|
||||
* <pre>
|
||||
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
|
||||
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
|
||||
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
|
||||
* </pre>
|
||||
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
|
||||
* specifies the number of columns, and <code>pData</code> points to the
|
||||
* data array.
|
||||
*
|
||||
* \par Size Checking
|
||||
* By default all of the matrix functions perform size checking on the input and
|
||||
* output matrices. For example, the matrix addition function verifies that the
|
||||
* two input matrices and the output matrix all have the same number of rows and
|
||||
* columns. If the size check fails the functions return:
|
||||
* <pre>
|
||||
* ARM_MATH_SIZE_MISMATCH
|
||||
* </pre>
|
||||
* Otherwise the functions return
|
||||
* <pre>
|
||||
* ARM_MATH_SUCCESS
|
||||
* </pre>
|
||||
* There is some overhead associated with this matrix size checking.
|
||||
* The matrix size checking is enabled via the \#define
|
||||
* <pre>
|
||||
* ARM_MATH_MATRIX_CHECK
|
||||
* </pre>
|
||||
* within the library project settings. By default this macro is defined
|
||||
* and size checking is enabled. By changing the project settings and
|
||||
* undefining this macro size checking is eliminated and the functions
|
||||
* run a bit faster. With size checking disabled the functions always
|
||||
* return <code>ARM_MATH_SUCCESS</code>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point matrix structure.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows of the matrix. */
|
||||
uint16_t numCols; /**< number of columns of the matrix. */
|
||||
float32_t *pData; /**< points to the data of the matrix. */
|
||||
} arm_matrix_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point matrix structure.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows of the matrix. */
|
||||
uint16_t numCols; /**< number of columns of the matrix. */
|
||||
float64_t *pData; /**< points to the data of the matrix. */
|
||||
} arm_matrix_instance_f64;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q7 matrix structure.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows of the matrix. */
|
||||
uint16_t numCols; /**< number of columns of the matrix. */
|
||||
q7_t *pData; /**< points to the data of the matrix. */
|
||||
} arm_matrix_instance_q7;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 matrix structure.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows of the matrix. */
|
||||
uint16_t numCols; /**< number of columns of the matrix. */
|
||||
q15_t *pData; /**< points to the data of the matrix. */
|
||||
} arm_matrix_instance_q15;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 matrix structure.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numRows; /**< number of rows of the matrix. */
|
||||
uint16_t numCols; /**< number of columns of the matrix. */
|
||||
q31_t *pData; /**< points to the data of the matrix. */
|
||||
} arm_matrix_instance_q31;
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix addition.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_add_f32(
|
||||
const arm_matrix_instance_f32 * pSrcA,
|
||||
const arm_matrix_instance_f32 * pSrcB,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix addition.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_add_q15(
|
||||
const arm_matrix_instance_q15 * pSrcA,
|
||||
const arm_matrix_instance_q15 * pSrcB,
|
||||
arm_matrix_instance_q15 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix addition.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_add_q31(
|
||||
const arm_matrix_instance_q31 * pSrcA,
|
||||
const arm_matrix_instance_q31 * pSrcB,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point, complex, matrix multiplication.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_mult_f32(
|
||||
const arm_matrix_instance_f32 * pSrcA,
|
||||
const arm_matrix_instance_f32 * pSrcB,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15, complex, matrix multiplication.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_mult_q15(
|
||||
const arm_matrix_instance_q15 * pSrcA,
|
||||
const arm_matrix_instance_q15 * pSrcB,
|
||||
arm_matrix_instance_q15 * pDst,
|
||||
q15_t * pScratch);
|
||||
|
||||
/**
|
||||
* @brief Q31, complex, matrix multiplication.
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_mult_q31(
|
||||
const arm_matrix_instance_q31 * pSrcA,
|
||||
const arm_matrix_instance_q31 * pSrcB,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_trans_f32(
|
||||
const arm_matrix_instance_f32 * pSrc,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_trans_f32(
|
||||
const arm_matrix_instance_f32 * pSrc,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_trans_q15(
|
||||
const arm_matrix_instance_q15 * pSrc,
|
||||
arm_matrix_instance_q15 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 complex matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_trans_q15(
|
||||
const arm_matrix_instance_q15 * pSrc,
|
||||
arm_matrix_instance_q15 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q7 matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_trans_q7(
|
||||
const arm_matrix_instance_q7 * pSrc,
|
||||
arm_matrix_instance_q7 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_trans_q31(
|
||||
const arm_matrix_instance_q31 * pSrc,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 complex matrix transpose.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_cmplx_trans_q31(
|
||||
const arm_matrix_instance_q31 * pSrc,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix multiplication
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_f32(
|
||||
const arm_matrix_instance_f32 * pSrcA,
|
||||
const arm_matrix_instance_f32 * pSrcB,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix and vector multiplication
|
||||
* @param[in] pSrcMat points to the input matrix structure
|
||||
* @param[in] pVec points to vector
|
||||
* @param[out] pDst points to output vector
|
||||
*/
|
||||
void arm_mat_vec_mult_f32(
|
||||
const arm_matrix_instance_f32 *pSrcMat,
|
||||
const float32_t *pVec,
|
||||
float32_t *pDst);
|
||||
|
||||
/**
|
||||
* @brief Q7 matrix multiplication
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @param[in] pState points to the array for storing intermediate results
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_q7(
|
||||
const arm_matrix_instance_q7 * pSrcA,
|
||||
const arm_matrix_instance_q7 * pSrcB,
|
||||
arm_matrix_instance_q7 * pDst,
|
||||
q7_t * pState);
|
||||
|
||||
/**
|
||||
* @brief Q7 matrix and vector multiplication
|
||||
* @param[in] pSrcMat points to the input matrix structure
|
||||
* @param[in] pVec points to vector
|
||||
* @param[out] pDst points to output vector
|
||||
*/
|
||||
void arm_mat_vec_mult_q7(
|
||||
const arm_matrix_instance_q7 *pSrcMat,
|
||||
const q7_t *pVec,
|
||||
q7_t *pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix multiplication
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @param[in] pState points to the array for storing intermediate results
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_q15(
|
||||
const arm_matrix_instance_q15 * pSrcA,
|
||||
const arm_matrix_instance_q15 * pSrcB,
|
||||
arm_matrix_instance_q15 * pDst,
|
||||
q15_t * pState);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix and vector multiplication
|
||||
* @param[in] pSrcMat points to the input matrix structure
|
||||
* @param[in] pVec points to vector
|
||||
* @param[out] pDst points to output vector
|
||||
*/
|
||||
void arm_mat_vec_mult_q15(
|
||||
const arm_matrix_instance_q15 *pSrcMat,
|
||||
const q15_t *pVec,
|
||||
q15_t *pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @param[in] pState points to the array for storing intermediate results
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_fast_q15(
|
||||
const arm_matrix_instance_q15 * pSrcA,
|
||||
const arm_matrix_instance_q15 * pSrcB,
|
||||
arm_matrix_instance_q15 * pDst,
|
||||
q15_t * pState);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix multiplication
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_q31(
|
||||
const arm_matrix_instance_q31 * pSrcA,
|
||||
const arm_matrix_instance_q31 * pSrcB,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix and vector multiplication
|
||||
* @param[in] pSrcMat points to the input matrix structure
|
||||
* @param[in] pVec points to vector
|
||||
* @param[out] pDst points to output vector
|
||||
*/
|
||||
void arm_mat_vec_mult_q31(
|
||||
const arm_matrix_instance_q31 *pSrcMat,
|
||||
const q31_t *pVec,
|
||||
q31_t *pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_mult_fast_q31(
|
||||
const arm_matrix_instance_q31 * pSrcA,
|
||||
const arm_matrix_instance_q31 * pSrcB,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix subtraction
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_sub_f32(
|
||||
const arm_matrix_instance_f32 * pSrcA,
|
||||
const arm_matrix_instance_f32 * pSrcB,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix subtraction
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_sub_q15(
|
||||
const arm_matrix_instance_q15 * pSrcA,
|
||||
const arm_matrix_instance_q15 * pSrcB,
|
||||
arm_matrix_instance_q15 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix subtraction
|
||||
* @param[in] pSrcA points to the first input matrix structure
|
||||
* @param[in] pSrcB points to the second input matrix structure
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_sub_q31(
|
||||
const arm_matrix_instance_q31 * pSrcA,
|
||||
const arm_matrix_instance_q31 * pSrcB,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix scaling.
|
||||
* @param[in] pSrc points to the input matrix
|
||||
* @param[in] scale scale factor
|
||||
* @param[out] pDst points to the output matrix
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_scale_f32(
|
||||
const arm_matrix_instance_f32 * pSrc,
|
||||
float32_t scale,
|
||||
arm_matrix_instance_f32 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix scaling.
|
||||
* @param[in] pSrc points to input matrix
|
||||
* @param[in] scaleFract fractional portion of the scale factor
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] pDst points to output matrix
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_scale_q15(
|
||||
const arm_matrix_instance_q15 * pSrc,
|
||||
q15_t scaleFract,
|
||||
int32_t shift,
|
||||
arm_matrix_instance_q15 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix scaling.
|
||||
* @param[in] pSrc points to input matrix
|
||||
* @param[in] scaleFract fractional portion of the scale factor
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] pDst points to output matrix structure
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*/
|
||||
arm_status arm_mat_scale_q31(
|
||||
const arm_matrix_instance_q31 * pSrc,
|
||||
q31_t scaleFract,
|
||||
int32_t shift,
|
||||
arm_matrix_instance_q31 * pDst);
|
||||
|
||||
/**
|
||||
* @brief Q31 matrix initialization.
|
||||
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
||||
* @param[in] nRows number of rows in the matrix.
|
||||
* @param[in] nColumns number of columns in the matrix.
|
||||
* @param[in] pData points to the matrix data array.
|
||||
*/
|
||||
void arm_mat_init_q31(
|
||||
arm_matrix_instance_q31 * S,
|
||||
uint16_t nRows,
|
||||
uint16_t nColumns,
|
||||
q31_t * pData);
|
||||
|
||||
/**
|
||||
* @brief Q15 matrix initialization.
|
||||
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
||||
* @param[in] nRows number of rows in the matrix.
|
||||
* @param[in] nColumns number of columns in the matrix.
|
||||
* @param[in] pData points to the matrix data array.
|
||||
*/
|
||||
void arm_mat_init_q15(
|
||||
arm_matrix_instance_q15 * S,
|
||||
uint16_t nRows,
|
||||
uint16_t nColumns,
|
||||
q15_t * pData);
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix initialization.
|
||||
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
||||
* @param[in] nRows number of rows in the matrix.
|
||||
* @param[in] nColumns number of columns in the matrix.
|
||||
* @param[in] pData points to the matrix data array.
|
||||
*/
|
||||
void arm_mat_init_f32(
|
||||
arm_matrix_instance_f32 * S,
|
||||
uint16_t nRows,
|
||||
uint16_t nColumns,
|
||||
float32_t * pData);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix inverse.
|
||||
* @param[in] src points to the instance of the input floating-point matrix structure.
|
||||
* @param[out] dst points to the instance of the output floating-point matrix structure.
|
||||
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
||||
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
||||
*/
|
||||
arm_status arm_mat_inverse_f32(
|
||||
const arm_matrix_instance_f32 * src,
|
||||
arm_matrix_instance_f32 * dst);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point matrix inverse.
|
||||
* @param[in] src points to the instance of the input floating-point matrix structure.
|
||||
* @param[out] dst points to the instance of the output floating-point matrix structure.
|
||||
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
||||
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
||||
*/
|
||||
arm_status arm_mat_inverse_f64(
|
||||
const arm_matrix_instance_f64 * src,
|
||||
arm_matrix_instance_f64 * dst);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _MATRIX_FUNCTIONS_H_ */
|
|
@ -1,576 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file none.h
|
||||
* @brief Intrinsincs when no DSP extension available
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
Definitions in this file are allowing to reuse some versions of the
|
||||
CMSIS-DSP to build on a core (M0 for instance) or a host where
|
||||
DSP extension are not available.
|
||||
|
||||
Ideally a pure C version should have been used instead.
|
||||
But those are not always available or use a restricted set
|
||||
of intrinsics.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef _NONE_H_
|
||||
#define _NONE_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Normally those kind of definitions are in a compiler file
|
||||
in Core or Core_A.
|
||||
|
||||
But for MSVC compiler it is a bit special. The goal is very specific
|
||||
to CMSIS-DSP and only to allow the use of this library from other
|
||||
systems like Python or Matlab.
|
||||
|
||||
MSVC is not going to be used to cross-compile to ARM. So, having a MSVC
|
||||
compiler file in Core or Core_A would not make sense.
|
||||
|
||||
*/
|
||||
#if defined ( _MSC_VER ) || defined(__GNUC_PYTHON__)
|
||||
__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t data)
|
||||
{
|
||||
if (data == 0U) { return 32U; }
|
||||
|
||||
uint32_t count = 0U;
|
||||
uint32_t mask = 0x80000000U;
|
||||
|
||||
while ((data & mask) == 0U)
|
||||
{
|
||||
count += 1U;
|
||||
mask = mask >> 1U;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
|
||||
{
|
||||
if ((sat >= 1U) && (sat <= 32U))
|
||||
{
|
||||
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
|
||||
const int32_t min = -1 - max ;
|
||||
if (val > max)
|
||||
{
|
||||
return max;
|
||||
}
|
||||
else if (val < min)
|
||||
{
|
||||
return min;
|
||||
}
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
|
||||
{
|
||||
if (sat <= 31U)
|
||||
{
|
||||
const uint32_t max = ((1U << sat) - 1U);
|
||||
if (val > (int32_t)max)
|
||||
{
|
||||
return max;
|
||||
}
|
||||
else if (val < 0)
|
||||
{
|
||||
return 0U;
|
||||
}
|
||||
}
|
||||
return (uint32_t)val;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Rotate Right in unsigned value (32 bit)
|
||||
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
||||
\param [in] op1 Value to rotate
|
||||
\param [in] op2 Number of Bits to rotate
|
||||
\return Rotated value
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
|
||||
{
|
||||
op2 %= 32U;
|
||||
if (op2 == 0U)
|
||||
{
|
||||
return op1;
|
||||
}
|
||||
return (op1 >> op2) | (op1 << (32U - op2));
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Clips Q63 to Q31 values.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t clip_q63_to_q31(
|
||||
q63_t x)
|
||||
{
|
||||
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
||||
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clips Q63 to Q15 values.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q15_t clip_q63_to_q15(
|
||||
q63_t x)
|
||||
{
|
||||
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
||||
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clips Q31 to Q7 values.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q7_t clip_q31_to_q7(
|
||||
q31_t x)
|
||||
{
|
||||
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
|
||||
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clips Q31 to Q15 values.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q15_t clip_q31_to_q15(
|
||||
q31_t x)
|
||||
{
|
||||
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
|
||||
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
|
||||
*/
|
||||
__STATIC_FORCEINLINE q63_t mult32x64(
|
||||
q63_t x,
|
||||
q31_t y)
|
||||
{
|
||||
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
|
||||
(((q63_t) (x >> 32) * y) ) );
|
||||
}
|
||||
|
||||
/* SMMLAR */
|
||||
#define multAcc_32x32_keep32_R(a, x, y) \
|
||||
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
||||
|
||||
/* SMMLSR */
|
||||
#define multSub_32x32_keep32_R(a, x, y) \
|
||||
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
||||
|
||||
/* SMMULR */
|
||||
#define mult_32x32_keep32_R(a, x, y) \
|
||||
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
|
||||
|
||||
/* SMMLA */
|
||||
#define multAcc_32x32_keep32(a, x, y) \
|
||||
a += (q31_t) (((q63_t) x * y) >> 32)
|
||||
|
||||
/* SMMLS */
|
||||
#define multSub_32x32_keep32(a, x, y) \
|
||||
a -= (q31_t) (((q63_t) x * y) >> 32)
|
||||
|
||||
/* SMMUL */
|
||||
#define mult_32x32_keep32(a, x, y) \
|
||||
a = (q31_t) (((q63_t) x * y ) >> 32)
|
||||
|
||||
#ifndef ARM_MATH_DSP
|
||||
/**
|
||||
* @brief definition to pack two 16 bit values.
|
||||
*/
|
||||
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
|
||||
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
|
||||
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
|
||||
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief definition to pack four 8 bit values.
|
||||
*/
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
|
||||
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
|
||||
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
|
||||
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
|
||||
#else
|
||||
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
|
||||
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
|
||||
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
|
||||
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined intrinsic functions
|
||||
*/
|
||||
#if !defined (ARM_MATH_DSP)
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QADD8
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QADD8(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s, t, u;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
|
||||
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QSUB8
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QSUB8(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s, t, u;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
||||
|
||||
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QADD16
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QADD16(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
|
||||
q31_t r = 0, s = 0;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SHADD16
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SHADD16(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QSUB16
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QSUB16(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SHSUB16
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SHSUB16(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QASX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QASX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SHASX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SHASX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QSAX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __QSAX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SHSAX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SHSAX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
q31_t r, s;
|
||||
|
||||
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
||||
|
||||
return ((uint32_t)((s << 16) | (r )));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMUSDX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMUSDX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
||||
}
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMUADX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMUADX(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QADD
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32_t __QADD(
|
||||
int32_t x,
|
||||
int32_t y)
|
||||
{
|
||||
return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined QSUB
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32_t __QSUB(
|
||||
int32_t x,
|
||||
int32_t y)
|
||||
{
|
||||
return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMLAD
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMLAD(
|
||||
uint32_t x,
|
||||
uint32_t y,
|
||||
uint32_t sum)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
||||
( ((q31_t)sum ) ) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMLADX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMLADX(
|
||||
uint32_t x,
|
||||
uint32_t y,
|
||||
uint32_t sum)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
( ((q31_t)sum ) ) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMLSDX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMLSDX(
|
||||
uint32_t x,
|
||||
uint32_t y,
|
||||
uint32_t sum)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
( ((q31_t)sum ) ) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMLALD
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint64_t __SMLALD(
|
||||
uint32_t x,
|
||||
uint32_t y,
|
||||
uint64_t sum)
|
||||
{
|
||||
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
|
||||
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
||||
( ((q63_t)sum ) ) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMLALDX
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint64_t __SMLALDX(
|
||||
uint32_t x,
|
||||
uint32_t y,
|
||||
uint64_t sum)
|
||||
{
|
||||
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
|
||||
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
( ((q63_t)sum ) ) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMUAD
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMUAD(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMUSD
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SMUSD(
|
||||
uint32_t x,
|
||||
uint32_t y)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
|
||||
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @brief C custom defined SXTB16
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t __SXTB16(
|
||||
uint32_t x)
|
||||
{
|
||||
return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
|
||||
((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
|
||||
}
|
||||
|
||||
/*
|
||||
* @brief C custom defined SMMLA
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32_t __SMMLA(
|
||||
int32_t x,
|
||||
int32_t y,
|
||||
int32_t sum)
|
||||
{
|
||||
return (sum + (int32_t) (((int64_t) x * y) >> 32));
|
||||
}
|
||||
|
||||
#endif /* !defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
|
|
@ -1,483 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file statistics_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _STATISTICS_FUNCTIONS_H_
|
||||
#define _STATISTICS_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#include "dsp/basic_math_functions.h"
|
||||
#include "dsp/fast_math_functions.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupStats Statistics Functions
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Computation of the LogSumExp
|
||||
*
|
||||
* In probabilistic computations, the dynamic of the probability values can be very
|
||||
* wide because they come from gaussian functions.
|
||||
* To avoid underflow and overflow issues, the values are represented by their log.
|
||||
* In this representation, multiplying the original exp values is easy : their logs are added.
|
||||
* But adding the original exp values is requiring some special handling and it is the
|
||||
* goal of the LogSumExp function.
|
||||
*
|
||||
* If the values are x1...xn, the function is computing:
|
||||
*
|
||||
* ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that
|
||||
* rounding issues are minimised.
|
||||
*
|
||||
* The max xm of the values is extracted and the function is computing:
|
||||
* xm + ln(exp(x1 - xm) + ... + exp(xn - xm))
|
||||
*
|
||||
* @param[in] *in Pointer to an array of input values.
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return LogSumExp
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Dot product with log arithmetic
|
||||
*
|
||||
* Vectors are containing the log of the samples
|
||||
*
|
||||
* @param[in] pSrcA points to the first input vector
|
||||
* @param[in] pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[in] pTmpBuffer temporary buffer of length blockSize
|
||||
* @return The log of the dot product .
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA,
|
||||
const float32_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
float32_t *pTmpBuffer);
|
||||
|
||||
/**
|
||||
* @brief Entropy
|
||||
*
|
||||
* @param[in] pSrcA Array of input values.
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return Entropy -Sum(p ln p)
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Entropy
|
||||
*
|
||||
* @param[in] pSrcA Array of input values.
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return Entropy -Sum(p ln p)
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
float64_t arm_entropy_f64(const float64_t * pSrcA, uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Kullback-Leibler
|
||||
*
|
||||
* @param[in] pSrcA Pointer to an array of input values for probability distribution A.
|
||||
* @param[in] pSrcB Pointer to an array of input values for probability distribution B.
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return Kullback-Leibler Divergence D(A || B)
|
||||
*
|
||||
*/
|
||||
float32_t arm_kullback_leibler_f32(const float32_t * pSrcA
|
||||
,const float32_t * pSrcB
|
||||
,uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Kullback-Leibler
|
||||
*
|
||||
* @param[in] pSrcA Pointer to an array of input values for probability distribution A.
|
||||
* @param[in] pSrcB Pointer to an array of input values for probability distribution B.
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return Kullback-Leibler Divergence D(A || B)
|
||||
*
|
||||
*/
|
||||
float64_t arm_kullback_leibler_f64(const float64_t * pSrcA,
|
||||
const float64_t * pSrcB,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sum of the squares of the elements of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_power_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q63_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sum of the squares of the elements of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_power_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sum of the squares of the elements of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_power_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q63_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sum of the squares of the elements of a Q7 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_power_q7(
|
||||
const q7_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Mean value of a Q7 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_mean_q7(
|
||||
const q7_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q7_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Mean value of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_mean_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Mean value of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_mean_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Mean value of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_mean_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Variance of the elements of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_var_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Variance of the elements of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_var_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Variance of the elements of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_var_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Root Mean Square of the elements of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_rms_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Root Mean Square of the elements of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_rms_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Root Mean Square of the elements of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_rms_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Standard deviation of the elements of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_std_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Standard deviation of the elements of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_std_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Standard deviation of the elements of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output value.
|
||||
*/
|
||||
void arm_std_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Minimum value of a Q7 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] result is output pointer
|
||||
* @param[in] index is the array index of the minimum value in the input buffer.
|
||||
*/
|
||||
void arm_min_q7(
|
||||
const q7_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q7_t * result,
|
||||
uint32_t * index);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Minimum value of a Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output pointer
|
||||
* @param[in] pIndex is the array index of the minimum value in the input buffer.
|
||||
*/
|
||||
void arm_min_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Minimum value of a Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output pointer
|
||||
* @param[out] pIndex is the array index of the minimum value in the input buffer.
|
||||
*/
|
||||
void arm_min_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Minimum value of a floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
* @param[out] pResult is output pointer
|
||||
* @param[out] pIndex is the array index of the minimum value in the input buffer.
|
||||
*/
|
||||
void arm_min_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Maximum value of a Q7 vector.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @param[out] pResult maximum value returned here
|
||||
* @param[out] pIndex index of maximum value returned here
|
||||
*/
|
||||
void arm_max_q7(
|
||||
const q7_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q7_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Maximum value of a Q15 vector.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @param[out] pResult maximum value returned here
|
||||
* @param[out] pIndex index of maximum value returned here
|
||||
*/
|
||||
void arm_max_q15(
|
||||
const q15_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q15_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Maximum value of a Q31 vector.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @param[out] pResult maximum value returned here
|
||||
* @param[out] pIndex index of maximum value returned here
|
||||
*/
|
||||
void arm_max_q31(
|
||||
const q31_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
q31_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Maximum value of a floating-point vector.
|
||||
* @param[in] pSrc points to the input buffer
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @param[out] pResult maximum value returned here
|
||||
* @param[out] pIndex index of maximum value returned here
|
||||
*/
|
||||
void arm_max_f32(
|
||||
const float32_t * pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t * pResult,
|
||||
uint32_t * pIndex);
|
||||
|
||||
/**
|
||||
@brief Maximum value of a floating-point vector.
|
||||
@param[in] pSrc points to the input vector
|
||||
@param[in] blockSize number of samples in input vector
|
||||
@param[out] pResult maximum value returned here
|
||||
@return none
|
||||
*/
|
||||
void arm_max_no_idx_f32(
|
||||
const float32_t *pSrc,
|
||||
uint32_t blockSize,
|
||||
float32_t *pResult);
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _STATISTICS_FUNCTIONS_H_ */
|
|
@ -1,426 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file support_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _SUPPORT_FUNCTIONS_H_
|
||||
#define _SUPPORT_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup groupSupport Support Functions
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the floating-point vector to Q31 vector.
|
||||
* @param[in] pSrc points to the floating-point input vector
|
||||
* @param[out] pDst points to the Q31 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*/
|
||||
void arm_float_to_q31(
|
||||
const float32_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the floating-point vector to Q15 vector.
|
||||
* @param[in] pSrc points to the floating-point input vector
|
||||
* @param[out] pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*/
|
||||
void arm_float_to_q15(
|
||||
const float32_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the floating-point vector to Q7 vector.
|
||||
* @param[in] pSrc points to the floating-point input vector
|
||||
* @param[out] pDst points to the Q7 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*/
|
||||
void arm_float_to_q7(
|
||||
const float32_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q31 vector to floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q31_to_float(
|
||||
const q31_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q31 vector to Q15 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q31_to_q15(
|
||||
const q31_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q31 vector to Q7 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q31_to_q7(
|
||||
const q31_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q15 vector to floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q15_to_float(
|
||||
const q15_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q15 vector to Q31 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q15_to_q31(
|
||||
const q15_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q15 vector to Q7 vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q15_to_q7(
|
||||
const q15_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to floating-point vector.
|
||||
* @param[in] pSrc is input pointer
|
||||
* @param[out] pDst is output pointer
|
||||
* @param[in] blockSize is the number of samples to process
|
||||
*/
|
||||
void arm_q7_to_float(
|
||||
const q7_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to Q31 vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_q7_to_q31(
|
||||
const q7_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to Q15 vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_q7_to_q15(
|
||||
const q7_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying sorting algorithm
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_SORT_BITONIC = 0,
|
||||
/**< Bitonic sort */
|
||||
ARM_SORT_BUBBLE = 1,
|
||||
/**< Bubble sort */
|
||||
ARM_SORT_HEAP = 2,
|
||||
/**< Heap sort */
|
||||
ARM_SORT_INSERTION = 3,
|
||||
/**< Insertion sort */
|
||||
ARM_SORT_QUICK = 4,
|
||||
/**< Quick sort */
|
||||
ARM_SORT_SELECTION = 5
|
||||
/**< Selection sort */
|
||||
} arm_sort_alg;
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying sorting algorithm
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_SORT_DESCENDING = 0,
|
||||
/**< Descending order (9 to 0) */
|
||||
ARM_SORT_ASCENDING = 1
|
||||
/**< Ascending order (0 to 9) */
|
||||
} arm_sort_dir;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the sorting algorithms.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
arm_sort_alg alg; /**< Sorting algorithm selected */
|
||||
arm_sort_dir dir; /**< Sorting order (direction) */
|
||||
} arm_sort_instance_f32;
|
||||
|
||||
/**
|
||||
* @param[in] S points to an instance of the sorting structure.
|
||||
* @param[in] pSrc points to the block of input data.
|
||||
* @param[out] pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process.
|
||||
*/
|
||||
void arm_sort_f32(
|
||||
const arm_sort_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @param[in,out] S points to an instance of the sorting structure.
|
||||
* @param[in] alg Selected algorithm.
|
||||
* @param[in] dir Sorting order.
|
||||
*/
|
||||
void arm_sort_init_f32(
|
||||
arm_sort_instance_f32 * S,
|
||||
arm_sort_alg alg,
|
||||
arm_sort_dir dir);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the sorting algorithms.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
arm_sort_dir dir; /**< Sorting order (direction) */
|
||||
float32_t * buffer; /**< Working buffer */
|
||||
} arm_merge_sort_instance_f32;
|
||||
|
||||
/**
|
||||
* @param[in] S points to an instance of the sorting structure.
|
||||
* @param[in,out] pSrc points to the block of input data.
|
||||
* @param[out] pDst points to the block of output data
|
||||
* @param[in] blockSize number of samples to process.
|
||||
*/
|
||||
void arm_merge_sort_f32(
|
||||
const arm_merge_sort_instance_f32 * S,
|
||||
float32_t *pSrc,
|
||||
float32_t *pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @param[in,out] S points to an instance of the sorting structure.
|
||||
* @param[in] dir Sorting order.
|
||||
* @param[in] buffer Working buffer.
|
||||
*/
|
||||
void arm_merge_sort_init_f32(
|
||||
arm_merge_sort_instance_f32 * S,
|
||||
arm_sort_dir dir,
|
||||
float32_t * buffer);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Copies the elements of a floating-point vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_copy_f32(
|
||||
const float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Copies the elements of a Q7 vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_copy_q7(
|
||||
const q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Copies the elements of a Q15 vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_copy_q15(
|
||||
const q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Copies the elements of a Q31 vector.
|
||||
* @param[in] pSrc input pointer
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_copy_q31(
|
||||
const q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fills a constant value into a floating-point vector.
|
||||
* @param[in] value input value to be filled
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_fill_f32(
|
||||
float32_t value,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fills a constant value into a Q7 vector.
|
||||
* @param[in] value input value to be filled
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_fill_q7(
|
||||
q7_t value,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fills a constant value into a Q15 vector.
|
||||
* @param[in] value input value to be filled
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_fill_q15(
|
||||
q15_t value,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fills a constant value into a Q31 vector.
|
||||
* @param[in] value input value to be filled
|
||||
* @param[out] pDst output pointer
|
||||
* @param[in] blockSize number of samples to process
|
||||
*/
|
||||
void arm_fill_q31(
|
||||
q31_t value,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Weighted sum
|
||||
*
|
||||
*
|
||||
* @param[in] *in Array of input values.
|
||||
* @param[in] *weigths Weights
|
||||
* @param[in] blockSize Number of samples in the input array.
|
||||
* @return Weighted sum
|
||||
*
|
||||
*/
|
||||
float32_t arm_weighted_sum_f32(const float32_t *in
|
||||
, const float32_t *weigths
|
||||
, uint32_t blockSize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Barycenter
|
||||
*
|
||||
*
|
||||
* @param[in] in List of vectors
|
||||
* @param[in] weights Weights of the vectors
|
||||
* @param[out] out Barycenter
|
||||
* @param[in] nbVectors Number of vectors
|
||||
* @param[in] vecDim Dimension of space (vector dimension)
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void arm_barycenter_f32(const float32_t *in
|
||||
, const float32_t *weights
|
||||
, float32_t *out
|
||||
, uint32_t nbVectors
|
||||
, uint32_t vecDim);
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _SUPPORT_FUNCTIONS_H_ */
|
|
@ -1,42 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file svm_defines.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _SVM_DEFINES_H_
|
||||
#define _SVM_DEFINES_H_
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying SVM Kernel
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_ML_KERNEL_LINEAR = 0,
|
||||
/**< Linear kernel */
|
||||
ARM_ML_KERNEL_POLYNOMIAL = 1,
|
||||
/**< Polynomial kernel */
|
||||
ARM_ML_KERNEL_RBF = 2,
|
||||
/**< Radial Basis Function kernel */
|
||||
ARM_ML_KERNEL_SIGMOID = 3
|
||||
/**< Sigmoid kernel */
|
||||
} arm_ml_kernel_type;
|
||||
|
||||
#endif
|
|
@ -1,298 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file svm_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _SVM_FUNCTIONS_H_
|
||||
#define _SVM_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
#include "dsp/svm_defines.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define STEP(x) (x) <= 0 ? 0 : 1
|
||||
|
||||
/**
|
||||
* @defgroup groupSVM SVM Functions
|
||||
* This set of functions is implementing SVM classification on 2 classes.
|
||||
* The training must be done from scikit-learn. The parameters can be easily
|
||||
* generated from the scikit-learn object. Some examples are given in
|
||||
* DSP/Testing/PatternGeneration/SVM.py
|
||||
*
|
||||
* If more than 2 classes are needed, the functions in this folder
|
||||
* will have to be used, as building blocks, to do multi-class classification.
|
||||
*
|
||||
* No multi-class classification is provided in this SVM folder.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Integer exponentiation
|
||||
* @param[in] x value
|
||||
* @param[in] nb integer exponent >= 1
|
||||
* @return x^nb
|
||||
*
|
||||
*/
|
||||
__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb)
|
||||
{
|
||||
float32_t r = x;
|
||||
nb --;
|
||||
while(nb > 0)
|
||||
{
|
||||
r = r * x;
|
||||
nb--;
|
||||
}
|
||||
return(r);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for linear SVM prediction function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||||
uint32_t vectorDimension; /**< Dimension of vector space */
|
||||
float32_t intercept; /**< Intercept */
|
||||
const float32_t *dualCoefficients; /**< Dual coefficients */
|
||||
const float32_t *supportVectors; /**< Support vectors */
|
||||
const int32_t *classes; /**< The two SVM classes */
|
||||
} arm_svm_linear_instance_f32;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for polynomial SVM prediction function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||||
uint32_t vectorDimension; /**< Dimension of vector space */
|
||||
float32_t intercept; /**< Intercept */
|
||||
const float32_t *dualCoefficients; /**< Dual coefficients */
|
||||
const float32_t *supportVectors; /**< Support vectors */
|
||||
const int32_t *classes; /**< The two SVM classes */
|
||||
int32_t degree; /**< Polynomial degree */
|
||||
float32_t coef0; /**< Polynomial constant */
|
||||
float32_t gamma; /**< Gamma factor */
|
||||
} arm_svm_polynomial_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for rbf SVM prediction function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||||
uint32_t vectorDimension; /**< Dimension of vector space */
|
||||
float32_t intercept; /**< Intercept */
|
||||
const float32_t *dualCoefficients; /**< Dual coefficients */
|
||||
const float32_t *supportVectors; /**< Support vectors */
|
||||
const int32_t *classes; /**< The two SVM classes */
|
||||
float32_t gamma; /**< Gamma factor */
|
||||
} arm_svm_rbf_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief Instance structure for sigmoid SVM prediction function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||||
uint32_t vectorDimension; /**< Dimension of vector space */
|
||||
float32_t intercept; /**< Intercept */
|
||||
const float32_t *dualCoefficients; /**< Dual coefficients */
|
||||
const float32_t *supportVectors; /**< Support vectors */
|
||||
const int32_t *classes; /**< The two SVM classes */
|
||||
float32_t coef0; /**< Independant constant */
|
||||
float32_t gamma; /**< Gamma factor */
|
||||
} arm_svm_sigmoid_instance_f32;
|
||||
|
||||
/**
|
||||
* @brief SVM linear instance init function
|
||||
* @param[in] S Parameters for SVM functions
|
||||
* @param[in] nbOfSupportVectors Number of support vectors
|
||||
* @param[in] vectorDimension Dimension of vector space
|
||||
* @param[in] intercept Intercept
|
||||
* @param[in] dualCoefficients Array of dual coefficients
|
||||
* @param[in] supportVectors Array of support vectors
|
||||
* @param[in] classes Array of 2 classes ID
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
|
||||
uint32_t nbOfSupportVectors,
|
||||
uint32_t vectorDimension,
|
||||
float32_t intercept,
|
||||
const float32_t *dualCoefficients,
|
||||
const float32_t *supportVectors,
|
||||
const int32_t *classes);
|
||||
|
||||
/**
|
||||
* @brief SVM linear prediction
|
||||
* @param[in] S Pointer to an instance of the linear SVM structure.
|
||||
* @param[in] in Pointer to input vector
|
||||
* @param[out] pResult Decision value
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
|
||||
const float32_t * in,
|
||||
int32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief SVM polynomial instance init function
|
||||
* @param[in] S points to an instance of the polynomial SVM structure.
|
||||
* @param[in] nbOfSupportVectors Number of support vectors
|
||||
* @param[in] vectorDimension Dimension of vector space
|
||||
* @param[in] intercept Intercept
|
||||
* @param[in] dualCoefficients Array of dual coefficients
|
||||
* @param[in] supportVectors Array of support vectors
|
||||
* @param[in] classes Array of 2 classes ID
|
||||
* @param[in] degree Polynomial degree
|
||||
* @param[in] coef0 coeff0 (scikit-learn terminology)
|
||||
* @param[in] gamma gamma (scikit-learn terminology)
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
|
||||
uint32_t nbOfSupportVectors,
|
||||
uint32_t vectorDimension,
|
||||
float32_t intercept,
|
||||
const float32_t *dualCoefficients,
|
||||
const float32_t *supportVectors,
|
||||
const int32_t *classes,
|
||||
int32_t degree,
|
||||
float32_t coef0,
|
||||
float32_t gamma
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief SVM polynomial prediction
|
||||
* @param[in] S Pointer to an instance of the polynomial SVM structure.
|
||||
* @param[in] in Pointer to input vector
|
||||
* @param[out] pResult Decision value
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
|
||||
const float32_t * in,
|
||||
int32_t * pResult);
|
||||
|
||||
|
||||
/**
|
||||
* @brief SVM radial basis function instance init function
|
||||
* @param[in] S points to an instance of the polynomial SVM structure.
|
||||
* @param[in] nbOfSupportVectors Number of support vectors
|
||||
* @param[in] vectorDimension Dimension of vector space
|
||||
* @param[in] intercept Intercept
|
||||
* @param[in] dualCoefficients Array of dual coefficients
|
||||
* @param[in] supportVectors Array of support vectors
|
||||
* @param[in] classes Array of 2 classes ID
|
||||
* @param[in] gamma gamma (scikit-learn terminology)
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
|
||||
uint32_t nbOfSupportVectors,
|
||||
uint32_t vectorDimension,
|
||||
float32_t intercept,
|
||||
const float32_t *dualCoefficients,
|
||||
const float32_t *supportVectors,
|
||||
const int32_t *classes,
|
||||
float32_t gamma
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief SVM rbf prediction
|
||||
* @param[in] S Pointer to an instance of the rbf SVM structure.
|
||||
* @param[in] in Pointer to input vector
|
||||
* @param[out] pResult decision value
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
|
||||
const float32_t * in,
|
||||
int32_t * pResult);
|
||||
|
||||
/**
|
||||
* @brief SVM sigmoid instance init function
|
||||
* @param[in] S points to an instance of the rbf SVM structure.
|
||||
* @param[in] nbOfSupportVectors Number of support vectors
|
||||
* @param[in] vectorDimension Dimension of vector space
|
||||
* @param[in] intercept Intercept
|
||||
* @param[in] dualCoefficients Array of dual coefficients
|
||||
* @param[in] supportVectors Array of support vectors
|
||||
* @param[in] classes Array of 2 classes ID
|
||||
* @param[in] coef0 coeff0 (scikit-learn terminology)
|
||||
* @param[in] gamma gamma (scikit-learn terminology)
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
|
||||
uint32_t nbOfSupportVectors,
|
||||
uint32_t vectorDimension,
|
||||
float32_t intercept,
|
||||
const float32_t *dualCoefficients,
|
||||
const float32_t *supportVectors,
|
||||
const int32_t *classes,
|
||||
float32_t coef0,
|
||||
float32_t gamma
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief SVM sigmoid prediction
|
||||
* @param[in] S Pointer to an instance of the rbf SVM structure.
|
||||
* @param[in] in Pointer to input vector
|
||||
* @param[out] pResult Decision value
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S,
|
||||
const float32_t * in,
|
||||
int32_t * pResult);
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _SVM_FUNCTIONS_H_ */
|
|
@ -1,591 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file transform_functions.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _TRANSFORM_FUNCTIONS_H_
|
||||
#define _TRANSFORM_FUNCTIONS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
#include "arm_math_memory.h"
|
||||
|
||||
#include "dsp/none.h"
|
||||
#include "dsp/utils.h"
|
||||
|
||||
#include "dsp/basic_math_functions.h"
|
||||
#include "dsp/complex_math_functions.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup groupTransforms Transform Functions
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
} arm_cfft_radix2_instance_q15;
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix2_init_q15(
|
||||
arm_cfft_radix2_instance_q15 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix2_q15(
|
||||
const arm_cfft_radix2_instance_q15 * S,
|
||||
q15_t * pSrc);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
} arm_cfft_radix4_instance_q15;
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix4_init_q15(
|
||||
arm_cfft_radix4_instance_q15 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix4_q15(
|
||||
const arm_cfft_radix4_instance_q15 * S,
|
||||
q15_t * pSrc);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
} arm_cfft_radix2_instance_q31;
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix2_init_q31(
|
||||
arm_cfft_radix2_instance_q31 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix2_q31(
|
||||
const arm_cfft_radix2_instance_q31 * S,
|
||||
q31_t * pSrc);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
} arm_cfft_radix4_instance_q31;
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix4_q31(
|
||||
const arm_cfft_radix4_instance_q31 * S,
|
||||
q31_t * pSrc);
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix4_init_q31(
|
||||
arm_cfft_radix4_instance_q31 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
||||
} arm_cfft_radix2_instance_f32;
|
||||
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix2_init_f32(
|
||||
arm_cfft_radix2_instance_f32 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix2_f32(
|
||||
const arm_cfft_radix2_instance_f32 * S,
|
||||
float32_t * pSrc);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
||||
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
||||
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
||||
} arm_cfft_radix4_instance_f32;
|
||||
|
||||
|
||||
|
||||
/* Deprecated */
|
||||
arm_status arm_cfft_radix4_init_f32(
|
||||
arm_cfft_radix4_instance_f32 * S,
|
||||
uint16_t fftLen,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/* Deprecated */
|
||||
void arm_cfft_radix4_f32(
|
||||
const arm_cfft_radix4_instance_f32 * S,
|
||||
float32_t * pSrc);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t bitRevLength; /**< bit reversal table length. */
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
|
||||
const q15_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
|
||||
const q15_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
|
||||
const q15_t *rearranged_twiddle_stride3;
|
||||
#endif
|
||||
} arm_cfft_instance_q15;
|
||||
|
||||
arm_status arm_cfft_init_q15(
|
||||
arm_cfft_instance_q15 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
void arm_cfft_q15(
|
||||
const arm_cfft_instance_q15 * S,
|
||||
q15_t * p1,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t bitRevLength; /**< bit reversal table length. */
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
|
||||
const q31_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
|
||||
const q31_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
|
||||
const q31_t *rearranged_twiddle_stride3;
|
||||
#endif
|
||||
} arm_cfft_instance_q31;
|
||||
|
||||
arm_status arm_cfft_init_q31(
|
||||
arm_cfft_instance_q31 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
void arm_cfft_q31(
|
||||
const arm_cfft_instance_q31 * S,
|
||||
q31_t * p1,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t bitRevLength; /**< bit reversal table length. */
|
||||
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
|
||||
const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
|
||||
const float32_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
|
||||
const float32_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
|
||||
const float32_t *rearranged_twiddle_stride3;
|
||||
#endif
|
||||
} arm_cfft_instance_f32;
|
||||
|
||||
|
||||
|
||||
arm_status arm_cfft_init_f32(
|
||||
arm_cfft_instance_f32 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
void arm_cfft_f32(
|
||||
const arm_cfft_instance_f32 * S,
|
||||
float32_t * p1,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Double Precision Floating-point CFFT/CIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t fftLen; /**< length of the FFT. */
|
||||
const float64_t *pTwiddle; /**< points to the Twiddle factor table. */
|
||||
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
||||
uint16_t bitRevLength; /**< bit reversal table length. */
|
||||
} arm_cfft_instance_f64;
|
||||
|
||||
arm_status arm_cfft_init_f64(
|
||||
arm_cfft_instance_f64 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
void arm_cfft_f64(
|
||||
const arm_cfft_instance_f64 * S,
|
||||
float64_t * p1,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 RFFT/RIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t fftLenReal; /**< length of the real FFT. */
|
||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
||||
const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
arm_cfft_instance_q15 cfftInst;
|
||||
#else
|
||||
const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
||||
#endif
|
||||
} arm_rfft_instance_q15;
|
||||
|
||||
arm_status arm_rfft_init_q15(
|
||||
arm_rfft_instance_q15 * S,
|
||||
uint32_t fftLenReal,
|
||||
uint32_t ifftFlagR,
|
||||
uint32_t bitReverseFlag);
|
||||
|
||||
void arm_rfft_q15(
|
||||
const arm_rfft_instance_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 RFFT/RIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t fftLenReal; /**< length of the real FFT. */
|
||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
||||
const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
arm_cfft_instance_q31 cfftInst;
|
||||
#else
|
||||
const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
||||
#endif
|
||||
} arm_rfft_instance_q31;
|
||||
|
||||
arm_status arm_rfft_init_q31(
|
||||
arm_rfft_instance_q31 * S,
|
||||
uint32_t fftLenReal,
|
||||
uint32_t ifftFlagR,
|
||||
uint32_t bitReverseFlag);
|
||||
|
||||
void arm_rfft_q31(
|
||||
const arm_rfft_instance_q31 * S,
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t fftLenReal; /**< length of the real FFT. */
|
||||
uint16_t fftLenBy2; /**< length of the complex FFT. */
|
||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
||||
const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
||||
const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
||||
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
||||
} arm_rfft_instance_f32;
|
||||
|
||||
arm_status arm_rfft_init_f32(
|
||||
arm_rfft_instance_f32 * S,
|
||||
arm_cfft_radix4_instance_f32 * S_CFFT,
|
||||
uint32_t fftLenReal,
|
||||
uint32_t ifftFlagR,
|
||||
uint32_t bitReverseFlag);
|
||||
|
||||
void arm_rfft_f32(
|
||||
const arm_rfft_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Double Precision Floating-point RFFT/RIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
arm_cfft_instance_f64 Sint; /**< Internal CFFT structure. */
|
||||
uint16_t fftLenRFFT; /**< length of the real sequence */
|
||||
const float64_t * pTwiddleRFFT; /**< Twiddle factors real stage */
|
||||
} arm_rfft_fast_instance_f64 ;
|
||||
|
||||
arm_status arm_rfft_fast_init_f64 (
|
||||
arm_rfft_fast_instance_f64 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
|
||||
void arm_rfft_fast_f64(
|
||||
arm_rfft_fast_instance_f64 * S,
|
||||
float64_t * p, float64_t * pOut,
|
||||
uint8_t ifftFlag);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
|
||||
uint16_t fftLenRFFT; /**< length of the real sequence */
|
||||
const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
|
||||
} arm_rfft_fast_instance_f32 ;
|
||||
|
||||
arm_status arm_rfft_fast_init_f32 (
|
||||
arm_rfft_fast_instance_f32 * S,
|
||||
uint16_t fftLen);
|
||||
|
||||
|
||||
void arm_rfft_fast_f32(
|
||||
const arm_rfft_fast_instance_f32 * S,
|
||||
float32_t * p, float32_t * pOut,
|
||||
uint8_t ifftFlag);
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t N; /**< length of the DCT4. */
|
||||
uint16_t Nby2; /**< half of the length of the DCT4. */
|
||||
float32_t normalize; /**< normalizing factor. */
|
||||
const float32_t *pTwiddle; /**< points to the twiddle factor table. */
|
||||
const float32_t *pCosFactor; /**< points to the cosFactor table. */
|
||||
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
|
||||
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
||||
} arm_dct4_instance_f32;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point DCT4/IDCT4.
|
||||
* @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
|
||||
* @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
|
||||
* @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
|
||||
* @param[in] N length of the DCT4.
|
||||
* @param[in] Nby2 half of the length of the DCT4.
|
||||
* @param[in] normalize normalizing factor.
|
||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
|
||||
*/
|
||||
arm_status arm_dct4_init_f32(
|
||||
arm_dct4_instance_f32 * S,
|
||||
arm_rfft_instance_f32 * S_RFFT,
|
||||
arm_cfft_radix4_instance_f32 * S_CFFT,
|
||||
uint16_t N,
|
||||
uint16_t Nby2,
|
||||
float32_t normalize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Processing function for the floating-point DCT4/IDCT4.
|
||||
* @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
|
||||
* @param[in] pState points to state buffer.
|
||||
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
||||
*/
|
||||
void arm_dct4_f32(
|
||||
const arm_dct4_instance_f32 * S,
|
||||
float32_t * pState,
|
||||
float32_t * pInlineBuffer);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t N; /**< length of the DCT4. */
|
||||
uint16_t Nby2; /**< half of the length of the DCT4. */
|
||||
q31_t normalize; /**< normalizing factor. */
|
||||
const q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
||||
const q31_t *pCosFactor; /**< points to the cosFactor table. */
|
||||
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
|
||||
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
||||
} arm_dct4_instance_q31;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the Q31 DCT4/IDCT4.
|
||||
* @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
|
||||
* @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
|
||||
* @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
|
||||
* @param[in] N length of the DCT4.
|
||||
* @param[in] Nby2 half of the length of the DCT4.
|
||||
* @param[in] normalize normalizing factor.
|
||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
||||
*/
|
||||
arm_status arm_dct4_init_q31(
|
||||
arm_dct4_instance_q31 * S,
|
||||
arm_rfft_instance_q31 * S_RFFT,
|
||||
arm_cfft_radix4_instance_q31 * S_CFFT,
|
||||
uint16_t N,
|
||||
uint16_t Nby2,
|
||||
q31_t normalize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Processing function for the Q31 DCT4/IDCT4.
|
||||
* @param[in] S points to an instance of the Q31 DCT4 structure.
|
||||
* @param[in] pState points to state buffer.
|
||||
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
||||
*/
|
||||
void arm_dct4_q31(
|
||||
const arm_dct4_instance_q31 * S,
|
||||
q31_t * pState,
|
||||
q31_t * pInlineBuffer);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint16_t N; /**< length of the DCT4. */
|
||||
uint16_t Nby2; /**< half of the length of the DCT4. */
|
||||
q15_t normalize; /**< normalizing factor. */
|
||||
const q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
||||
const q15_t *pCosFactor; /**< points to the cosFactor table. */
|
||||
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
|
||||
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
||||
} arm_dct4_instance_q15;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the Q15 DCT4/IDCT4.
|
||||
* @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
|
||||
* @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
|
||||
* @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
|
||||
* @param[in] N length of the DCT4.
|
||||
* @param[in] Nby2 half of the length of the DCT4.
|
||||
* @param[in] normalize normalizing factor.
|
||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
||||
*/
|
||||
arm_status arm_dct4_init_q15(
|
||||
arm_dct4_instance_q15 * S,
|
||||
arm_rfft_instance_q15 * S_RFFT,
|
||||
arm_cfft_radix4_instance_q15 * S_CFFT,
|
||||
uint16_t N,
|
||||
uint16_t Nby2,
|
||||
q15_t normalize);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Processing function for the Q15 DCT4/IDCT4.
|
||||
* @param[in] S points to an instance of the Q15 DCT4 structure.
|
||||
* @param[in] pState points to state buffer.
|
||||
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
||||
*/
|
||||
void arm_dct4_q15(
|
||||
const arm_dct4_instance_q15 * S,
|
||||
q15_t * pState,
|
||||
q15_t * pInlineBuffer);
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
|
|
@ -1,239 +0,0 @@
|
|||
/******************************************************************************
|
||||
* @file arm_math_utils.h
|
||||
* @brief Public header file for CMSIS DSP Library
|
||||
* @version V1.9.0
|
||||
* @date 20. July 2020
|
||||
******************************************************************************/
|
||||
/*
|
||||
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_MATH_UTILS_H_
|
||||
|
||||
#define _ARM_MATH_UTILS_H_
|
||||
|
||||
#include "arm_math_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Macros required for reciprocal calculation in Normalized LMS
|
||||
*/
|
||||
|
||||
#define INDEX_MASK 0x0000003F
|
||||
|
||||
|
||||
#define SQ(x) ((x) * (x))
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t arm_recip_q31(
|
||||
q31_t in,
|
||||
q31_t * dst,
|
||||
const q31_t * pRecipTable)
|
||||
{
|
||||
q31_t out;
|
||||
uint32_t tempVal;
|
||||
uint32_t index, i;
|
||||
uint32_t signBits;
|
||||
|
||||
if (in > 0)
|
||||
{
|
||||
signBits = ((uint32_t) (__CLZ( in) - 1));
|
||||
}
|
||||
else
|
||||
{
|
||||
signBits = ((uint32_t) (__CLZ(-in) - 1));
|
||||
}
|
||||
|
||||
/* Convert input sample to 1.31 format */
|
||||
in = (in << signBits);
|
||||
|
||||
/* calculation of index for initial approximated Val */
|
||||
index = (uint32_t)(in >> 24);
|
||||
index = (index & INDEX_MASK);
|
||||
|
||||
/* 1.31 with exp 1 */
|
||||
out = pRecipTable[index];
|
||||
|
||||
/* calculation of reciprocal value */
|
||||
/* running approximation for two iterations */
|
||||
for (i = 0U; i < 2U; i++)
|
||||
{
|
||||
tempVal = (uint32_t) (((q63_t) in * out) >> 31);
|
||||
tempVal = 0x7FFFFFFFu - tempVal;
|
||||
/* 1.31 with exp 1 */
|
||||
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
|
||||
out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
|
||||
}
|
||||
|
||||
/* write output */
|
||||
*dst = out;
|
||||
|
||||
/* return num of signbits of out = 1/in value */
|
||||
return (signBits + 1U);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
|
||||
*/
|
||||
__STATIC_FORCEINLINE uint32_t arm_recip_q15(
|
||||
q15_t in,
|
||||
q15_t * dst,
|
||||
const q15_t * pRecipTable)
|
||||
{
|
||||
q15_t out = 0;
|
||||
uint32_t tempVal = 0;
|
||||
uint32_t index = 0, i = 0;
|
||||
uint32_t signBits = 0;
|
||||
|
||||
if (in > 0)
|
||||
{
|
||||
signBits = ((uint32_t)(__CLZ( in) - 17));
|
||||
}
|
||||
else
|
||||
{
|
||||
signBits = ((uint32_t)(__CLZ(-in) - 17));
|
||||
}
|
||||
|
||||
/* Convert input sample to 1.15 format */
|
||||
in = (in << signBits);
|
||||
|
||||
/* calculation of index for initial approximated Val */
|
||||
index = (uint32_t)(in >> 8);
|
||||
index = (index & INDEX_MASK);
|
||||
|
||||
/* 1.15 with exp 1 */
|
||||
out = pRecipTable[index];
|
||||
|
||||
/* calculation of reciprocal value */
|
||||
/* running approximation for two iterations */
|
||||
for (i = 0U; i < 2U; i++)
|
||||
{
|
||||
tempVal = (uint32_t) (((q31_t) in * out) >> 15);
|
||||
tempVal = 0x7FFFu - tempVal;
|
||||
/* 1.15 with exp 1 */
|
||||
out = (q15_t) (((q31_t) out * tempVal) >> 14);
|
||||
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
|
||||
}
|
||||
|
||||
/* write output */
|
||||
*dst = out;
|
||||
|
||||
/* return num of signbits of out = 1/in value */
|
||||
return (signBits + 1);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief 64-bit to 32-bit unsigned normalization
|
||||
* @param[in] in is input unsigned long long value
|
||||
* @param[out] normalized is the 32-bit normalized value
|
||||
* @param[out] norm is norm scale
|
||||
*/
|
||||
__STATIC_INLINE void arm_norm_64_to_32u(uint64_t in, int32_t * normalized, int32_t *norm)
|
||||
{
|
||||
int32_t n1;
|
||||
int32_t hi = (int32_t) (in >> 32);
|
||||
int32_t lo = (int32_t) ((in << 32) >> 32);
|
||||
|
||||
n1 = __CLZ(hi) - 32;
|
||||
if (!n1)
|
||||
{
|
||||
/*
|
||||
* input fits in 32-bit
|
||||
*/
|
||||
n1 = __CLZ(lo);
|
||||
if (!n1)
|
||||
{
|
||||
/*
|
||||
* MSB set, need to scale down by 1
|
||||
*/
|
||||
*norm = -1;
|
||||
*normalized = (((uint32_t) lo) >> 1);
|
||||
} else
|
||||
{
|
||||
if (n1 == 32)
|
||||
{
|
||||
/*
|
||||
* input is zero
|
||||
*/
|
||||
*norm = 0;
|
||||
*normalized = 0;
|
||||
} else
|
||||
{
|
||||
/*
|
||||
* 32-bit normalization
|
||||
*/
|
||||
*norm = n1 - 1;
|
||||
*normalized = lo << *norm;
|
||||
}
|
||||
}
|
||||
} else
|
||||
{
|
||||
/*
|
||||
* input fits in 64-bit
|
||||
*/
|
||||
n1 = 1 - n1;
|
||||
*norm = -n1;
|
||||
/*
|
||||
* 64 bit normalization
|
||||
*/
|
||||
*normalized = (((uint32_t) lo) >> n1) | (hi << (32 - n1));
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den)
|
||||
{
|
||||
q31_t result;
|
||||
uint64_t absNum;
|
||||
int32_t normalized;
|
||||
int32_t norm;
|
||||
|
||||
/*
|
||||
* if sum fits in 32bits
|
||||
* avoid costly 64-bit division
|
||||
*/
|
||||
absNum = num > 0 ? num : -num;
|
||||
arm_norm_64_to_32u(absNum, &normalized, &norm);
|
||||
if (norm > 0)
|
||||
/*
|
||||
* 32-bit division
|
||||
*/
|
||||
result = (q31_t) num / den;
|
||||
else
|
||||
/*
|
||||
* 64-bit division
|
||||
*/
|
||||
result = (q31_t) (num / den);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /*ifndef _ARM_MATH_UTILS_H_ */
|
|
@ -1,56 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_tables.h
|
||||
* Description: Extern declaration for NN tables
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_NN_TABLES_H
|
||||
#define _ARM_NN_TABLES_H
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @brief tables for various activation functions
|
||||
*
|
||||
*/
|
||||
|
||||
extern const q15_t sigmoidTable_q15[256];
|
||||
extern const q7_t sigmoidTable_q7[256];
|
||||
|
||||
extern const q7_t tanhTable_q7[256];
|
||||
extern const q15_t tanhTable_q15[256];
|
||||
|
||||
/**
|
||||
* @brief 2-way tables for various activation functions
|
||||
*
|
||||
* 2-way table, H table for value larger than 1/4
|
||||
* L table for value smaller than 1/4, H table for remaining
|
||||
* We have this only for the q15_t version. It does not make
|
||||
* sense to have it for q7_t type
|
||||
*/
|
||||
extern const q15_t sigmoidHTable_q15[192];
|
||||
extern const q15_t sigmoidLTable_q15[128];
|
||||
|
||||
#endif /* ARM_NN_TABLES_H */
|
|
@ -1,130 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_types.h
|
||||
* Description: Public header file to contain the CMSIS-NN structs for the
|
||||
* TensorFlowLite micro compliant functions
|
||||
*
|
||||
* $Date: April 23, 2020
|
||||
* $Revision: V.0.5.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
|
||||
#ifndef _ARM_NN_TYPES_H
|
||||
#define _ARM_NN_TYPES_H
|
||||
|
||||
/** CMSIS-NN object to contain the width and height of a tile */
|
||||
typedef struct
|
||||
{
|
||||
int32_t w; /**< Width */
|
||||
int32_t h; /**< Height */
|
||||
} cmsis_nn_tile;
|
||||
|
||||
/** CMSIS-NN object used for the function context. */
|
||||
typedef struct
|
||||
{
|
||||
void *buf; /**< Pointer to a buffer needed for the optimization */
|
||||
int32_t size; /**< Buffer size */
|
||||
} cmsis_nn_context;
|
||||
|
||||
/** CMSIS-NN object to contain the dimensions of the tensors */
|
||||
typedef struct
|
||||
{
|
||||
int32_t n; /**< Generic dimension to contain either the batch size or output channels. Please refer to the function documentation for more information */
|
||||
int32_t h; /**< Height */
|
||||
int32_t w; /**< Width */
|
||||
int32_t c; /**< Input channels */
|
||||
} cmsis_nn_dims;
|
||||
|
||||
/** CMSIS-NN object for the per-channel quantization parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t *multiplier; /**< Multiplier values */
|
||||
int32_t *shift; /**< Shift values */
|
||||
} cmsis_nn_per_channel_quant_params;
|
||||
|
||||
/** CMSIS-NN object for the per-tensor quantization parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t multiplier; /**< Multiplier value */
|
||||
int32_t shift; /**< Shift value */
|
||||
} cmsis_nn_per_tensor_quant_params;
|
||||
|
||||
/** CMSIS-NN object for the quantized Relu activation */
|
||||
typedef struct
|
||||
{
|
||||
int32_t min; /**< Min value used to clamp the result */
|
||||
int32_t max; /**< Max value used to clamp the result */
|
||||
} cmsis_nn_activation;
|
||||
|
||||
/** CMSIS-NN object for the convolution layer parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t input_offset; /**< Zero value for the input tensor */
|
||||
int32_t output_offset; /**< Zero value for the output tensor */
|
||||
cmsis_nn_tile stride;
|
||||
cmsis_nn_tile padding;
|
||||
cmsis_nn_tile dilation;
|
||||
cmsis_nn_activation activation;
|
||||
} cmsis_nn_conv_params;
|
||||
|
||||
/** CMSIS-NN object for Depthwise convolution layer parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t input_offset; /**< Zero value for the input tensor */
|
||||
int32_t output_offset; /**< Zero value for the output tensor */
|
||||
int32_t ch_mult; /**< Channel Multiplier. ch_mult * in_ch = out_ch */
|
||||
cmsis_nn_tile stride;
|
||||
cmsis_nn_tile padding;
|
||||
cmsis_nn_tile dilation;
|
||||
cmsis_nn_activation activation;
|
||||
} cmsis_nn_dw_conv_params;
|
||||
/** CMSIS-NN object for pooling layer parameters */
|
||||
typedef struct
|
||||
{
|
||||
cmsis_nn_tile stride;
|
||||
cmsis_nn_tile padding;
|
||||
cmsis_nn_activation activation;
|
||||
} cmsis_nn_pool_params;
|
||||
|
||||
/** CMSIS-NN object for Fully Connected layer parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t input_offset; /**< Zero value for the input tensor */
|
||||
int32_t filter_offset; /**< Zero value for the filter tensor */
|
||||
int32_t output_offset; /**< Zero value for the output tensor */
|
||||
cmsis_nn_activation activation;
|
||||
} cmsis_nn_fc_params;
|
||||
|
||||
/** CMSIS-NN object for SVDF layer parameters */
|
||||
typedef struct
|
||||
{
|
||||
int32_t rank;
|
||||
int32_t input_offset; /**< Zero value for the input tensor */
|
||||
int32_t output_offset; /**< Zero value for the output tensor */
|
||||
cmsis_nn_activation input_activation;
|
||||
cmsis_nn_activation output_activation;
|
||||
} cmsis_nn_svdf_params;
|
||||
|
||||
#endif // _ARM_NN_TYPES_H
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -1,954 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nnsupportfunctions.h
|
||||
* Description: Public header file of support functions for CMSIS NN Library
|
||||
*
|
||||
* $Date: July 31, 2020
|
||||
* $Revision: V.4.5.4
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
|
||||
#define _ARM_NNSUPPORTFUNCTIONS_H_
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0)
|
||||
#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift)
|
||||
#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
|
||||
#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
|
||||
#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
|
||||
|
||||
#define MAX(A,B) ((A) > (B) ? (A) : (B))
|
||||
#define MIN(A,B) ((A) < (B) ? (A) : (B))
|
||||
#define CLAMP(x, h, l) MAX(MIN((x), (h)), (l))
|
||||
|
||||
/**
|
||||
* @brief Union for SIMD access of q31/q15/q7 types
|
||||
*/
|
||||
union arm_nnword
|
||||
{
|
||||
q31_t word;
|
||||
/**< q31 type */
|
||||
q15_t half_words[2];
|
||||
/**< q15 type */
|
||||
q7_t bytes[4];
|
||||
/**< q7 type */
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Union for data type long long
|
||||
*/
|
||||
struct arm_nn_double
|
||||
{
|
||||
uint32_t low;
|
||||
int32_t high;
|
||||
};
|
||||
|
||||
union arm_nn_long_long
|
||||
{
|
||||
int64_t long_long;
|
||||
struct arm_nn_double word;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying activation function types
|
||||
*
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_SIGMOID = 0,
|
||||
/**< Sigmoid activation function */
|
||||
ARM_TANH = 1,
|
||||
/**< Tanh activation function */
|
||||
} arm_nn_activation_type;
|
||||
|
||||
/**
|
||||
* @defgroup nndata_convert Neural Network Data Conversion Functions
|
||||
*
|
||||
* Perform data type conversion in-between neural network operations
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the q7 vector to q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the q7 input vector
|
||||
* @param[out] *pDst points to the q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*
|
||||
*/
|
||||
void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Non-saturating addition of elements of a q7 vector
|
||||
* @param[in] *input Pointer to the q7 input vector
|
||||
* @param[out] *output Pointer to the q31 output variable.
|
||||
* @param[in] block_size length of the input vector
|
||||
* \par Description:
|
||||
*
|
||||
* 2^24 samples can be added without saturating the result.
|
||||
*
|
||||
* The equation used for the conversion process is:
|
||||
*
|
||||
* <pre>
|
||||
* sum = input[0] + input[1] + .. + input[block_size -1]
|
||||
* </pre>
|
||||
*
|
||||
* */
|
||||
void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size);
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the q7 input vector
|
||||
* @param[out] *pDst points to the q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Converts the elements from a q7 vector to a q15 vector with an added offset
|
||||
* @param[in] src pointer to the q7 input vector
|
||||
* @param[out] dst pointer to the q15 output vector
|
||||
* @param[in] block_size length of the input vector
|
||||
* @param[in] offset q7 offset to be added to each input vector element.
|
||||
*
|
||||
* \par Description:
|
||||
*
|
||||
* The equation used for the conversion process is:
|
||||
*
|
||||
* <pre>
|
||||
* dst[n] = (q15_t) src[n] + offset; 0 <= n < block_size.
|
||||
* </pre>
|
||||
*
|
||||
*/
|
||||
void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset
|
||||
* @param[in] src pointer to the q7 input vector
|
||||
* @param[out] dst pointer to the q15 output vector
|
||||
* @param[in] block_size length of the input vector
|
||||
* @param[in] offset offset to be added to each input vector element.
|
||||
* @return none.
|
||||
*
|
||||
* @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of
|
||||
* the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its original
|
||||
* order.
|
||||
*
|
||||
*/
|
||||
void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
|
||||
|
||||
/**
|
||||
* @brief Converts the elements from a q7 vector and accumulate to a q15 vector
|
||||
* @param[in] *src points to the q7 input vector
|
||||
* @param[out] *dst points to the q15 output vector
|
||||
* @param[in] block_size length of the input vector
|
||||
*
|
||||
* \par Description:
|
||||
*
|
||||
* The equation used for the conversion process is:
|
||||
*
|
||||
* <pre>
|
||||
* dst[n] += (q15_t) src[n] ; 0 <= n < block_size.
|
||||
* </pre>
|
||||
*
|
||||
*/
|
||||
void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size);
|
||||
|
||||
/**
|
||||
* @brief Depthwise conv on an im2col buffer where the input channel equals output channel.
|
||||
* @param[in] row pointer to row
|
||||
* @param[in] col pointer to im2col buffer, always consists of 2 columns.
|
||||
* @param[in] num_ch number of channels
|
||||
* @param[in] out_shift pointer to per output channel requantization shift parameter.
|
||||
* @param[in] out_mult pointer to per output channel requantization multiplier parameter.
|
||||
* @param[in] out_offset output tensor offset.
|
||||
* @param[in] activation_min minimum value to clamp the output to. Range : int8
|
||||
* @param[in] activation_max maximum value to clamp the output to. Range : int8
|
||||
* @param[in] kernel_size number of elements in one column.
|
||||
* @param[in] output_bias per output channel bias. Range : int32
|
||||
* @param[out] out pointer to output
|
||||
* @return The function returns one of the two
|
||||
* 1. The incremented output pointer for a successful operation or
|
||||
* 2. NULL if implementation is not available.
|
||||
*
|
||||
* @details Supported framework: TensorFlow Lite micro.
|
||||
*/
|
||||
q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row,
|
||||
const q15_t *col,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t kernel_size,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out);
|
||||
|
||||
/**
|
||||
* @brief General Matrix-multiplication function with per-channel requantization.
|
||||
* @param[in] input_row pointer to row operand
|
||||
* @param[in] input_col pointer to col operand
|
||||
* @param[in] output_ch number of rows of input_row
|
||||
* @param[in] col_batches number of column batches. Range: 1 to 4
|
||||
* @param[in] output_shift pointer to per output channel requantization shift parameter.
|
||||
* @param[in] output_mult pointer to per output channel requantization multiplier parameter.
|
||||
* @param[in] out_offset output tensor offset.
|
||||
* @param[in] col_offset input tensor(col) offset.
|
||||
* @param[in] row_offset kernel offset(row). Not used.
|
||||
* @param[in] out_activation_min minimum value to clamp the output to. Range : int8
|
||||
* @param[in] out_activation_max maximum value to clamp the output to. Range : int8
|
||||
* @param[in] row_len number of elements in each row
|
||||
* @param[in] bias per output channel bias. Range : int32
|
||||
* @param[in,out] out pointer to output
|
||||
* @return The function returns one of the two
|
||||
* 1. The incremented output pointer for a successful operation or
|
||||
* 2. NULL if implementation is not available.
|
||||
*
|
||||
* @details Supported framework: TensorFlow Lite
|
||||
*/
|
||||
q7_t *arm_nn_mat_mult_s8(const q7_t *input_row,
|
||||
const q7_t *input_col,
|
||||
const uint16_t output_ch,
|
||||
const uint16_t col_batches,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t col_offset,
|
||||
const int32_t row_offset,
|
||||
const int16_t out_activation_min,
|
||||
const int16_t out_activation_max,
|
||||
const uint16_t row_len,
|
||||
const int32_t *const bias,
|
||||
q7_t *out);
|
||||
|
||||
/**
|
||||
* @brief General Matrix-multiplication without requantization for one row & one column
|
||||
* @param[in] row_elements number of row elements
|
||||
* @param[in] row_base pointer to row operand
|
||||
* @param[in] col_base pointer to col operand
|
||||
* @param[out] sum_col pointer to store sum of column elements
|
||||
* @param[out] output pointer to store result of multiply-accumulate
|
||||
* @return The function returns the multiply-accumulated result of the row by column.
|
||||
*
|
||||
* @details Pseudo-code
|
||||
* *output = 0
|
||||
* sum_col = 0
|
||||
* for (i = 0; i < row_elements; i++)
|
||||
* *output += row_base[i] * col_base[i]
|
||||
* sum_col += col_base[i]
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base,
|
||||
int32_t *const sum_col,
|
||||
int32_t *const output);
|
||||
|
||||
/**
|
||||
* @brief General Matrix-multiplication without requantization for four rows and one column
|
||||
* @param[in] row_elements number of row elements
|
||||
* @param[in] offset offset between rows. Can be the same as row_elements.
|
||||
* For e.g, in a 1x1 conv scenario with stride as 1.
|
||||
* @param[in] row_base pointer to row operand
|
||||
* @param[in] col_base pointer to col operand
|
||||
* @param[out] sum_col pointer to store sum of column elements
|
||||
* @param[out] output pointer to store result(4 int32's) of multiply-accumulate
|
||||
* @return The function returns the multiply-accumulated result of the row by column
|
||||
*
|
||||
* @details Pseudo-code
|
||||
* output[0] = 0
|
||||
* ..
|
||||
* output[3] = 0
|
||||
* sum_col = 0
|
||||
* for (i = 0; i < row_elements; i++)
|
||||
* output[0] += row_base[i] * col_base[i]
|
||||
* ..
|
||||
* output[3] += row_base[i + (row_elements * 3)] * col_base[i]
|
||||
* sum_col += col_base[i]
|
||||
*/
|
||||
arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements,
|
||||
const int32_t offset,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base,
|
||||
int32_t *const sum_col,
|
||||
int32_t *const output);
|
||||
|
||||
/**
|
||||
* @brief General Matrix-multiplication function with per-channel requantization.
|
||||
* This function assumes:
|
||||
* - LHS input matrix NOT transposed (nt)
|
||||
* - RHS input matrix transposed (t)
|
||||
*
|
||||
* @note This operation also performs the broadcast bias addition before the requantization
|
||||
*
|
||||
* @param[in] lhs Pointer to the LHS input matrix
|
||||
* @param[in] rhs Pointer to the RHS input matrix
|
||||
* @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of output columns (or RHS input rows)
|
||||
* @param[out] dst Pointer to the output matrix with "m" rows and "n" columns
|
||||
* @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. The length of this vector is equal to
|
||||
* the number of output columns (or RHS input rows)
|
||||
* @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length of this vector is equal to
|
||||
* the number of output columns (or RHS input rows)
|
||||
* @param[in] lhs_rows Number of LHS input rows
|
||||
* @param[in] rhs_rows Number of RHS input rows
|
||||
* @param[in] rhs_cols Number of LHS/RHS input columns
|
||||
* @param[in] lhs_offset Offset to be applied to the LHS input value
|
||||
* @param[in] dst_offset Offset to be applied the output result
|
||||
* @param[in] activation_min Minimum value to clamp down the output. Range : int8
|
||||
* @param[in] activation_max Maximum value to clamp up the output. Range : int8
|
||||
*
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t *dst_multipliers,
|
||||
const int32_t *dst_shifts,
|
||||
const int32_t lhs_rows,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief s8 Vector by Matrix (transposed) multiplication
|
||||
*
|
||||
* @param[in] lhs Input left-hand side vector
|
||||
* @param[in] rhs Input right-hand side matrix (transposed)
|
||||
* @param[in] bias Input bias
|
||||
* @param[out] dst Output vector
|
||||
* @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. Range: -127 to 128
|
||||
* @param[in] rhs_offset Offset to be added to the input values of the right-hand side matrix. Range: -127 to 128
|
||||
* @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128
|
||||
* @param[in] dst_multiplier Output multiplier
|
||||
* @param[in] dst_shift Output shift
|
||||
* @param[in] rhs_cols Number of columns in the right-hand side input matrix
|
||||
* @param[in] rhs_rows Number of rows in the right-hand side input matrix
|
||||
* @param[in] activation_min Minimum value to clamp the output to. Range: int8
|
||||
* @param[in] activation_max Maximum value to clamp the output to. Range: int8
|
||||
*
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t rhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t dst_multiplier,
|
||||
const int32_t dst_shift,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where
|
||||
* the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* @param[in] lhs Input left-hand side matrix
|
||||
* @param[in] rhs Input right-hand side matrix (transposed)
|
||||
* @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
|
||||
* @param[in] num_ch Number of channels in LHS/RHS
|
||||
* @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels
|
||||
* @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels
|
||||
* @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
|
||||
* @param[in] activation_min Minimum value to clamp the output to. Range: int8
|
||||
* @param[in] activation_max Maximum value to clamp the output to. Range: int8
|
||||
* @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
|
||||
* @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels
|
||||
* @param[in] out Output pointer
|
||||
*
|
||||
* @return The function returns one of the two
|
||||
* - Updated output pointer if an implementaiton is available
|
||||
* - NULL if no implementation is available.
|
||||
*
|
||||
* @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
|
||||
* for the following.
|
||||
* - Output shift
|
||||
* - Output multiplier
|
||||
* - Output bias
|
||||
* - rhs
|
||||
*/
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t lhs_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out);
|
||||
|
||||
/**
|
||||
* @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases.
|
||||
* Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* @param[in] lhs Input left-hand side matrix
|
||||
* @param[in] rhs Input right-hand side matrix (transposed)
|
||||
* @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
|
||||
* @param[in] num_ch Number of channels in LHS/RHS
|
||||
* @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels.
|
||||
* @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels.
|
||||
* @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
|
||||
* @param[in] activation_min Minimum value to clamp the output to. Range: int8
|
||||
* @param[in] activation_max Maximum value to clamp the output to. Range: int8
|
||||
* @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
|
||||
* @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels.
|
||||
* @param[in] out Output pointer
|
||||
*
|
||||
* @return The function returns one of the two
|
||||
* - Updated output pointer if an implementaiton is available
|
||||
* - NULL if no implementation is available.
|
||||
*
|
||||
* @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
|
||||
* for the following.
|
||||
* - Output shift
|
||||
* - Output multiplier
|
||||
* - Output bias
|
||||
* - rhs
|
||||
*/
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t lhs_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out);
|
||||
|
||||
/**
|
||||
@brief Read 2 q15 elements and post increment pointer.
|
||||
@param[in] in_q15 Pointer to pointer that holds address of input.
|
||||
@return q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15)
|
||||
{
|
||||
q31_t val;
|
||||
|
||||
memcpy(&val, *in_q15, 4);
|
||||
*in_q15 += 2;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 4 q7 from q7 pointer and post increment pointer.
|
||||
@param[in] in_q7 Pointer to pointer that holds address of input.
|
||||
@return q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7)
|
||||
{
|
||||
q31_t val;
|
||||
memcpy(&val, *in_q7, 4);
|
||||
*in_q7 += 4;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 2 q15 from q15 pointer.
|
||||
@param[in] in_q15 pointer to address of input.
|
||||
@return q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15)
|
||||
{
|
||||
q31_t val;
|
||||
memcpy(&val, in_q15, 4);
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
@brief Read 4 q7 values.
|
||||
@param[in] in_q7 pointer to address of input.
|
||||
@return q31 value
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7)
|
||||
{
|
||||
q31_t val;
|
||||
memcpy(&val, in_q7, 4);
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief memset optimized for MVE
|
||||
* @param[in, out] dst Destination pointer
|
||||
* @param[in] val Value to set
|
||||
* @param[in] block_size Number of bytes to copy.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst,
|
||||
const q7_t val,
|
||||
uint32_t block_size)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
__asm volatile (
|
||||
" vdup.8 q0, %[set_val] \n"
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vstrb.8 q0, [%[in]], 16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
:[in] "+r"(dst)
|
||||
:[cnt] "r"(block_size), [set_val] "r"(val)
|
||||
:"q0", "memory", "r14");
|
||||
#else
|
||||
memset(dst, val, block_size);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/**
|
||||
* @brief read and expand one q7 word into two q15 words
|
||||
*/
|
||||
|
||||
__STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t * out1, q31_t * out2)
|
||||
{
|
||||
q31_t inA = arm_nn_read_q7x4_ia(&source);
|
||||
q31_t inAbuf1 = __SXTB16(__ROR((uint32_t)inA, 8));
|
||||
q31_t inAbuf2 = __SXTB16(inA);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*out2 = (int32_t) (__PKHTB (inAbuf1, inAbuf2, 16));
|
||||
*out1 = (int32_t) (__PKHBT (inAbuf2, inAbuf1, 16));
|
||||
#else
|
||||
*out1 = (int32_t) (__PKHTB(inAbuf1, inAbuf2, 16));
|
||||
*out2 = (int32_t) (__PKHBT(inAbuf2, inAbuf1, 16));
|
||||
#endif
|
||||
|
||||
return source;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief read and expand one q7 word into two q15 words with reordering
|
||||
*/
|
||||
|
||||
__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t * out1, q31_t * out2)
|
||||
{
|
||||
q31_t inA = arm_nn_read_q7x4_ia(&source);
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*out2 = __SXTB16(__ROR((uint32_t)inA, 8));
|
||||
*out1 = __SXTB16(inA);
|
||||
#else
|
||||
*out1 = __SXTB16(__ROR((uint32_t)inA, 8));
|
||||
*out2 = __SXTB16(inA);
|
||||
#endif
|
||||
|
||||
return source;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief read and expand one q7 word into two q15 words with reordering and add an offset
|
||||
*/
|
||||
__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered_with_offset(const q7_t *source, q31_t * out1, q31_t * out2, q31_t offset)
|
||||
{
|
||||
q31_t inA = arm_nn_read_q7x4_ia(&source);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*out2 = __SXTB16(__ROR((uint32_t)inA, 8));
|
||||
*out1 = __SXTB16(inA);
|
||||
#else
|
||||
*out1 = __SXTB16(__ROR((uint32_t)inA, 8));
|
||||
*out2 = __SXTB16(inA);
|
||||
#endif
|
||||
*out1 = __QADD16(*out1,offset);
|
||||
*out2 = __QADD16(*out2,offset);
|
||||
|
||||
return source;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
|
||||
*
|
||||
* Basic Math Functions for Neural Network Computation
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief macro for adding rounding offset
|
||||
*/
|
||||
#ifndef ARM_NN_TRUNCATE
|
||||
#define NN_ROUND(out_shift) ( (0x1u << out_shift) >> 1 )
|
||||
#else
|
||||
#define NN_ROUND(out_shift) 0
|
||||
#endif
|
||||
|
||||
// Macros for shortening quantization functions' names and avoid long lines
|
||||
#define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b))
|
||||
#define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b))
|
||||
#define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b))
|
||||
|
||||
|
||||
#define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b))
|
||||
#define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b))
|
||||
|
||||
|
||||
#define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x))
|
||||
#define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x))
|
||||
|
||||
/**
|
||||
* @brief Saturating doubling high multiply. Result matches
|
||||
* NEON instruction VQRDMULH.
|
||||
* @param[in] m1 Multiplicand. Range: {Q31_MIN, Q31_MAX}
|
||||
* @param[in] m2 Multiplier. Range: {Q31_MIN, Q31_MAX}
|
||||
* @return Result of multiplication.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult(const q31_t m1, const q31_t m2)
|
||||
{
|
||||
q31_t result = 0;
|
||||
// Rounding offset to add for a right shift of 31
|
||||
q63_t mult = 1 << 30;
|
||||
|
||||
if ((m1 < 0) ^ (m2 < 0))
|
||||
{
|
||||
mult = 1 - mult;
|
||||
}
|
||||
// Gets resolved as a SMLAL instruction
|
||||
mult = mult + (q63_t)m1 * m2;
|
||||
|
||||
// Utilize all of the upper 32 bits. This is the doubling step
|
||||
// as well.
|
||||
result = (int32_t) (mult / (1ll << 31));
|
||||
|
||||
if ((m1 == m2) && (m1 == (int32_t)Q31_MIN))
|
||||
{
|
||||
result = Q31_MAX;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Doubling high multiply without saturation. This is intended
|
||||
* for requantization where the scale is a positive integer
|
||||
*
|
||||
* @param[in] m1 Multiplicand. Range: {Q31_MIN, Q31_MAX}
|
||||
* @param[in] m2 Multiplier Range: {Q31_MIN, Q31_MAX}
|
||||
* @return Result of multiplication.
|
||||
* @note The result of this matches that of neon instruction
|
||||
* VQRDMULH for m1 in range {Q31_MIN, Q31_MAX} and m2 in
|
||||
* range {Q31_MIN + 1, Q31_MAX}. Saturation occurs when
|
||||
* m1 equals m2 equals Q31_MIN and that is not handled by
|
||||
* this function.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult_no_sat(const q31_t m1, const q31_t m2)
|
||||
{
|
||||
q31_t result = 0;
|
||||
union arm_nn_long_long mult;
|
||||
|
||||
// Rounding offset to add for a right shift of 31
|
||||
mult.word.low = 1 << 30;
|
||||
mult.word.high = 0;
|
||||
|
||||
// Gets resolved as a SMLAL instruction
|
||||
mult.long_long = mult.long_long + (q63_t)m1 * m2;
|
||||
|
||||
// Utilize all of the upper 32 bits. This is the doubling step
|
||||
// as well.
|
||||
result = (int32_t)(mult.long_long >> 31);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rounding divide by power of two.
|
||||
* @param[in] dividend - Dividend
|
||||
* @param[in] exponent - Divisor = power(2, exponent)
|
||||
* Range: [0, 31]
|
||||
* @return Rounded result of division. Midpoint is rounded away from zero.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent)
|
||||
{
|
||||
q31_t result = 0;
|
||||
const q31_t remainder_mask = (1 << exponent) - 1;
|
||||
int32_t remainder = remainder_mask & dividend;
|
||||
|
||||
// Basic division
|
||||
result = dividend >> exponent;
|
||||
|
||||
// Adjust 'result' for rounding (mid point away from zero)
|
||||
q31_t threshold = remainder_mask >> 1;
|
||||
if (result < 0)
|
||||
{
|
||||
threshold++;
|
||||
}
|
||||
if (remainder > threshold)
|
||||
{
|
||||
result++;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Requantize a given value.
|
||||
* @param[in] val Value to be requantized
|
||||
* @param[in] multiplier multiplier. Range {Q31_MIN + 1, Q32_MAX}
|
||||
* @param[in] shift left or right shift for 'val * multiplier'
|
||||
*
|
||||
* @return Returns (val * multiplier)/(2 ^ shift)
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift)
|
||||
{
|
||||
return arm_nn_divide_by_power_of_two(
|
||||
arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier),
|
||||
RIGHT_SHIFT(shift));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief memcpy optimized for MVE
|
||||
* @param[in, out] dst Destination pointer
|
||||
* @param[in] src Source pointer.
|
||||
* @param[in] block_size Number of bytes to copy.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst,
|
||||
const q7_t *__RESTRICT src,
|
||||
uint32_t block_size)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
__asm volatile (
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vldrb.8 q0, [%[in]], 16 \n"
|
||||
" vstrb.8 q0, [%[out]], 16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
:[in] "+r"(src)
|
||||
,[out] "+r"(dst)
|
||||
:[cnt] "r"(block_size)
|
||||
:"q0", "memory", "r14");
|
||||
#else
|
||||
memcpy(dst, src, block_size);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
/**
|
||||
* @brief Vector saturating doubling high multiply returning high half.
|
||||
* @param[in] m1 Multiplicand
|
||||
* @param[in] m2 Multiplier
|
||||
* @return Result of multiplication.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2)
|
||||
{
|
||||
return vqrdmulhq_n_s32(m1, m2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Vector rounding divide by power of two.
|
||||
* @param[in] dividend - Dividend vector
|
||||
* @param[in] exponent - Divisor = power(2, exponent)
|
||||
* Range: [0, 31]
|
||||
* @return Rounded result of division. Midpoint is rounded away from zero.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent)
|
||||
{
|
||||
const int32x4_t shift = vdupq_n_s32(-exponent);
|
||||
const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
|
||||
const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
|
||||
return vrshlq_s32(fixed_up_dividend, shift);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Requantize a given vector.
|
||||
* @param[in] val Vector to be requantized
|
||||
* @param[in] multiplier multiplier
|
||||
* @param[in] shift shift
|
||||
*
|
||||
* @return Returns (val * multiplier)/(2 ^ shift)
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift)
|
||||
{
|
||||
return arm_divide_by_power_of_two_mve(
|
||||
arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier),
|
||||
RIGHT_SHIFT(shift));
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2)
|
||||
{
|
||||
return vqrdmulhq_s32(m1, m2);
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent)
|
||||
{
|
||||
const int32x4_t shift = -exponent;
|
||||
const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
|
||||
const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
|
||||
return vrshlq_s32(fixed_up_dividend, shift);
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val, const int32x4_t multiplier, const int32x4_t shift)
|
||||
{
|
||||
const int32x4_t zz = vdupq_n_s32(0);
|
||||
const mve_pred16_t p = vcmpgtq_n_s32(shift, 0);
|
||||
|
||||
const int32x4_t left_shift = vpselq_s32(shift, zz, p);
|
||||
const int32x4_t right_shift = -vpselq_s32(zz, shift, p);
|
||||
|
||||
return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier), right_shift);
|
||||
}
|
||||
#endif
|
||||
|
||||
// @note The following functions are used only for softmax layer, scaled bits = 5 assumed
|
||||
|
||||
__STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val)
|
||||
{
|
||||
int32_t mask = 0;
|
||||
int32_t shift = 24;
|
||||
|
||||
const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift);
|
||||
const int32_t remainder = val_mod_minus_quarter - val;
|
||||
const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
|
||||
const int32_t x2 = MUL_SAT(x, x);
|
||||
|
||||
int32_t result = 1895147668 + MUL_SAT(1895147668, x +
|
||||
DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1));
|
||||
|
||||
#define SELECT_IF_NON_ZERO(x) \
|
||||
{ \
|
||||
mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
|
||||
result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \
|
||||
}
|
||||
|
||||
SELECT_IF_NON_ZERO(1672461947)
|
||||
SELECT_IF_NON_ZERO(1302514674)
|
||||
SELECT_IF_NON_ZERO(790015084)
|
||||
SELECT_IF_NON_ZERO(290630308)
|
||||
SELECT_IF_NON_ZERO(39332535)
|
||||
SELECT_IF_NON_ZERO(720401)
|
||||
SELECT_IF_NON_ZERO(242)
|
||||
|
||||
#undef SELECT_IF_NON_ZERO
|
||||
|
||||
mask = MASK_IF_ZERO(val);
|
||||
return SELECT_USING_MASK(mask, Q31_MAX, result);
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp)
|
||||
{
|
||||
const int32_t thresh = ((1 << (31 - exp)) - 1);
|
||||
int32_t result = val << exp;
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), Q31_MAX, result);
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), Q31_MIN, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
__STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
|
||||
{
|
||||
const int64_t sum = (int64_t)val + (int64_t)Q31_MAX;
|
||||
const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L);
|
||||
int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540);
|
||||
|
||||
const int32_t shift = (1 << 29);
|
||||
x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
|
||||
x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
|
||||
x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
|
||||
|
||||
return MUL_POW2(x, 1);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -1,97 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_activations_q15.c
|
||||
* Description: Q15 neural network activation function using direct table look-up
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief neural network activation function using direct table look-up
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
|
||||
{
|
||||
uint16_t i = size;
|
||||
q15_t *pIn = data;
|
||||
q15_t *pOut = data;
|
||||
uint16_t shift_size = 8 + 3 - int_width;
|
||||
uint32_t bit_mask = 0x7FF >> int_width;
|
||||
uint32_t full_frac = bit_mask + 1;
|
||||
const q15_t *lookup_table;
|
||||
|
||||
switch (type)
|
||||
{
|
||||
case ARM_SIGMOID:
|
||||
lookup_table = sigmoidTable_q15;
|
||||
break;
|
||||
case ARM_TANH:
|
||||
default:
|
||||
lookup_table = tanhTable_q15;
|
||||
break;
|
||||
}
|
||||
|
||||
while (i)
|
||||
{
|
||||
q15_t out;
|
||||
q15_t in = *pIn++;
|
||||
q15_t frac = (uint32_t) in & bit_mask;
|
||||
q15_t value = lookup_table[(uint8_t)(in >> shift_size)];
|
||||
if ((in >> shift_size) != 0x7f)
|
||||
{
|
||||
q15_t value2 = lookup_table[(uint8_t)(1 + ((uint8_t)(in >> shift_size)))];
|
||||
/* doing the interpolation here for better accuracy */
|
||||
out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size;
|
||||
} else
|
||||
{
|
||||
/* the largest positive value does not have a right side for linear interpolation */
|
||||
out = value;
|
||||
}
|
||||
|
||||
*pOut++ = out;
|
||||
i--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
|
@ -1,90 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_activations_q7.c
|
||||
* Description: Q7 neural network activation function using direct table look-up
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 neural network activation function using direct table look-up
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||||
* @param[in] type type of activation functions
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* This is the direct table look-up approach.
|
||||
*
|
||||
* Assume here the integer part of the fixed-point is <= 3.
|
||||
* More than 3 just not making much sense, makes no difference with
|
||||
* saturation followed by any of these activation functions.
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
|
||||
{
|
||||
uint16_t i = size;
|
||||
q7_t *pIn = data;
|
||||
q7_t *pOut = data;
|
||||
q7_t in;
|
||||
q7_t out;
|
||||
uint16_t shift_size = 3 - int_width;
|
||||
const q7_t *lookup_table;
|
||||
switch (type)
|
||||
{
|
||||
case ARM_SIGMOID:
|
||||
lookup_table = sigmoidTable_q7;
|
||||
break;
|
||||
case ARM_TANH:
|
||||
default:
|
||||
lookup_table = tanhTable_q7;
|
||||
break;
|
||||
}
|
||||
while (i)
|
||||
{
|
||||
in = *pIn++;
|
||||
out = lookup_table[(uint8_t) (in >> shift_size)];
|
||||
*pOut++ = out;
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
|
@ -1,65 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu6_s8.c
|
||||
* Description: Basic s8 version of ReLU6
|
||||
*
|
||||
* $Date: Spetember 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic ReLU6 function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu6_s8(q7_t *data, uint16_t size)
|
||||
{
|
||||
int32_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
int32_t ip = data[i];
|
||||
|
||||
ip = MAX(ip, 0);
|
||||
data[i] = MIN(ip, 6);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
|
@ -1,104 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu_q15.c
|
||||
* Description: Q15 version of ReLU
|
||||
*
|
||||
* $Date: February 27, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Optimized relu with QSUB instructions.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu_q15(q15_t *data, uint16_t size)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* Run the following code for M cores with DSP extension */
|
||||
|
||||
uint16_t i = size >> 1;
|
||||
q15_t *input = data;
|
||||
q15_t *output = data;
|
||||
q31_t in;
|
||||
q31_t buf;
|
||||
q31_t mask;
|
||||
|
||||
while (i)
|
||||
{
|
||||
in = read_q15x2_ia(&input);
|
||||
|
||||
/* extract the first bit */
|
||||
buf = __ROR(in & 0x80008000, 15);
|
||||
|
||||
/* if MSB=1, mask will be 0xFF, 0x0 otherwise */
|
||||
mask = __QSUB16(0x00000000, buf);
|
||||
|
||||
write_q15x2_ia(&output, in & (~mask));
|
||||
i--;
|
||||
}
|
||||
|
||||
if (size & 0x1)
|
||||
{
|
||||
if (*input < 0)
|
||||
{
|
||||
*input = 0;
|
||||
}
|
||||
input++;
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for M cores without DSP extension */
|
||||
uint16_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
if (data[i] < 0)
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
|
@ -1,109 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu_q7.c
|
||||
* Description: Q7 version of ReLU
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Optimized relu with QSUB instructions.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu_q7(q7_t *data, uint16_t size)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* Run the following code for M cores with DSP extension */
|
||||
|
||||
uint16_t i = size >> 2;
|
||||
q7_t *input = data;
|
||||
q7_t *output = data;
|
||||
q31_t in;
|
||||
q31_t buf;
|
||||
q31_t mask;
|
||||
|
||||
while (i)
|
||||
{
|
||||
in = read_q7x4_ia(&input);
|
||||
|
||||
/* extract the first bit */
|
||||
buf = (int32_t)__ROR((uint32_t)in & 0x80808080, 7);
|
||||
|
||||
/* if MSB=1, mask will be 0xFF, 0x0 otherwise */
|
||||
mask = __QSUB8(0x00000000, buf);
|
||||
|
||||
write_q7x4_ia(&output, in & (~mask));
|
||||
|
||||
i--;
|
||||
}
|
||||
|
||||
i = size & 0x3;
|
||||
while (i)
|
||||
{
|
||||
if (*input < 0)
|
||||
{
|
||||
*input = 0;
|
||||
}
|
||||
input++;
|
||||
i--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for cores without DSP extension */
|
||||
|
||||
uint16_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
if (data[i] < 0)
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
|
@ -1,258 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_add_s8
|
||||
* Description: Element wise add
|
||||
*
|
||||
* $Date: July 31, 2020
|
||||
* $Revision: V.2.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
#include "arm_helium_utils.h"
|
||||
#endif
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
#define SAT_INPUT_VECT(__INPUT_V, __MULT, __SHIFT) \
|
||||
__INPUT_V = arm_doubling_high_mult_mve(__INPUT_V, __MULT); \
|
||||
__INPUT_V = arm_divide_by_power_of_two_mve(__INPUT_V, -__SHIFT);
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @note The *_no_sat API does not mean that the input not saturated, Since
|
||||
* __MULT is a positive integer, it is saturated. The API definition
|
||||
* has more info about it.
|
||||
*/
|
||||
#define SAT_INPUT(__INPUT, __MULT, __SHIFT) \
|
||||
__INPUT = arm_nn_doubling_high_mult_no_sat(__INPUT, __MULT); \
|
||||
__INPUT = arm_nn_divide_by_power_of_two(__INPUT, -__SHIFT);
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 element wise add
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Note: __SHIFT is expected to be <=0 */
|
||||
|
||||
|
||||
arm_status
|
||||
arm_elementwise_add_s8(const int8_t *input_1_vect,
|
||||
const int8_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_1_mult,
|
||||
const int32_t input_1_shift,
|
||||
const int32_t input_2_offset,
|
||||
const int32_t input_2_mult,
|
||||
const int32_t input_2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const uint32_t block_size)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t count = (int32_t)block_size;
|
||||
|
||||
while (count > 0)
|
||||
{
|
||||
int32x4_t vect_1;
|
||||
int32x4_t vect_2;
|
||||
|
||||
mve_pred16_t p = vctp32q((uint32_t)count);
|
||||
|
||||
vect_1 = vldrbq_z_s32(input_1_vect, p);
|
||||
vect_2 = vldrbq_z_s32(input_2_vect, p);
|
||||
|
||||
vect_1 = vaddq_s32(vect_1, vdupq_n_s32(input_1_offset));
|
||||
vect_2 = vaddq_s32(vect_2, vdupq_n_s32(input_2_offset));
|
||||
|
||||
vect_1 = vshlq_r_s32(vect_1, left_shift);
|
||||
vect_2 = vshlq_r_s32(vect_2, left_shift);
|
||||
|
||||
SAT_INPUT_VECT(vect_1, input_1_mult, input_1_shift);
|
||||
SAT_INPUT_VECT(vect_2, input_2_mult, input_2_shift);
|
||||
|
||||
vect_1 = vaddq_s32(vect_1, vect_2);
|
||||
SAT_INPUT_VECT(vect_1, out_mult, out_shift);
|
||||
|
||||
vect_1 = vaddq_n_s32(vect_1, out_offset);
|
||||
|
||||
vect_1 = vmaxq_s32(vect_1, vdupq_n_s32(out_activation_min));
|
||||
vect_1 = vminq_s32(vect_1, vdupq_n_s32(out_activation_max));
|
||||
|
||||
input_1_vect += 4;
|
||||
input_2_vect += 4;
|
||||
vstrbq_p_s32(output, vect_1, p);
|
||||
|
||||
output += 4;
|
||||
count -= 4;
|
||||
}
|
||||
#else
|
||||
uint32_t loop_count;
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t sum;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
int32_t a_1, b_1, a_2, b_2;
|
||||
|
||||
int32_t offset_1_packed, offset_2_packed;
|
||||
|
||||
int8_t r1, r2, r3, r4;
|
||||
|
||||
offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL);
|
||||
offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL);
|
||||
|
||||
loop_count = block_size >> 2;
|
||||
|
||||
while (loop_count > 0U)
|
||||
{
|
||||
/* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension
|
||||
intrinsic */
|
||||
input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1);
|
||||
input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2);
|
||||
|
||||
a_1 = __SADD16(a_1, offset_1_packed);
|
||||
b_1 = __SADD16(b_1, offset_1_packed);
|
||||
|
||||
a_2 = __SADD16(a_2, offset_2_packed);
|
||||
b_2 = __SADD16(b_2, offset_2_packed);
|
||||
|
||||
/* Sum 1 */
|
||||
input_1 = (int16_t)(b_1 & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (int16_t)(b_2 & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
SAT_INPUT(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r1 = (q7_t)sum;
|
||||
|
||||
/* Sum 3 */
|
||||
input_1 = (int16_t)((b_1 >> 16) & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (int16_t)((b_2 >> 16) & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
SAT_INPUT(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r3 = (q7_t)sum;
|
||||
|
||||
/* Sum 2 */
|
||||
input_1 = (int16_t)(a_1 & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (int16_t)(a_2 & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
SAT_INPUT(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r2 = (q7_t)sum;
|
||||
|
||||
/* Sum 4 */
|
||||
input_1 = (int16_t)((a_1 >> 16) & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (int16_t)((a_2 >> 16) & 0x0FFFFL) << left_shift;
|
||||
SAT_INPUT(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
SAT_INPUT(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r4 = (q7_t)sum;
|
||||
|
||||
write_q7x4_ia(&output, __PACKq7(r1, r2, r3, r4));
|
||||
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
loop_count = block_size & 0x3;
|
||||
#else
|
||||
loop_count = block_size;
|
||||
#endif
|
||||
|
||||
while (loop_count > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
|
||||
input_1 = (*input_1_vect++ + input_1_offset) << left_shift;
|
||||
input_2 = (*input_2_vect++ + input_2_offset) << left_shift;
|
||||
|
||||
input_1 = arm_nn_doubling_high_mult(input_1, input_1_mult);
|
||||
input_1 = arm_nn_divide_by_power_of_two(input_1, -input_1_shift);
|
||||
|
||||
input_2 = arm_nn_doubling_high_mult(input_2, input_2_mult);
|
||||
input_2 = arm_nn_divide_by_power_of_two(input_2, -input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
SAT_INPUT(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_MVEI */
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
|
@ -1,202 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_mul_s8
|
||||
* Description: Element wise multiplication
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief s8 element wise multiplication of two vectors
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_elementwise_mul_s8(const int8_t *input_1_vect,
|
||||
const int8_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const uint32_t block_size)
|
||||
{
|
||||
|
||||
int32_t loop_count;
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
loop_count = (block_size + 3) / 4;
|
||||
uint32_t num_elements = block_size;
|
||||
|
||||
for (int i = 0; i < loop_count; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp32q(num_elements);
|
||||
|
||||
int32x4_t input_1 = vldrbq_z_s32(input_1_vect, p);
|
||||
input_1 = vaddq_n_s32(input_1, input_1_offset);
|
||||
|
||||
int32x4_t input_2 = vldrbq_z_s32(input_2_vect, p);
|
||||
input_2 = vaddq_n_s32(input_2, input_2_offset);
|
||||
|
||||
int32x4_t res_0 = vmulq_s32(input_1, input_2);
|
||||
|
||||
res_0 = arm_requantize_mve_32x4(res_0, vdupq_n_s32(out_mult), vdupq_n_s32(out_shift));
|
||||
|
||||
res_0 += vdupq_n_s32(out_offset);
|
||||
|
||||
res_0 = vmaxq_s32(res_0, vdupq_n_s32(out_activation_min));
|
||||
res_0 = vminq_s32(res_0, vdupq_n_s32(out_activation_max));
|
||||
|
||||
vstrbq_p_s32(output, res_0, p);
|
||||
input_1_vect += 4;
|
||||
input_2_vect += 4;
|
||||
output += 4;
|
||||
num_elements -= 4;
|
||||
}
|
||||
|
||||
#else
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t mul_res;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
int32_t a_1, b_1, a_2, b_2;
|
||||
|
||||
int32_t offset_1_packed, offset_2_packed;
|
||||
|
||||
int8_t r1, r2, r3, r4;
|
||||
|
||||
offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL);
|
||||
offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL);
|
||||
|
||||
loop_count = block_size >> 2;
|
||||
|
||||
while (loop_count > 0U)
|
||||
{
|
||||
/* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension
|
||||
intrinsic */
|
||||
input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1);
|
||||
input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2);
|
||||
|
||||
a_1 = __SADD16(a_1, offset_1_packed);
|
||||
b_1 = __SADD16(b_1, offset_1_packed);
|
||||
|
||||
a_2 = __SADD16(a_2, offset_2_packed);
|
||||
b_2 = __SADD16(b_2, offset_2_packed);
|
||||
|
||||
/* Mul 1 */
|
||||
input_1 = (int16_t)(b_1 & 0x0FFFFL);
|
||||
input_2 = (int16_t)(b_2 & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r1 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 3 */
|
||||
input_1 = (int16_t)((b_1 >> 16U) & 0x0FFFFL);
|
||||
input_2 = (int16_t)((b_2 >> 16U) & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r3 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 2 */
|
||||
input_1 = (int16_t)(a_1 & 0x0FFFFL);
|
||||
input_2 = (int16_t)(a_2 & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r2 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 4 */
|
||||
input_1 = (int16_t)((a_1 >> 16U) & 0x0FFFFL);
|
||||
input_2 = (int16_t)((a_2 >> 16U) & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r4 = (q7_t)mul_res;
|
||||
|
||||
write_q7x4_ia(&output, __PACKq7(r1, r2, r3, r4));
|
||||
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
loop_count = block_size & 0x3;
|
||||
#else
|
||||
loop_count = block_size;
|
||||
#endif
|
||||
|
||||
while (loop_count > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
|
||||
input_1 = *input_1_vect++ + input_1_offset;
|
||||
input_2 = *input_2_vect++ + input_2_offset;
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
|
||||
*output++ = (q7_t)mul_res;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
|
@ -1,65 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_w.c
|
||||
* Description: s8 version of concatenation along the W axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the W axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_w(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint32_t offset_w)
|
||||
{
|
||||
const uint32_t input_copy_size = input_x * input_y * input_z * input_w;
|
||||
|
||||
output += offset_w * (input_x * input_y * input_z);
|
||||
|
||||
memcpy(output, input, input_copy_size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
|
@ -1,74 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_x.c
|
||||
* Description: s8 version of concatenation along the X axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the X axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_x(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_x,
|
||||
const uint32_t offset_x)
|
||||
{
|
||||
const uint32_t num_iterations = input_y * input_z * input_w;
|
||||
|
||||
output += offset_x;
|
||||
|
||||
uint32_t i;
|
||||
|
||||
// Copy per row
|
||||
for (i = 0; i < num_iterations; ++i)
|
||||
{
|
||||
memcpy(output, input, input_x);
|
||||
input += input_x;
|
||||
output += output_x;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
|
@ -1,75 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_y.c
|
||||
* Description: s8 version of concatenation along the Y axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the Y axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_y(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_y,
|
||||
const uint32_t offset_y)
|
||||
{
|
||||
const uint32_t num_iterations = input_z * input_w;
|
||||
const uint32_t input_copy_size = input_x * input_y;
|
||||
const uint32_t output_stride = input_x * output_y;
|
||||
|
||||
output += offset_y * input_x;
|
||||
uint32_t i;
|
||||
|
||||
// Copy per tile
|
||||
for (i = 0; i < num_iterations; ++i)
|
||||
{
|
||||
memcpy(output, input, input_copy_size);
|
||||
input += input_copy_size;
|
||||
output += output_stride;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
|
@ -1,74 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_z.c
|
||||
* Description: s8 version of concatenation along the Z axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the Z axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_z(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_z,
|
||||
const uint32_t offset_z)
|
||||
{
|
||||
const uint32_t input_copy_size = input_x * input_y * input_z;
|
||||
const uint32_t output_stride = input_x * input_y * output_z;
|
||||
|
||||
output += offset_z * (input_x * input_y);
|
||||
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < input_w; ++i)
|
||||
{
|
||||
memcpy(output, input, input_copy_size);
|
||||
input += input_copy_size;
|
||||
output += output_stride;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
|
@ -1,201 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1_x_n_s8.c
|
||||
* Description: s8 version of 1xN convolution using symmetric quantization.
|
||||
*
|
||||
* $Date: July 27, 2020
|
||||
* $Revision: V.2.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nn_types.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* 1xN s8 convolution function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context* ctx,
|
||||
const cmsis_nn_conv_params* conv_params,
|
||||
const cmsis_nn_per_channel_quant_params* quant_params,
|
||||
const cmsis_nn_dims* input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims* filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims* bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims* output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
arm_status status = ARM_MATH_SUCCESS;
|
||||
if (output_dims->w % 4 != 0)
|
||||
{
|
||||
status = ARM_MATH_SIZE_MISMATCH;
|
||||
goto out;
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
const uint16_t input_x = input_dims->w;
|
||||
const uint16_t kernel_x = filter_dims->w;
|
||||
const uint16_t output_x = output_dims->w;
|
||||
const uint16_t output_ch = output_dims->c;
|
||||
const uint16_t input_ch = input_dims->c;
|
||||
const uint16_t pad_x = conv_params->padding.w;
|
||||
const uint16_t stride_x = conv_params->stride.w;
|
||||
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_out_x = 0; i_out_x <= (output_x - 4); i_out_x += 4)
|
||||
{
|
||||
int32_t input_begin_idx[4];
|
||||
int32_t ker_begin_idx[4];
|
||||
int32_t ker_end_idx[4];
|
||||
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
const int32_t est_input_x_idx = stride_x * (i_out_x + i) - pad_x;
|
||||
input_begin_idx[i] = MAX(0, est_input_x_idx);
|
||||
ker_begin_idx[i] = MAX(0, -est_input_x_idx);
|
||||
ker_end_idx[i] = MIN(kernel_x, input_x - est_input_x_idx);
|
||||
}
|
||||
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32x4_t s_offset;
|
||||
int32_t acc[4];
|
||||
if ((ker_begin_idx[0] != 0) || (ker_end_idx[3] != kernel_x))
|
||||
{
|
||||
int32_t sum_row[4];
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[0] - ker_begin_idx[0]) * input_ch,
|
||||
input_data + input_begin_idx[0] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[0] * input_ch),
|
||||
&sum_row[0],
|
||||
&acc[0]);
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[1] - ker_begin_idx[1]) * input_ch,
|
||||
input_data + input_begin_idx[1] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[1] * input_ch),
|
||||
&sum_row[1],
|
||||
&acc[1]);
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[2] - ker_begin_idx[2]) * input_ch,
|
||||
input_data + input_begin_idx[2] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[2] * input_ch),
|
||||
&sum_row[2],
|
||||
&acc[2]);
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[3] - ker_begin_idx[3]) * input_ch,
|
||||
input_data + input_begin_idx[3] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[3] * input_ch),
|
||||
&sum_row[3],
|
||||
&acc[3]);
|
||||
|
||||
s_offset = vldrwq_s32(sum_row);
|
||||
}
|
||||
else
|
||||
{
|
||||
int32_t sum_row;
|
||||
(void)arm_nn_mat_mul_core_4x_s8(kernel_x * input_ch,
|
||||
stride_x * input_ch,
|
||||
input_data + input_begin_idx[0] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch),
|
||||
&sum_row,
|
||||
acc);
|
||||
|
||||
s_offset = vdupq_n_s32(sum_row);
|
||||
}
|
||||
int32x4_t res = vldrwq_s32(acc);
|
||||
s_offset = vmulq_n_s32(s_offset, input_offset);
|
||||
res = vaddq_s32(res, s_offset);
|
||||
if (bias_data)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias_data[i_out_ch]);
|
||||
}
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(out_activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(output_data, scatter_offset, res);
|
||||
output_data++;
|
||||
}
|
||||
output_data += (3 * output_ch);
|
||||
}
|
||||
|
||||
#else
|
||||
status = arm_convolve_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
#endif
|
||||
|
||||
out:
|
||||
/* Return to application */
|
||||
return status;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims* input_dims,
|
||||
const cmsis_nn_dims* filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,236 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c
|
||||
* Description: Fast Q7 version of 1x1 convolution (non-square shape)
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
|
||||
* and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise
|
||||
* separable convolution.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*
|
||||
* [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
||||
* https://arxiv.org/abs/1704.04861
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
(void)dim_im_in_y;
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ch_out;
|
||||
|
||||
/* -----------------------
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
|
||||
|| padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
|
||||
ch_im_in);
|
||||
pBuffer += ch_im_in;
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
|
||||
|| padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,186 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1x1_s8_fast.c
|
||||
* Description: Fast q7 version of 1x1 convolution (non-square shape)
|
||||
*
|
||||
* $Date: July 27, 2020
|
||||
* $Revision: V.2.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nn_types.h"
|
||||
|
||||
#define DIM_KER_X (1U)
|
||||
#define DIM_KER_Y (1U)
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Fast s8 version for 1x1 convolution (non-square shape)
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
if (input_dims->c % 4 != 0 ||
|
||||
conv_params->padding.w != 0 || conv_params->padding.h != 0 ||
|
||||
conv_params->stride.w != 1 || conv_params->stride.h != 1)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
(void)ctx;
|
||||
(void)filter_dims;
|
||||
(void)bias_dims;
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
const int32_t col_len = input_dims->w * input_dims->h * input_dims->n;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_items = 0; i_items <= (col_len - 4); i_items += 4)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t sum_row = 0;
|
||||
int32_t temp_out[4];
|
||||
|
||||
(void)arm_nn_mat_mul_core_4x_s8(input_ch,
|
||||
input_ch,
|
||||
input_data + i_items * input_ch,
|
||||
filter_data + i_out_ch * input_ch,
|
||||
&sum_row,
|
||||
temp_out);
|
||||
int32x4_t res = vldrwq_s32(temp_out);
|
||||
if (bias_data)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias_data[i_out_ch]);
|
||||
}
|
||||
sum_row = sum_row * input_offset;
|
||||
res = vaddq_n_s32(res, sum_row);
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(out_activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, (uint32_t)output_ch,
|
||||
(uint32_t)output_ch * 2,
|
||||
(uint32_t)output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(output_data, scatter_offset, res);
|
||||
output_data++;
|
||||
}
|
||||
output_data += (3 * output_ch);
|
||||
}
|
||||
|
||||
/* Handle left over elements */
|
||||
for (int i_items = (col_len & ~0x3); i_items < col_len; i_items++)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t sum_row = 0;
|
||||
|
||||
int32_t acc;
|
||||
(void)arm_nn_mat_mul_core_1x_s8(input_ch,
|
||||
input_data + i_items * input_ch,
|
||||
filter_data + i_out_ch * input_ch,
|
||||
&sum_row,
|
||||
&acc);
|
||||
if (bias_data)
|
||||
{
|
||||
acc += bias_data[i_out_ch];
|
||||
}
|
||||
sum_row = (sum_row * input_offset);
|
||||
acc += sum_row;
|
||||
acc = arm_nn_requantize(acc, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
acc += out_offset;
|
||||
|
||||
acc = MAX(acc, out_activation_min);
|
||||
acc = MIN(acc, out_activation_max);
|
||||
*output_data++ = acc;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M processors with or without DSP extension */
|
||||
|
||||
const int32_t lhs_rows = input_dims->w * input_dims->h * input_dims->n;
|
||||
const int32_t rhs_rows = output_dims->c;
|
||||
const int32_t rhs_cols = input_dims->c;
|
||||
|
||||
arm_nn_mat_mult_nt_t_s8(input_data,
|
||||
filter_data,
|
||||
bias_data,
|
||||
output_data,
|
||||
quant_params->multiplier,
|
||||
quant_params->shift,
|
||||
lhs_rows,
|
||||
rhs_rows,
|
||||
rhs_cols,
|
||||
conv_params->input_offset,
|
||||
conv_params->output_offset,
|
||||
conv_params->activation.min,
|
||||
conv_params->activation.max);
|
||||
|
||||
#endif
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims)
|
||||
{
|
||||
(void)input_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,207 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_basic.c
|
||||
* Description: Q15 version of convolution
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* This basic version is designed to work for any input tensor and weight
|
||||
* dimension.
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q15_basic(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
uint16_t im2col_out_pixel_index = 0;
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
q15_t *im_buffer = bufferA;
|
||||
const q15_t *pA;
|
||||
int i;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
||||
memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
pA = wt;
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = im_buffer;
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q15_t) __SSAT((sum >> out_shift), 16);
|
||||
pOut++;
|
||||
}
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
im2col_out_pixel_index++;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,255 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_fast.c
|
||||
* Description: Fast Q15 version of convolution
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 2
|
||||
*
|
||||
* ch_im_out is multipe of 2
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q15_fast(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *im_buffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
||||
memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (i_out_x & 0x1)
|
||||
{
|
||||
int i;
|
||||
/* initialize the matrix pointers for A */
|
||||
const q15_t *pA = wt;
|
||||
|
||||
/* set up the second output pointers */
|
||||
q15_t *pOut2 = pOut + ch_im_out;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = im_buffer;
|
||||
const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
|
||||
|
||||
/* aling the second pointer for A */
|
||||
const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA2);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum2 = __SMLAD(inA1, inB2, sum2);
|
||||
sum3 = __SMLAD(inA2, inB1, sum3);
|
||||
sum4 = __SMLAD(inA2, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
|
||||
*pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += ch_im_in * dim_kernel * dim_kernel;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,265 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_fast.c
|
||||
* Description: Fast Q15 version of convolution
|
||||
*
|
||||
* $Date: 24. May 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 2
|
||||
*
|
||||
* ch_im_out is multipe of 2
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *im_buffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
||||
memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (i_out_x & 0x1)
|
||||
{
|
||||
int i;
|
||||
/* initialize the matrix pointers for A */
|
||||
const q15_t *pA = wt;
|
||||
|
||||
/* set up the second output pointers */
|
||||
q15_t *pOut2 = pOut + ch_im_out;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = im_buffer;
|
||||
const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
|
||||
/* aling the second pointer for A */
|
||||
const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA2);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum2 = __SMLAD(inA1, inB2, sum2);
|
||||
sum3 = __SMLAD(inA2, inB1, sum3);
|
||||
sum4 = __SMLAD(inA2, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
|
||||
*pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,279 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_RGB.c
|
||||
* Description: Q7 version of convolution for RGB image
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 convolution function for RGB image
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in equals 3
|
||||
*
|
||||
* This kernel is written exclusively for convolution with ch_im_in
|
||||
* equals 3. This applies on the first layer of CNNs which has input
|
||||
* image with RGB format.
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
// check if number of input channels is 3
|
||||
if (ch_im_in != 3)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
// This part implements the im2col function
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
|
||||
*__SIMD32(pBuffer) = 0x0;
|
||||
*(pBuffer + 2) = 0;
|
||||
pBuffer += 3;
|
||||
} else
|
||||
{
|
||||
/*
|
||||
* Equivalent to:
|
||||
* arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
|
||||
*/
|
||||
|
||||
const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
|
||||
q31_t buf = arm_nn_read_q7x4(pPixel);
|
||||
|
||||
union arm_nnword top;
|
||||
union arm_nnword bottom;
|
||||
|
||||
top.word = __SXTB16(buf);
|
||||
bottom.word = __SXTB16(__ROR(buf, 8));
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
/*
|
||||
* little-endian, | omit | 3rd | 2nd | 1st |
|
||||
* MSB LSB
|
||||
* top | 3rd | 1st |; bottom | omit | 2nd |
|
||||
*
|
||||
* version 1, need to swap 2nd and 3rd weight
|
||||
* *__SIMD32(pBuffer) = top.word;
|
||||
* *(pBuffer+2) = bottom.half_words[0];
|
||||
*
|
||||
* version 2, no weight shuffling required
|
||||
*/
|
||||
*pBuffer++ = top.half_words[0];
|
||||
*__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0);
|
||||
#else
|
||||
/*
|
||||
* big-endian, | 1st | 2nd | 3rd | omit |
|
||||
* MSB LSB
|
||||
* top | 2nd | omit |; bottom | 1st | 3rd |
|
||||
*
|
||||
* version 1, need to swap 2nd and 3rd weight
|
||||
* *__SIMD32(pBuffer) = bottom.word;
|
||||
* *(pBuffer+2) = top.half_words[1];
|
||||
*
|
||||
* version 2, no weight shuffling required
|
||||
*/
|
||||
*pBuffer++ = bottom.half_words[0];
|
||||
*__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0);
|
||||
#endif
|
||||
pBuffer += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
|
||||
ch_im_out,
|
||||
3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = 3 * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
// check if number of input channels is 3
|
||||
if (ch_im_in != 3)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
/* if-for implementation */
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,231 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_basic.c
|
||||
* Description: Q7 version of convolution
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* This basic version is designed to work for any input tensor and weight
|
||||
* dimension.
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q7_basic(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_no_shift((q7_t *)
|
||||
Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in *
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
/* Point to the beging of the im2col buffer */
|
||||
const q15_t *pB = bufferA;
|
||||
|
||||
/* Each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,229 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_basic.c
|
||||
* Description: Q7 version of convolution
|
||||
*
|
||||
* $Date: 13. July 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_no_shift((q7_t *)
|
||||
Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in *
|
||||
dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
/* Point to the beging of the im2col buffer */
|
||||
const q15_t *pB = bufferA;
|
||||
|
||||
/* Each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x +
|
||||
(m * dim_kernel_x + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,408 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_fast.c
|
||||
* Description: Fast Q7 version of convolution
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
|
||||
*
|
||||
* ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )
|
||||
*
|
||||
* The im2col converts the Q7 tensor input into Q15 column, which is stored in
|
||||
* bufferA. There is reordering happenning during this im2col process with
|
||||
* arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
|
||||
* third elements are swapped.
|
||||
*
|
||||
* The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
|
||||
* GEMM computation with the reordered columns.
|
||||
*
|
||||
* To speed-up the determination of the padding condition, we split the
|
||||
* computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
|
||||
* This reduces the total number of boundary condition checks and improves
|
||||
* the data copying performance.
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q7_fast(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we split the entire matrix into three regions depending on the padding situation
|
||||
* Top: i_out_y from 0 to padding - 1
|
||||
* Middle: i_out_y from padding to dim_im_out-padding-1
|
||||
* Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
|
||||
*/
|
||||
|
||||
/* top part */
|
||||
for (i_out_y = 0; i_out_y < padding; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift
|
||||
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
|
||||
bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in
|
||||
*
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* middle part, here we also divide the x into left, mid and right */
|
||||
for (; i_out_y < dim_im_out - padding; i_out_y++)
|
||||
{
|
||||
|
||||
/* left part */
|
||||
for (i_out_x = 0; i_out_x < padding; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift
|
||||
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
|
||||
bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in
|
||||
*
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* mid part */
|
||||
for (; i_out_x < dim_im_out - padding; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
|
||||
+
|
||||
(i_ker_y *
|
||||
dim_im_in +
|
||||
i_out_x *
|
||||
stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
|
||||
pBuffer += ch_im_in * dim_kernel;
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
|
||||
bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in
|
||||
*
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* right part */
|
||||
for (; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift
|
||||
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
|
||||
bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in
|
||||
*
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift
|
||||
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
|
||||
bufferA,
|
||||
ch_im_out,
|
||||
ch_im_in
|
||||
*
|
||||
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
|
||||
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
|
||||
n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,379 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_fast_nonsquare.c
|
||||
* Description: Fast Q7 version of convolution (non-sqaure shape)
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/* -----------------------
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we split the entire matrix into three regions depending on the padding situation
|
||||
* Top: i_out_y from 0 to padding - 1
|
||||
* Middle: i_out_y from padding to dim_im_out-padding-1
|
||||
* Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
|
||||
*/
|
||||
|
||||
/* top part */
|
||||
for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
|
||||
pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
|
||||
bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* middle part, here we also divide the x into left, mid and right */
|
||||
for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
|
||||
{
|
||||
|
||||
/* left part */
|
||||
for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
|
||||
pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
|
||||
bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* mid part */
|
||||
for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +
|
||||
(i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
|
||||
pBuffer, ch_im_in * dim_kernel_x);
|
||||
pBuffer += ch_im_in * dim_kernel_x;
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
|
||||
bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* right part */
|
||||
for (; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
|
||||
pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
|
||||
bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
|
||||
} else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
|
||||
pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut =
|
||||
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
|
||||
bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
/* if-for implementation */
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,382 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_s8.c
|
||||
* Description: s8 version of convolution using symmetric quantization.
|
||||
*
|
||||
* $Date: July 27, 2020
|
||||
* $Revision: V.2.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nn_types.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic s8 convolution function.
|
||||
*
|
||||
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
|
||||
* are multiples of 4 or atleast greater than 4.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_s8(const cmsis_nn_context* ctx,
|
||||
const cmsis_nn_conv_params* conv_params,
|
||||
const cmsis_nn_per_channel_quant_params* quant_params,
|
||||
const cmsis_nn_dims* input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims* filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims* bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims* output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
const uint16_t input_batches = input_dims->n;
|
||||
const uint16_t input_x = input_dims->w;
|
||||
const uint16_t input_y = input_dims->h;
|
||||
const uint16_t input_ch = input_dims->c;
|
||||
const uint16_t kernel_x = filter_dims->w;
|
||||
const uint16_t kernel_y = filter_dims->h;
|
||||
const uint16_t output_x = output_dims->w;
|
||||
const uint16_t output_y = output_dims->h;
|
||||
const uint16_t output_ch = output_dims->c;
|
||||
|
||||
const uint16_t pad_x = conv_params->padding.w;
|
||||
const uint16_t pad_y = conv_params->padding.h;
|
||||
const uint16_t stride_x = conv_params->stride.w;
|
||||
const uint16_t stride_y = conv_params->stride.h;
|
||||
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
int i_batch;
|
||||
for (i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)bias_dims;
|
||||
/* Generate upto four columns from the input tensor a GEMM computation */
|
||||
q7_t *im2col_buf = (q7_t *)buffer_a;
|
||||
q7_t *out = output_data;
|
||||
int32_t buffer_fill_cnt = 0;
|
||||
int32_t padded = 0;
|
||||
const int32_t num_elem = kernel_x * kernel_y * input_ch;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
for (int i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y; i_ker_y++)
|
||||
{
|
||||
for (int i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
||||
{
|
||||
memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
|
||||
padded = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_memcpy_q7(im2col_buf, input_data + (i_ker_y * input_x + i_ker_x) * input_ch, input_ch);
|
||||
}
|
||||
im2col_buf += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
buffer_fill_cnt++;
|
||||
|
||||
/* Computation is filed for every 4 columns */
|
||||
if (buffer_fill_cnt == 4 && (padded == 0))
|
||||
{
|
||||
buffer_fill_cnt = 0;
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t sum_row;
|
||||
int32_t acc[4];
|
||||
|
||||
(void)arm_nn_mat_mul_core_4x_s8(num_elem,
|
||||
num_elem,
|
||||
(q7_t *)buffer_a,
|
||||
filter_data + num_elem * i_out_ch,
|
||||
&sum_row,
|
||||
acc);
|
||||
int32x4_t s_offset = vdupq_n_s32(sum_row);
|
||||
|
||||
int32x4_t res = vldrwq_s32(acc);
|
||||
s_offset = vmulq_n_s32(s_offset, input_offset);
|
||||
if (bias_data)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias_data[i_out_ch]);
|
||||
}
|
||||
res = vaddq_s32(res, s_offset);
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(out_activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(out, scatter_offset, res);
|
||||
out++;
|
||||
}
|
||||
out += (3 * output_ch);
|
||||
im2col_buf = (q7_t *)buffer_a;
|
||||
}
|
||||
else if (buffer_fill_cnt == 4 && (padded != 0))
|
||||
{
|
||||
buffer_fill_cnt = 0;
|
||||
out = arm_nn_mat_mult_s8(filter_data,
|
||||
(q7_t *)buffer_a,
|
||||
output_ch,
|
||||
4,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
input_offset,
|
||||
0,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
num_elem,
|
||||
bias_data,
|
||||
out);
|
||||
|
||||
im2col_buf = (q7_t *)buffer_a;
|
||||
padded = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Handle left over columns */
|
||||
if (buffer_fill_cnt != 0)
|
||||
{
|
||||
out = arm_nn_mat_mult_s8(filter_data,
|
||||
(q7_t *)buffer_a,
|
||||
output_ch,
|
||||
buffer_fill_cnt,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
input_offset,
|
||||
0,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
num_elem,
|
||||
bias_data,
|
||||
out);
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
(void)bias_dims;
|
||||
int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/* Generate two columns from the input tensor a GEMM computation */
|
||||
q15_t *two_column_buf = buffer_a;
|
||||
q7_t *out = output_data;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_with_offset(input_data + (i_ker_y * input_x + i_ker_x) * input_ch, two_column_buf, input_ch, input_offset);
|
||||
}
|
||||
two_column_buf += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
|
||||
{
|
||||
out =
|
||||
arm_nn_mat_mult_kernel_s8_s16(filter_data,
|
||||
buffer_a,
|
||||
output_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
input_ch * kernel_y * kernel_x,
|
||||
bias_data,
|
||||
out);
|
||||
|
||||
/* counter reset */
|
||||
two_column_buf = buffer_a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (two_column_buf != buffer_a)
|
||||
{
|
||||
const q7_t *ker_a = filter_data;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < output_ch; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = 0;
|
||||
if (bias_data)
|
||||
{
|
||||
sum = bias_data[i];
|
||||
}
|
||||
|
||||
/* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
|
||||
const q15_t *ip_as_col = buffer_a;
|
||||
|
||||
/* 4 multiply and accumulates are done in one loop. */
|
||||
uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
q31_t ker_a1, ker_a2;
|
||||
q31_t ip_b1, ip_b2;
|
||||
|
||||
ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
|
||||
|
||||
ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a1, ip_b1, sum);
|
||||
ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a2, ip_b2, sum);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
/* Handle left over mac */
|
||||
col_count = input_ch * kernel_y * kernel_x & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t ker_a1 = *ker_a++;
|
||||
q15_t ip_b1 = *ip_as_col++;
|
||||
sum += ker_a1 * ip_b1;
|
||||
col_count--;
|
||||
}
|
||||
|
||||
sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
*out++ = (q7_t)sum;
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
(void)buffer_a;
|
||||
int32_t i_out_ch, i_out_y, i_out_x, i_input_ch, i_ker_y, i_ker_x;
|
||||
int32_t conv_out;
|
||||
|
||||
for (i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
for (i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
conv_out = 0;
|
||||
|
||||
const int32_t base_idx_y = stride_y * i_out_y - pad_y;
|
||||
const int32_t base_idx_x = stride_x * i_out_x - pad_x;
|
||||
|
||||
const int32_t ker_y_start = MAX(0, -base_idx_y);
|
||||
const int32_t ker_x_start = MAX(0, -base_idx_x);
|
||||
|
||||
const int32_t ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int32_t ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
|
||||
for (i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t in_row = base_idx_y + i_ker_y;
|
||||
const int32_t in_col = base_idx_x + i_ker_x;
|
||||
for (i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
conv_out +=
|
||||
(input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] + input_offset) *
|
||||
filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
|
||||
(i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias_data)
|
||||
{
|
||||
conv_out += bias_data[i_out_ch];
|
||||
}
|
||||
conv_out = arm_nn_requantize(conv_out, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
conv_out += out_offset;
|
||||
conv_out = MAX(conv_out, out_activation_min);
|
||||
conv_out = MIN(conv_out, out_activation_max);
|
||||
output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int8_t)conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
/* Advance to the next batch */
|
||||
input_data += (input_x * input_y * input_ch);
|
||||
output_data += (output_x * output_y * output_ch);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims* input_dims,
|
||||
const cmsis_nn_dims* filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,148 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_wrapper_s8.c
|
||||
* Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn to perform the convolution.
|
||||
*
|
||||
* $Date: May 18, 2020
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nn_types.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Convolution layer
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_wrapper_s8(const cmsis_nn_context* ctx,
|
||||
const cmsis_nn_conv_params* conv_params,
|
||||
const cmsis_nn_per_channel_quant_params* quant_params,
|
||||
const cmsis_nn_dims* input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims* filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims* bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims* output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
if ((conv_params->padding.w == 0) &&
|
||||
(conv_params->padding.h == 0) &&
|
||||
(input_dims->c % 4 == 0) &&
|
||||
(conv_params->stride.w == 1) &&
|
||||
(conv_params->stride.h == 1) &&
|
||||
(filter_dims->w == 1) &&
|
||||
(filter_dims->h == 1))
|
||||
{
|
||||
return arm_convolve_1x1_s8_fast(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
else if ((output_dims->h == 1) &&
|
||||
(input_dims->h == 1) &&
|
||||
(filter_dims->h == 1) &&
|
||||
(output_dims->w % 4 == 0) &&
|
||||
(input_dims->n == 1))
|
||||
{
|
||||
return arm_convolve_1_x_n_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
else
|
||||
{
|
||||
return arm_convolve_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
}
|
||||
|
||||
int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params* conv_params,
|
||||
const cmsis_nn_dims* input_dims,
|
||||
const cmsis_nn_dims* filter_dims,
|
||||
const cmsis_nn_dims* output_dims)
|
||||
{
|
||||
if ((conv_params->padding.w == 0) &&
|
||||
(conv_params->padding.h == 0) &&
|
||||
(input_dims->c % 4 == 0) &&
|
||||
(conv_params->stride.w == 1) &&
|
||||
(conv_params->stride.h == 1) &&
|
||||
(filter_dims->w == 1) &&
|
||||
(filter_dims->h == 1))
|
||||
{
|
||||
return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
|
||||
}
|
||||
else if ((output_dims->h == 1) &&
|
||||
(input_dims->h == 1) &&
|
||||
(filter_dims->h == 1) &&
|
||||
(output_dims->w % 4 == 0) &&
|
||||
(input_dims->n == 1))
|
||||
{
|
||||
return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
else
|
||||
{
|
||||
return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
|
|
@ -1,213 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_3x3_s8.c
|
||||
* Description: Optimized s8 depthwise convolution function for channel
|
||||
* multiplier of 1 and 3x3 kernel size.
|
||||
*
|
||||
* $Date: May 14, 2020
|
||||
* $Revision: V.2.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s8 depthwise convolution function with constraint that
|
||||
* in_channel == out_channel and kernel_x == kernel_y == 3 with pads at most 1
|
||||
*
|
||||
* Refer prototype header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
(void)ctx;
|
||||
(void)bias_dims;
|
||||
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
const int32_t pad_x = dw_conv_params->padding.w;
|
||||
const int32_t pad_y = dw_conv_params->padding.h;
|
||||
const int32_t stride_x = dw_conv_params->stride.w;
|
||||
const int32_t stride_y = dw_conv_params->stride.h;
|
||||
const int32_t *output_shift = quant_params->shift;
|
||||
const int32_t *output_mult = quant_params->multiplier;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_offset = dw_conv_params->output_offset;
|
||||
const int32_t input_offset = dw_conv_params->input_offset;
|
||||
const int32_t output_activation_min = dw_conv_params->activation.min;
|
||||
const int32_t output_activation_max = dw_conv_params->activation.max;
|
||||
|
||||
/* Check input constraints input_ch == output_ch */
|
||||
if (input_ch != output_ch)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
/* Check input constraints pad_x <= 1 */
|
||||
if (pad_x > 1 || filter_dims->w != 3 || filter_dims->h != 3)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
int32_t in_ch = 0;
|
||||
int32_t ker_w_start = MAX(0, -in_w);
|
||||
|
||||
for (; in_ch <= (input_ch - 4); in_ch += 4)
|
||||
{
|
||||
int32_t out_buff0 = bias[in_ch + 0];
|
||||
int32_t out_buff1 = bias[in_ch + 1];
|
||||
int32_t out_buff2 = bias[in_ch + 2];
|
||||
int32_t out_buff3 = bias[in_ch + 3];
|
||||
|
||||
const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t in_val = 0;
|
||||
int32_t ker_val = 0;
|
||||
|
||||
if (ker_w_start == 0)
|
||||
{
|
||||
in_val = arm_nn_read_q7x4(input_ptr);
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr);
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
}
|
||||
|
||||
in_val = arm_nn_read_q7x4(input_ptr + input_ch);
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr + input_ch);
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
|
||||
if ((input_x - in_w) >= 3)
|
||||
{
|
||||
in_val = arm_nn_read_q7x4(input_ptr + (input_ch << 1));
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr + (input_ch << 1));
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
}
|
||||
|
||||
input_ptr += (input_ch * input_x);
|
||||
kernel_ptr += (input_ch * 3);
|
||||
}
|
||||
|
||||
out_buff0 = arm_nn_requantize(out_buff0, output_mult[in_ch + 0], output_shift[in_ch + 0]);
|
||||
out_buff1 = arm_nn_requantize(out_buff1, output_mult[in_ch + 1], output_shift[in_ch + 1]);
|
||||
out_buff2 = arm_nn_requantize(out_buff2, output_mult[in_ch + 2], output_shift[in_ch + 2]);
|
||||
out_buff3 = arm_nn_requantize(out_buff3, output_mult[in_ch + 3], output_shift[in_ch + 3]);
|
||||
|
||||
out_buff0 += output_offset;
|
||||
out_buff1 += output_offset;
|
||||
out_buff2 += output_offset;
|
||||
out_buff3 += output_offset;
|
||||
|
||||
out_buff0 = MIN(MAX(out_buff0, output_activation_min), output_activation_max);
|
||||
out_buff1 = MIN(MAX(out_buff1, output_activation_min), output_activation_max);
|
||||
out_buff2 = MIN(MAX(out_buff2, output_activation_min), output_activation_max);
|
||||
out_buff3 = MIN(MAX(out_buff3, output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (int8_t)out_buff0;
|
||||
output[out_idx++] = (int8_t)out_buff1;
|
||||
output[out_idx++] = (int8_t)out_buff2;
|
||||
output[out_idx++] = (int8_t)out_buff3;
|
||||
}
|
||||
|
||||
// Leftover
|
||||
for (; in_ch < input_ch; ++in_ch)
|
||||
{
|
||||
int32_t out_buff = bias[in_ch];
|
||||
|
||||
const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
|
||||
{
|
||||
if (ker_w_start == 0)
|
||||
{
|
||||
out_buff += (*(input_ptr) + input_offset) * *(kernel_ptr);
|
||||
}
|
||||
|
||||
out_buff += (*(input_ptr + input_ch) + input_offset) * *(kernel_ptr + input_ch);
|
||||
|
||||
if ((input_x - in_w) >= 3)
|
||||
{
|
||||
out_buff += (*(input_ptr + (input_ch << 1)) + input_offset) * *(kernel_ptr + (input_ch << 1));
|
||||
}
|
||||
|
||||
input_ptr += (input_ch * input_x);
|
||||
kernel_ptr += (input_ch * 3);
|
||||
}
|
||||
|
||||
out_buff = arm_nn_requantize(out_buff, output_mult[in_ch], output_shift[in_ch]);
|
||||
out_buff += output_offset;
|
||||
out_buff = MIN(MAX(out_buff, output_activation_min), output_activation_max);
|
||||
output[out_idx++] = (int8_t)out_buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,249 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_s8.c
|
||||
* Description: s8 version of depthwise convolution.
|
||||
*
|
||||
* $Date: May 14, 2020
|
||||
* $Revision: V.2.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void depthwise_conv_s8_mult_4(const int8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const int8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
int8_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch; ++in_ch, out_ch += ch_mult)
|
||||
{
|
||||
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||||
{
|
||||
int32_t out_buff[4];
|
||||
|
||||
out_buff[0] = bias[out_ch + 0 + mult_tile];
|
||||
out_buff[1] = bias[out_ch + 1 + mult_tile];
|
||||
out_buff[2] = bias[out_ch + 2 + mult_tile];
|
||||
out_buff[3] = bias[out_ch + 3 + mult_tile];
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||||
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
|
||||
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w); ++ker_w, ker_idx += output_ch)
|
||||
{
|
||||
int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
|
||||
out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
|
||||
out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
|
||||
out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
|
||||
out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
|
||||
}
|
||||
}
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)out_idx;
|
||||
int32x4_t res = vldrwq_s32(out_buff);
|
||||
res = arm_requantize_mve_32x4(res, vldrwq_s32(&output_mult[out_ch + mult_tile]), vldrwq_s32(&output_shift[out_ch + mult_tile]));
|
||||
res = vaddq_n_s32(res, output_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(output_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(output_activation_max));
|
||||
vstrbq_s32(output, res);
|
||||
output += 4;
|
||||
#else
|
||||
out_buff[0] = arm_nn_requantize(out_buff[0], output_mult[out_ch + 0 + mult_tile], output_shift[out_ch + 0 + mult_tile]);
|
||||
out_buff[1] = arm_nn_requantize(out_buff[1], output_mult[out_ch + 1 + mult_tile], output_shift[out_ch + 1 + mult_tile]);
|
||||
out_buff[2] = arm_nn_requantize(out_buff[2], output_mult[out_ch + 2 + mult_tile], output_shift[out_ch + 2 + mult_tile]);
|
||||
out_buff[3] = arm_nn_requantize(out_buff[3], output_mult[out_ch + 3 + mult_tile], output_shift[out_ch + 3 + mult_tile]);
|
||||
|
||||
out_buff[0] += output_offset;
|
||||
out_buff[1] += output_offset;
|
||||
out_buff[2] += output_offset;
|
||||
out_buff[3] += output_offset;
|
||||
|
||||
out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
|
||||
out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
|
||||
out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
|
||||
out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (int8_t)out_buff[0];
|
||||
output[out_idx++] = (int8_t)out_buff[1];
|
||||
output[out_idx++] = (int8_t)out_buff[2];
|
||||
output[out_idx++] = (int8_t)out_buff[3];
|
||||
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void depthwise_conv_s8_generic(const q7_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const q7_t *kernel,
|
||||
const uint16_t output_ch,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const uint16_t pad_x,
|
||||
const uint16_t pad_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const int32_t *bias,
|
||||
q7_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
(void)output_ch;
|
||||
int i_out = 0;
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||||
{
|
||||
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||||
int32_t acc_0;
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + ker_<x,y>_start) >= 0 */
|
||||
const int ker_y_start = MAX(0, -base_idx_y);
|
||||
const int ker_x_start = MAX(0, -base_idx_x);
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + ker_<x,y>_end) < input_<x,y> */
|
||||
const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
acc_0 = bias[idx_out_ch];
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + i_ker_y;
|
||||
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + i_ker_x;
|
||||
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||||
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||||
|
||||
acc_0 += (input[idx_0] + input_offset) * kernel[ker_idx_0];
|
||||
}
|
||||
}
|
||||
|
||||
/* Requantize and clamp output to provided range */
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult[idx_out_ch], output_shift[idx_out_ch]);
|
||||
acc_0 += output_offset;
|
||||
acc_0 = MAX(acc_0, output_activation_min);
|
||||
acc_0 = MIN(acc_0, output_activation_max);
|
||||
|
||||
output[i_out++] = acc_0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic s8 depthwise convolution function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
* Optimization using DSP extension is not available for the generic case where channel multiplier is > 1.
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
(void)dw_conv_params->dilation;
|
||||
(void)ctx;
|
||||
|
||||
if (dw_conv_params->ch_mult % 4 == 0)
|
||||
{
|
||||
depthwise_conv_s8_mult_4(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h,
|
||||
dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output,
|
||||
quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset,
|
||||
dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max);
|
||||
}
|
||||
else
|
||||
{
|
||||
depthwise_conv_s8_generic(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h,
|
||||
dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output,
|
||||
quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset,
|
||||
dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,425 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_s8_opt.c
|
||||
* Description: Optimized s8 depthwise separable convolution function for
|
||||
* channel multiplier of 1.
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.2.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel
|
||||
*
|
||||
* Refer prototype header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t pad_x = dw_conv_params->padding.w;
|
||||
const int32_t pad_y = dw_conv_params->padding.h;
|
||||
const int32_t stride_x = dw_conv_params->stride.w;
|
||||
const int32_t stride_y = dw_conv_params->stride.h;
|
||||
const int32_t *output_shift = quant_params->shift;
|
||||
const int32_t *output_mult = quant_params->multiplier;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_offset = dw_conv_params->output_offset;
|
||||
const int32_t input_offset = dw_conv_params->input_offset;
|
||||
const int32_t output_activation_min = dw_conv_params->activation.min;
|
||||
const int32_t output_activation_max = dw_conv_params->activation.max;
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
/* Check input constraints input_ch == output_ch */
|
||||
if (input_ch != output_ch)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
#ifdef ARM_MATH_MVEI
|
||||
(void)bias_dims;
|
||||
/* Generate two columns from the input tensor */
|
||||
q7_t *lhs_buffer = (q7_t *)buffer_a;
|
||||
q7_t *out = output;
|
||||
int padded = 0;
|
||||
int buffer_count = 0;
|
||||
const int32_t kernel_size = kernel_x * kernel_y;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (int i_out_y = 0, base_idx_y = -pad_y; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
|
||||
{
|
||||
for (int i_out_x = 0, base_idx_x = -pad_x; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
|
||||
{
|
||||
for (int i_ker_y = base_idx_y; i_ker_y < base_idx_y + kernel_y; i_ker_y++)
|
||||
{
|
||||
for (int i_ker_x = base_idx_x; i_ker_x < base_idx_x + kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
||||
{
|
||||
arm_memset_q7(lhs_buffer, (int8_t)-input_offset, (uint32_t)input_ch);
|
||||
padded = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_memcpy_q7(lhs_buffer, input + (i_ker_y * input_x + i_ker_x) * input_ch, (uint32_t)input_ch);
|
||||
}
|
||||
lhs_buffer += input_ch;
|
||||
}
|
||||
}
|
||||
buffer_count++;
|
||||
|
||||
if (buffer_count == 4)
|
||||
{
|
||||
lhs_buffer = (q7_t *)buffer_a;
|
||||
if (padded == 0)
|
||||
{
|
||||
out = arm_nn_depthwise_conv_nt_t_s8(lhs_buffer,
|
||||
kernel,
|
||||
input_offset,
|
||||
input_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_offset,
|
||||
output_activation_min,
|
||||
output_activation_max,
|
||||
kernel_size,
|
||||
bias,
|
||||
out);
|
||||
}
|
||||
else
|
||||
{
|
||||
out = arm_nn_depthwise_conv_nt_t_padded_s8(lhs_buffer,
|
||||
kernel,
|
||||
input_offset,
|
||||
input_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_offset,
|
||||
output_activation_min,
|
||||
output_activation_max,
|
||||
kernel_size,
|
||||
bias,
|
||||
out);
|
||||
padded = 0;
|
||||
}
|
||||
buffer_count = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle left over buffers */
|
||||
lhs_buffer = (q7_t *)buffer_a;
|
||||
|
||||
for (int i_buf = 0; i_buf < buffer_count; i_buf++)
|
||||
{
|
||||
int32_t loop_count = (input_ch + 3) / 4;
|
||||
|
||||
int32_t num_ch_to_process = input_ch;
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count;
|
||||
num_ch_to_process -= 4, offset += 4, i_loop_cnt++)
|
||||
{
|
||||
const int8_t *col_0 = lhs_buffer + (kernel_size * input_ch * i_buf) + offset;
|
||||
const int8_t *row_0 = kernel + offset;
|
||||
int32x4_t out_0 = vldrwq_s32(&bias[offset]);
|
||||
|
||||
for (int i_ker = 0; i_ker < kernel_size; i_ker++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(row_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(col_0);
|
||||
ip_0 = vaddq_n_s32(ip_0, input_offset);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
col_0 += input_ch;
|
||||
row_0 += input_ch;
|
||||
}
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(&output_mult[offset]);
|
||||
const int32x4_t shift = vldrwq_s32(&output_shift[offset]);
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, output_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(output_activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(output_activation_max));
|
||||
mve_pred16_t p = vctp32q((uint32_t)num_ch_to_process);
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out += 4;
|
||||
}
|
||||
|
||||
const int tail_ch = input_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
(void)bias_dims;
|
||||
/* Run the following code in cores using DSP extension */
|
||||
q15_t *const col_buffer_start = buffer_a;
|
||||
q15_t *col_buffer = col_buffer_start;
|
||||
const int32_t *const bias_start_pos = bias;
|
||||
const q31_t *const out_mult_start_pos = output_mult;
|
||||
const q31_t *const out_shift_start_pos = output_shift;
|
||||
uint16_t row_count;
|
||||
uint16_t row_shift;
|
||||
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
|
||||
/* Out of bounds is only considered for the y axis as it provides a contiguous zero'ing opportunity than along
|
||||
the x axis */
|
||||
const int ker_y_start = MAX(0, -base_idx_y);
|
||||
/* Condition for kernel end dimension: (base_idx_y + ker_y_end) < input_y */
|
||||
const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
|
||||
int32_t index = 0;
|
||||
if (ker_y_start != 0)
|
||||
{
|
||||
memset(&col_buffer[index], 0, (kernel_x * input_ch) * ker_y_start * sizeof(q15_t));
|
||||
index += (kernel_x * input_ch) * ker_y_start;
|
||||
}
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + i_ker_y;
|
||||
|
||||
for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + i_ker_x;
|
||||
if (idx_x < 0 || idx_x >= input_x)
|
||||
{
|
||||
memset(&col_buffer[index], 0, input_ch * sizeof(q15_t));
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_with_offset((q7_t *)input + (idx_y * input_x + idx_x) * input_ch, &col_buffer[index], input_ch, input_offset);
|
||||
}
|
||||
index += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
const int diff = kernel_y - ker_y_end;
|
||||
if (diff != 0)
|
||||
{
|
||||
memset(&col_buffer[index], 0, (kernel_x * input_ch) * diff * sizeof(q15_t));
|
||||
}
|
||||
|
||||
row_count = output_ch / 4;
|
||||
row_shift = 0;
|
||||
bias = bias_start_pos;
|
||||
output_mult = out_mult_start_pos;
|
||||
output_shift = out_shift_start_pos;
|
||||
|
||||
while (row_count)
|
||||
{
|
||||
q31_t sum = *bias++;
|
||||
q31_t sum_2 = *bias++;
|
||||
q31_t sum_3 = *bias++;
|
||||
q31_t sum_4 = *bias++;
|
||||
|
||||
uint16_t col_count = (kernel_x * kernel_y) / 2;
|
||||
q15_t *col_pos = col_buffer_start + row_shift;
|
||||
const q7_t *row_pos = kernel + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
/* General idea is to read 4 + 4 (input, kernel) pair and re-arrange them in the right order to
|
||||
use in a SMLAD instruction . One run of this loop produces 4 partial outputs with 8 MACs. */
|
||||
/* Note: variable names can be improved here to align with rows and columns. */
|
||||
q31_t ip_a1, ip_a2, ip_b1, ip_b2, op_a, op_b, op_c;
|
||||
/* Read 4 weights */
|
||||
ip_b1 = arm_nn_read_q7x4(row_pos);
|
||||
ip_a1 = arm_nn_read_q7x4(row_pos + input_ch);
|
||||
op_a = arm_nn_read_q15x2(col_pos);
|
||||
op_b = arm_nn_read_q15x2(col_pos + input_ch);
|
||||
|
||||
ip_a2 = __SXTB16(ip_b1);
|
||||
ip_b1 = __SXTB16(__ROR(ip_b1, 8));
|
||||
|
||||
ip_b2 = __SXTB16(ip_a1);
|
||||
ip_a1 = __SXTB16(__ROR(ip_a1, 8));
|
||||
|
||||
op_c = __PKHBT(op_b, op_a, 16);
|
||||
op_a = __PKHTB(op_b, op_a, 16);
|
||||
op_b = __PKHBT(ip_b2, ip_a2, 16);
|
||||
sum = __SMLAD(op_c, op_b, sum);
|
||||
|
||||
op_b = __PKHBT(ip_b1, ip_a1, 16);
|
||||
sum_2 = __SMLAD(op_a, op_b, sum_2);
|
||||
|
||||
op_a = arm_nn_read_q15x2(col_pos + 2);
|
||||
op_b = arm_nn_read_q15x2(col_pos + input_ch + 2);
|
||||
|
||||
op_c = __PKHBT(op_b, op_a, 16);
|
||||
op_a = __PKHTB(op_b, op_a, 16);
|
||||
op_b = __PKHTB(ip_a2, ip_b2, 16);
|
||||
sum_3 = __SMLAD(op_c, op_b, sum_3);
|
||||
|
||||
op_b = __PKHTB(ip_a1, ip_b1, 16);
|
||||
sum_4 = __SMLAD(op_a, op_b, sum_4);
|
||||
|
||||
row_pos += input_ch << 1;
|
||||
col_pos += input_ch << 1;
|
||||
col_count--;
|
||||
}
|
||||
|
||||
col_count = (kernel_x * kernel_y) & 0x1;
|
||||
while (col_count)
|
||||
{
|
||||
sum += row_pos[0] * col_pos[0];
|
||||
sum_2 += row_pos[1] * col_pos[1];
|
||||
sum_3 += row_pos[2] * col_pos[2];
|
||||
sum_4 += row_pos[3] * col_pos[3];
|
||||
|
||||
row_pos += input_ch;
|
||||
col_pos += input_ch;
|
||||
|
||||
col_count--;
|
||||
}
|
||||
sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
|
||||
sum += output_offset;
|
||||
sum = MAX(sum, output_activation_min);
|
||||
sum = MIN(sum, output_activation_max);
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
sum_2 = arm_nn_requantize(sum_2, *output_mult++, *output_shift++);
|
||||
sum_2 += output_offset;
|
||||
sum_2 = MAX(sum_2, output_activation_min);
|
||||
sum_2 = MIN(sum_2, output_activation_max);
|
||||
*output++ = (q7_t)sum_2;
|
||||
sum_3 = arm_nn_requantize(sum_3, *output_mult++, *output_shift++);
|
||||
sum_3 += output_offset;
|
||||
sum_3 = MAX(sum_3, output_activation_min);
|
||||
sum_3 = MIN(sum_3, output_activation_max);
|
||||
*output++ = (q7_t)sum_3;
|
||||
|
||||
sum_4 = arm_nn_requantize(sum_4, *output_mult++, *output_shift++);
|
||||
sum_4 += output_offset;
|
||||
sum_4 = MAX(sum_4, output_activation_min);
|
||||
sum_4 = MIN(sum_4, output_activation_max);
|
||||
*output++ = (q7_t)sum_4;
|
||||
|
||||
row_count--;
|
||||
}
|
||||
|
||||
row_count = output_ch & 0x3;
|
||||
while (row_count)
|
||||
{
|
||||
q15_t *col_pos = col_buffer_start + row_shift;
|
||||
const q7_t *row_pos = kernel + row_shift;
|
||||
q31_t sum = *bias++;
|
||||
const uint16_t col_count = (kernel_x * kernel_y);
|
||||
row_shift += 1;
|
||||
|
||||
for (int i = 0; i < col_count; i++)
|
||||
{
|
||||
sum += row_pos[i * input_ch] * col_pos[i * input_ch];
|
||||
}
|
||||
sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
|
||||
sum += output_offset;
|
||||
sum = MAX(sum, output_activation_min);
|
||||
sum = MIN(sum, output_activation_max);
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
row_count--;
|
||||
}
|
||||
|
||||
// clear counter and pointers
|
||||
col_buffer = col_buffer_start;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
return arm_depthwise_conv_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
kernel,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
#endif /* ARM_MATH_MVEI | ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims,
|
||||
const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
/* The + 4 accounts for out of bounds read of the lhs buffers in the *_nt_t_* functions. */
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t) + 4;
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
return (input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,294 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_u8_basic_ver1.c
|
||||
* Description: u8 depthwise convolution function
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target : Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void depthwise_conv_u8_mult_4(const uint8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
uint8_t *output,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch; ++in_ch, out_ch += ch_mult)
|
||||
{
|
||||
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||||
{
|
||||
int32_t out_buff[4];
|
||||
|
||||
out_buff[0] = 0;
|
||||
out_buff[1] = 0;
|
||||
out_buff[2] = 0;
|
||||
out_buff[3] = 0;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||||
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
|
||||
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w); ++ker_w, ker_idx += output_ch)
|
||||
{
|
||||
int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
|
||||
out_buff[0] += in_val * (kernel[ker_idx + 0 + mult_tile] + filter_offset);
|
||||
out_buff[1] += in_val * (kernel[ker_idx + 1 + mult_tile] + filter_offset);
|
||||
out_buff[2] += in_val * (kernel[ker_idx + 2 + mult_tile] + filter_offset);
|
||||
out_buff[3] += in_val * (kernel[ker_idx + 3 + mult_tile] + filter_offset);
|
||||
}
|
||||
}
|
||||
|
||||
if (bias != NULL)
|
||||
{
|
||||
out_buff[0] += bias[out_ch + 0 + mult_tile];
|
||||
out_buff[1] += bias[out_ch + 1 + mult_tile];
|
||||
out_buff[2] += bias[out_ch + 2 + mult_tile];
|
||||
out_buff[3] += bias[out_ch + 3 + mult_tile];
|
||||
}
|
||||
out_buff[0] = arm_nn_requantize(out_buff[0], output_mult, output_shift);
|
||||
out_buff[1] = arm_nn_requantize(out_buff[1], output_mult, output_shift);
|
||||
out_buff[2] = arm_nn_requantize(out_buff[2], output_mult, output_shift);
|
||||
out_buff[3] = arm_nn_requantize(out_buff[3], output_mult, output_shift);
|
||||
|
||||
out_buff[0] += output_offset;
|
||||
out_buff[1] += output_offset;
|
||||
out_buff[2] += output_offset;
|
||||
out_buff[3] += output_offset;
|
||||
|
||||
out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
|
||||
out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
|
||||
out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
|
||||
out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (uint8_t)out_buff[0];
|
||||
output[out_idx++] = (uint8_t)out_buff[1];
|
||||
output[out_idx++] = (uint8_t)out_buff[2];
|
||||
output[out_idx++] = (uint8_t)out_buff[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void depthwise_conv_u8_generic(const uint8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
uint8_t *output,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
(void)output_ch;
|
||||
int i_out = 0;
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||||
{
|
||||
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||||
int32_t acc_0;
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + ker_<x,y>_start) >= 0 */
|
||||
const int ker_y_start = MAX(0, -base_idx_y);
|
||||
const int ker_x_start = MAX(0, -base_idx_x);
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + ker_<x,y>_end) < input_<x,y> */
|
||||
const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
acc_0 = 0;
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + i_ker_y;
|
||||
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + i_ker_x;
|
||||
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||||
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||||
|
||||
acc_0 += (input[idx_0] + input_offset) * (kernel[ker_idx_0] + filter_offset);
|
||||
}
|
||||
}
|
||||
if (bias != NULL)
|
||||
{
|
||||
acc_0 += bias[idx_out_ch];
|
||||
}
|
||||
|
||||
/* Requantize and clamp output to provided range */
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult, output_shift);
|
||||
acc_0 += output_offset;
|
||||
acc_0 = MAX(acc_0, output_activation_min);
|
||||
acc_0 = MIN(acc_0, output_activation_max);
|
||||
|
||||
output[i_out++] = acc_0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief uint8 depthwise convolution function with asymmetric quantization
|
||||
*
|
||||
* @param[in] input Pointer to input tensor
|
||||
* @param[in] input_x Width of input tensor
|
||||
* @param[in] input_y Height of input tensor
|
||||
* @param[in] input_ch Channels in input tensor
|
||||
* @param[in] kernel Pointer to kernel weights
|
||||
* @param[in] kernel_x Width of kernel
|
||||
* @param[in] kernel_y Height of kernel
|
||||
* @param[in] ch_mult Number of channel multiplier
|
||||
* @param[in] pad_x Padding sizes x
|
||||
* @param[in] pad_y Padding sizes y
|
||||
* @param[in] stride_x Convolution stride along the width
|
||||
* @param[in] stride_y Convolution stride along the height
|
||||
* @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
|
||||
* @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
|
||||
* @param[in] bias Pointer to optional bias values. If no bias is
|
||||
* availble, NULL is expected
|
||||
* @param[in] input_offset Input tensor zero offset
|
||||
* @param[in] filter_offset Kernel tensor zero offset
|
||||
* @param[in] output_offset Output tensor zero offset
|
||||
* @param[in,out] output Pointer to output tensor
|
||||
* @param[in] output_x Width of output tensor
|
||||
* @param[in] output_y Height of output tensor
|
||||
* @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] output_shift Amount of right-shift for output
|
||||
* @param[in] output_mult Output multiplier for requantization
|
||||
* @return The function returns one of the following
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
|
||||
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||||
* <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const int16_t ch_mult,
|
||||
const int16_t pad_x,
|
||||
const int16_t pad_y,
|
||||
const int16_t stride_x,
|
||||
const int16_t stride_y,
|
||||
const int16_t dilation_x,
|
||||
const int16_t dilation_y,
|
||||
const int32_t *bias,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_offset,
|
||||
uint8_t *output,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult)
|
||||
{
|
||||
(void)dilation_x;
|
||||
(void)dilation_y;
|
||||
|
||||
if (ch_mult % 4 == 0)
|
||||
{
|
||||
depthwise_conv_u8_mult_4(input, input_x, input_y, input_ch, kernel, ch_mult * input_ch, ch_mult,
|
||||
kernel_x, kernel_y, pad_x, pad_y, stride_x, stride_y, bias, output,
|
||||
output_shift, output_mult, output_x, output_y, output_offset, input_offset,
|
||||
filter_offset, output_activation_min, output_activation_max);
|
||||
}
|
||||
else
|
||||
{
|
||||
depthwise_conv_u8_generic(input, input_x, input_y, input_ch, kernel, ch_mult * input_ch, ch_mult,
|
||||
kernel_x, kernel_y, pad_x, pad_y, stride_x, stride_y, bias,
|
||||
output, output_shift, output_mult, output_x, output_y, output_offset,
|
||||
input_offset, filter_offset, output_activation_min, output_activation_max);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,133 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_wrapper_s8.c
|
||||
* Description: Wrapper API to select appropriate depthwise conv API based
|
||||
* on dimensions.
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 Depthwise conv wrapper function
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
arm_status status = ARM_MATH_SUCCESS;
|
||||
if (1 == dw_conv_params->ch_mult)
|
||||
{
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
if ((filter_dims->w == 3) && (filter_dims->h == 3) && (dw_conv_params->padding.h <= 1))
|
||||
{
|
||||
status = arm_depthwise_conv_3x3_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
status = arm_depthwise_conv_s8_opt(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
status = arm_depthwise_conv_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return status;
|
||||
}
|
||||
|
||||
int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims)
|
||||
{
|
||||
(void)dw_conv_params;
|
||||
int32_t size = 0;
|
||||
|
||||
if (input_dims->c == output_dims->c)
|
||||
{
|
||||
size = arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,418 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_separable_conv_HWC_q7.c
|
||||
* Description: Q7 depthwise separable convolution function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in equals ch_im_out
|
||||
*
|
||||
* Implementation:
|
||||
* There are 3 nested loop here:
|
||||
* Inner loop: calculate each output value with MAC instruction over an accumulator
|
||||
* Mid loop: loop over different output channel
|
||||
* Outer loop: loop over different output (x, y)
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ker_y, i_ker_x;
|
||||
q7_t *colBuffer = (q7_t *) bufferA;
|
||||
q7_t *pBuffer = colBuffer;
|
||||
const q7_t *pBias = bias;
|
||||
q7_t *pOut = Im_out;
|
||||
uint16_t rowCnt;
|
||||
uint16_t row_shift;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* we first do im2col here */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q7(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
||||
memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* we will do the computation here for each channel */
|
||||
rowCnt = ch_im_out >> 2;
|
||||
row_shift = 0;
|
||||
pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = (dim_kernel * dim_kernel) >> 1;
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHTB(opB, inB1, 16);
|
||||
inB1 = __PKHBT(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHTB(opB, inA1, 16);
|
||||
inA1 = __PKHBT(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHBT(opB, inB1, 16);
|
||||
inB1 = __PKHTB(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHBT(opB, inA1, 16);
|
||||
inA1 = __PKHTB(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
/*
|
||||
* r0 r1 r2 r3 r4 r5
|
||||
* inA1, inA2, inB1, inB2, opA, opB
|
||||
*/
|
||||
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhtb r3, r5, r2, ASR #16\n"
|
||||
"pkhbt r2, r2, r5, LSL #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhtb r1, r5, r0, ASR #16\n"
|
||||
"pkhbt r0, r0, r5, LSL #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum]
|
||||
"+r"(sum),[sum2] "+r"(sum2),
|
||||
[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),
|
||||
[pA] "+r"(pA):[colCnt]
|
||||
"r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#else
|
||||
/*
|
||||
* r0 r1 r2 r3 r4 r5
|
||||
* inA1, inA2, inB1, inB2, opA, opB
|
||||
*/
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhbt r3, r5, r2, LSL #16\n"
|
||||
"pkhtb r2, r2, r5, ASR #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhbt r1, r5, r0, LSL #16\n"
|
||||
"pkhtb r0, r0, r5, ASR #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum]
|
||||
"+r"(sum),[sum2] "+r"(sum2),
|
||||
[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),
|
||||
[pA] "+r"(pA):[colCnt]
|
||||
"r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = (dim_kernel * dim_kernel) & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
union arm_nnword inA, inB;
|
||||
inA.word = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inB.word = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
sum += inA.bytes[0] * inB.bytes[0];
|
||||
sum2 += inA.bytes[1] * inB.bytes[1];
|
||||
sum3 += inA.bytes[2] * inB.bytes[2];
|
||||
sum4 += inA.bytes[3] * inB.bytes[3];
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = ch_im_out & 0x3;
|
||||
while (rowCnt)
|
||||
{
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = (dim_kernel * dim_kernel);
|
||||
|
||||
row_shift += 1;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t A1 = *pA;
|
||||
q7_t B1 = *pB;
|
||||
pA += ch_im_in;
|
||||
pB += ch_im_in;
|
||||
sum += A1 * B1;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* clear counter and pointers */
|
||||
pBuffer = colBuffer;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
|
||||
int conv_out;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
// for each output
|
||||
conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
|
||||
{
|
||||
int in_row = stride * i_out_y + i_ker_y - padding;
|
||||
int in_col = stride * i_out_x + i_ker_x - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
conv_out +=
|
||||
Im_in[(in_row *
|
||||
dim_im_in +
|
||||
in_col) *
|
||||
ch_im_in +
|
||||
i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[(i_out_y * dim_im_out +
|
||||
i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,413 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c
|
||||
* Description: Q7 depthwise separable convolution function (non-square shape)
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function (non-square shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding sizes x
|
||||
* @param[in] padding_y padding sizes y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is equal to ch_im_out
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB)
|
||||
{
|
||||
|
||||
(void)bufferB;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/*
|
||||
* Implementation:
|
||||
* There are 3 nested loop here:
|
||||
* Inner loop: calculate each output value with MAC instruction over an accumulator
|
||||
* Mid loop: loop over different output channel
|
||||
* Outer loop: loop over different output (x, y)
|
||||
*
|
||||
*/
|
||||
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ker_y, i_ker_x;
|
||||
q7_t *colBuffer = (q7_t *) bufferA;
|
||||
q7_t *pBuffer = colBuffer;
|
||||
const q7_t *pBias = bias;
|
||||
q7_t *pOut = Im_out;
|
||||
uint16_t rowCnt;
|
||||
uint16_t row_shift;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* we first do im2col here */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q7(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, ch_im_in);
|
||||
} else
|
||||
{
|
||||
/* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
||||
memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* we will do the computation here for each channel */
|
||||
rowCnt = ch_im_out >> 2;
|
||||
row_shift = 0;
|
||||
pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1;
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHTB(opB, inB1, 16);
|
||||
inB1 = __PKHBT(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHTB(opB, inA1, 16);
|
||||
inA1 = __PKHBT(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHBT(opB, inB1, 16);
|
||||
inB1 = __PKHTB(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHBT(opB, inA1, 16);
|
||||
inA1 = __PKHTB(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
// r0 r1 r2 r3 r4 r5
|
||||
// inA1, inA2, inB1, inB2, opA, opB
|
||||
asm volatile ("COL_LOOP:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhtb r3, r5, r2, ASR #16\n"
|
||||
"pkhbt r2, r2, r5, LSL #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhtb r1, r5, r0, ASR #16\n"
|
||||
"pkhbt r0, r0, r5, LSL #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
|
||||
[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#else
|
||||
// r0 r1 r2 r3 r4 r5
|
||||
// inA1, inA2, inB1, inB2, opA, opB
|
||||
asm volatile ("COL_LOOP:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhbt r3, r5, r2, LSL #16\n"
|
||||
"pkhtb r2, r2, r5, ASR #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhbt r1, r5, r0, LSL #16\n"
|
||||
"pkhtb r0, r0, r5, ASR #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
|
||||
[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#endif /*ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = (dim_kernel_x * dim_kernel_y) & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
union arm_nnword inA, inB;
|
||||
inA.word = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inB.word = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
sum += inA.bytes[0] * inB.bytes[0];
|
||||
sum2 += inA.bytes[1] * inB.bytes[1];
|
||||
sum3 += inA.bytes[2] * inB.bytes[2];
|
||||
sum4 += inA.bytes[3] * inB.bytes[3];
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = ch_im_out & 0x3;
|
||||
while (rowCnt)
|
||||
{
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = (dim_kernel_x * dim_kernel_y);
|
||||
|
||||
row_shift += 1;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t A1 = *pA;
|
||||
q7_t B1 = *pB;
|
||||
pA += ch_im_in;
|
||||
pB += ch_im_in;
|
||||
sum += A1 * B1;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
// clear counter and pointers
|
||||
pBuffer = colBuffer;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i_out_y, i_out_x, i_ch_out;
|
||||
int i_ker_y, i_ker_x;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
// for each output
|
||||
int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
|
||||
{
|
||||
int in_row = stride_y * i_out_y + i_ker_y - padding_y;
|
||||
int in_col = stride_x * i_out_x + i_ker_x - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *
|
||||
wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
|
||||
(q7_t) __SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
|
@ -1,219 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_s8_core.c
|
||||
* Description: Depthwise convolution on im2col buffers.
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/*
|
||||
* Depthwise conv on an im2col buffer where the input channel equals
|
||||
* output channel.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row,
|
||||
const q15_t *col,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t kernel_size,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t ch_per_loop = num_ch / 4;
|
||||
|
||||
const int32_t *bias = output_bias;
|
||||
int8_t *out_tmp = out;
|
||||
|
||||
int32_t idx = 0;
|
||||
|
||||
while (ch_per_loop > 0)
|
||||
{
|
||||
int32x4_t ip_0;
|
||||
int32x4_t ip_1;
|
||||
int32_t ker_loop = kernel_size / 3;
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int32_t offset = idx * 4;
|
||||
const int8_t *row_0 = row + offset;
|
||||
const int16_t *col_0 = col + offset;
|
||||
const int16_t *col_1 = col + kernel_size * num_ch + offset;
|
||||
|
||||
int32x4_t ker_0 = vldrbq_s32(row_0);
|
||||
|
||||
while (ker_loop > 0)
|
||||
{
|
||||
const int8_t *row_1 = row_0 + num_ch;
|
||||
const int8_t *row_2 = row_0 + 2 * num_ch;
|
||||
const int32x4_t ker_1 = vldrbq_s32(row_1);
|
||||
const int32x4_t ker_2 = vldrbq_s32(row_2);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_1);
|
||||
out_1 += vmulq_s32(ip_1, ker_1);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_2);
|
||||
out_1 += vmulq_s32(ip_1, ker_2);
|
||||
row_0 += 3 * num_ch;
|
||||
|
||||
ker_0 = vldrbq_s32(row_0);
|
||||
ker_loop--;
|
||||
}
|
||||
|
||||
idx++;
|
||||
/* Handle tail kernel elements */
|
||||
ker_loop = kernel_size - ((kernel_size / 3) * 3);
|
||||
while (ker_loop > 0)
|
||||
{
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
|
||||
row_0 += num_ch;
|
||||
ker_0 = vldrbq_s32(row_0);
|
||||
ker_loop--;
|
||||
}
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_tmp, out_0);
|
||||
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_tmp + num_ch, out_1);
|
||||
|
||||
out_tmp += 4;
|
||||
ch_per_loop--;
|
||||
}
|
||||
|
||||
int32_t tail_ch = num_ch & 3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
int32_t ch_idx = (num_ch & ~3);
|
||||
int32x4_t col_0_sum;
|
||||
int32x4_t col_1_sum;
|
||||
|
||||
const int32_t single_buffer_size = kernel_size * num_ch;
|
||||
for (int i = 0; i < tail_ch; i++)
|
||||
{
|
||||
const int16_t *col_pos_0 = col + ch_idx;
|
||||
const int16_t *col_pos_1 = col_pos_0 + single_buffer_size;
|
||||
|
||||
const int8_t *row_pos = row + ch_idx;
|
||||
int32_t sum_0 = bias[i];
|
||||
int32_t sum_1 = bias[i];
|
||||
|
||||
for (int j = 0; j < kernel_size; j++)
|
||||
{
|
||||
const int8_t row_val = row_pos[j * num_ch];
|
||||
sum_0 += row_val * col_pos_0[j * num_ch];
|
||||
sum_1 += row_val * col_pos_1[j * num_ch];
|
||||
}
|
||||
col_0_sum[i] = sum_0;
|
||||
col_1_sum[i] = sum_1;
|
||||
|
||||
ch_idx++;
|
||||
}
|
||||
const mve_pred16_t p = vctp32q((uint32_t)tail_ch);
|
||||
const int32x4_t mult = vldrwq_z_s32(out_mult, p);
|
||||
const int32x4_t shift = vldrwq_z_s32(out_shift, p);
|
||||
|
||||
col_0_sum = arm_requantize_mve_32x4(col_0_sum, mult, shift);
|
||||
col_1_sum = arm_requantize_mve_32x4(col_1_sum, mult, shift);
|
||||
|
||||
col_0_sum = vaddq_n_s32(col_0_sum, out_offset);
|
||||
col_0_sum = vmaxq_s32(col_0_sum, vdupq_n_s32(activation_min));
|
||||
col_0_sum = vminq_s32(col_0_sum, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out_tmp, col_0_sum, p);
|
||||
|
||||
col_1_sum = vaddq_n_s32(col_1_sum, out_offset);
|
||||
col_1_sum = vmaxq_s32(col_1_sum, vdupq_n_s32(activation_min));
|
||||
col_1_sum = vminq_s32(col_1_sum, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out_tmp + num_ch, col_1_sum, p);
|
||||
|
||||
out_tmp += tail_ch;
|
||||
}
|
||||
|
||||
return out_tmp + num_ch;
|
||||
#else
|
||||
(void)row;
|
||||
(void)col;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)kernel_size;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
|
@ -1,179 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_q7_q15.c
|
||||
* Description: Matrix-multiplication function for convolution
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution.
|
||||
*
|
||||
* @details Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
|
||||
const q15_t * pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut)
|
||||
{
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *pOut2 = pOut + ch_im_out;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
uint16_t rowCnt = ch_im_out >> 1;
|
||||
/* this loop over rows in A */
|
||||
while (rowCnt)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *pA2 = pA + numCol_A;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12, inA21, inA22;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad(pA, &inA11, &inA12);
|
||||
pA2 = read_and_pad(pA2, &inA21, &inA22);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
sum3 = __SMLAD(inA21, inB1, sum3);
|
||||
sum4 = __SMLAD(inA21, inB2, sum4);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
sum3 = __SMLAD(inA22, inB1, sum3);
|
||||
sum4 = __SMLAD(inA22, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q7_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += numCol_A;
|
||||
rowCnt--;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
/* compute left-over row if any */
|
||||
if (ch_im_out & 0x1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* load the bias */
|
||||
q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad(pA, &inA11, &inA12);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
}
|
||||
|
||||
pOut += ch_im_out;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return pOut;
|
||||
#else
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
}
|
|
@ -1,129 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_q7_q15_reordered.c
|
||||
* Description: Matrix-multiplication function for convolution with reordered columns
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution with re-ordered input.
|
||||
*
|
||||
* @details Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
|
||||
const q15_t * pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *pOut2 = pOut + ch_im_out;
|
||||
int i;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *pA2 = pA + numCol_A;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12, inA21, inA22;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA11, &inA12);
|
||||
pA2 = read_and_pad_reordered(pA2, &inA21, &inA22);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
sum3 = __SMLAD(inA21, inB1, sum3);
|
||||
sum4 = __SMLAD(inA21, inB2, sum4);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
sum3 = __SMLAD(inA22, inB1, sum3);
|
||||
sum4 = __SMLAD(inA22, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q7_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += numCol_A;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return pOut;
|
||||
#else
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
|
@ -1,391 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_s8_s16.c
|
||||
* Description: Matrix-multiplication function for convolution
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/*
|
||||
* Matrix-multiplication function for convolution with per-channel requantization.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
|
||||
const q15_t *input_b,
|
||||
const uint16_t output_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t num_col_a,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out_0)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
#define ROW_PER_LOOP (4)
|
||||
#define COL_PER_LOOP (8)
|
||||
|
||||
const q7_t *ip_a0_s8 = input_a;
|
||||
q7_t *out_1 = out_0 + output_ch;
|
||||
|
||||
const int32_t *bias = output_bias;
|
||||
|
||||
int32_t row_count = output_ch / ROW_PER_LOOP;
|
||||
|
||||
while (row_count)
|
||||
{
|
||||
const q15_t *ip_b0_s16 = input_b;
|
||||
const q15_t *ip_b1_s16 = input_b + num_col_a;
|
||||
|
||||
const q7_t *ip_a1_s8 = ip_a0_s8 + num_col_a;
|
||||
const q7_t *ip_a2_s8 = ip_a0_s8 + num_col_a * 2;
|
||||
const q7_t *ip_a3_s8 = ip_a0_s8 + num_col_a * 3;
|
||||
|
||||
q31_t ch_0_out_n = bias[0];
|
||||
q31_t ch_1_out_n = bias[1];
|
||||
q31_t ch_2_out_n = bias[2];
|
||||
q31_t ch_3_out_n = bias[3];
|
||||
|
||||
q31_t ch_0_out_n1 = ch_0_out_n;
|
||||
q31_t ch_1_out_n1 = ch_1_out_n;
|
||||
q31_t ch_2_out_n1 = ch_2_out_n;
|
||||
q31_t ch_3_out_n1 = ch_3_out_n;
|
||||
bias += 4;
|
||||
|
||||
int32_t col_count = num_col_a / COL_PER_LOOP;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
// Load inputs
|
||||
const int16x8_t ip_b0 = vld1q_s16(ip_b0_s16);
|
||||
ip_b0_s16 += COL_PER_LOOP;
|
||||
const int16x8_t ip_b1 = vld1q_s16(ip_b1_s16);
|
||||
ip_b1_s16 += COL_PER_LOOP;
|
||||
|
||||
// Load filters
|
||||
const int16x8_t ip_a0 = vldrbq_s16(ip_a0_s8);
|
||||
ip_a0_s8 += COL_PER_LOOP;
|
||||
const int16x8_t ip_a1 = vldrbq_s16(ip_a1_s8);
|
||||
ip_a1_s8 += COL_PER_LOOP;
|
||||
const int16x8_t ip_a2 = vldrbq_s16(ip_a2_s8);
|
||||
ip_a2_s8 += COL_PER_LOOP;
|
||||
const int16x8_t ip_a3 = vldrbq_s16(ip_a3_s8);
|
||||
ip_a3_s8 += COL_PER_LOOP;
|
||||
|
||||
// MAC
|
||||
ch_0_out_n += vmladavq_s16(ip_b0, ip_a0);
|
||||
ch_1_out_n += vmladavq_s16(ip_b0, ip_a1);
|
||||
ch_2_out_n += vmladavq_s16(ip_b0, ip_a2);
|
||||
ch_3_out_n += vmladavq_s16(ip_b0, ip_a3);
|
||||
ch_0_out_n1 += vmladavq_s16(ip_b1, ip_a0);
|
||||
ch_1_out_n1 += vmladavq_s16(ip_b1, ip_a1);
|
||||
ch_2_out_n1 += vmladavq_s16(ip_b1, ip_a2);
|
||||
ch_3_out_n1 += vmladavq_s16(ip_b1, ip_a3);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
|
||||
/* Handle tail */
|
||||
col_count = (num_col_a & (COL_PER_LOOP - 1)) - 1;
|
||||
while (col_count >= 0)
|
||||
{
|
||||
const int32_t b0 = ip_b0_s16[col_count];
|
||||
const int32_t b1 = ip_b1_s16[col_count];
|
||||
|
||||
ch_0_out_n += b0 * ip_a0_s8[col_count];
|
||||
ch_1_out_n += b0 * ip_a1_s8[col_count];
|
||||
ch_2_out_n += b0 * ip_a2_s8[col_count];
|
||||
ch_3_out_n += b0 * ip_a3_s8[col_count];
|
||||
|
||||
ch_0_out_n1 += b1 * ip_a0_s8[col_count];
|
||||
ch_1_out_n1 += b1 * ip_a1_s8[col_count];
|
||||
ch_2_out_n1 += b1 * ip_a2_s8[col_count];
|
||||
ch_3_out_n1 += b1 * ip_a3_s8[col_count];
|
||||
col_count--;
|
||||
}
|
||||
ip_a0_s8 += (num_col_a & (COL_PER_LOOP - 1));
|
||||
|
||||
int32x4_t out_vec_0;
|
||||
int32x4_t out_vec_1;
|
||||
out_vec_0[0] = ch_0_out_n;
|
||||
out_vec_0[1] = ch_1_out_n;
|
||||
out_vec_0[2] = ch_2_out_n;
|
||||
out_vec_0[3] = ch_3_out_n;
|
||||
|
||||
out_vec_1[0] = ch_0_out_n1;
|
||||
out_vec_1[1] = ch_1_out_n1;
|
||||
out_vec_1[2] = ch_2_out_n1;
|
||||
out_vec_1[3] = ch_3_out_n1;
|
||||
|
||||
int32x4_t mult = vldrwq_s32(out_mult);
|
||||
int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += ROW_PER_LOOP;
|
||||
out_shift += ROW_PER_LOOP;
|
||||
|
||||
out_vec_0 = arm_requantize_mve_32x4(out_vec_0, mult, shift);
|
||||
out_vec_1 = arm_requantize_mve_32x4(out_vec_1, mult, shift);
|
||||
|
||||
out_vec_0 = vaddq_n_s32(out_vec_0, out_offset);
|
||||
out_vec_0 = vmaxq_s32(out_vec_0, vdupq_n_s32(activation_min));
|
||||
out_vec_0 = vminq_s32(out_vec_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_0, out_vec_0);
|
||||
out_0 += ROW_PER_LOOP;
|
||||
|
||||
out_vec_1 = vaddq_n_s32(out_vec_1, out_offset);
|
||||
out_vec_1 = vmaxq_s32(out_vec_1, vdupq_n_s32(activation_min));
|
||||
out_vec_1 = vminq_s32(out_vec_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_1, out_vec_1);
|
||||
out_1 += ROW_PER_LOOP;
|
||||
row_count--;
|
||||
ip_a0_s8 += (num_col_a * 3);
|
||||
}
|
||||
|
||||
row_count = output_ch & (ROW_PER_LOOP - 1);
|
||||
|
||||
if (row_count)
|
||||
{
|
||||
ip_a0_s8 = input_a + num_col_a * (output_ch & ~3);
|
||||
const mve_pred16_t p = vctp32q((uint32_t)row_count);
|
||||
int32x4_t out_vec_0 = vdupq_n_s32(0);
|
||||
int32x4_t out_vec_1 = vdupq_n_s32(0);
|
||||
int32x4_t mult_tail;
|
||||
int32x4_t shift_tail;
|
||||
|
||||
for (int i_ch = 0; i_ch < row_count; i_ch++)
|
||||
{
|
||||
int32_t output_0 = bias[i_ch];
|
||||
int32_t output_1 = bias[i_ch];
|
||||
const q15_t *ip_b0_s16 = input_b;
|
||||
const q15_t *ip_b1_s16 = input_b + num_col_a;
|
||||
|
||||
for (int i_idx = 0; i_idx < num_col_a; i_idx++)
|
||||
{
|
||||
output_0 += ip_b0_s16[i_idx] * ip_a0_s8[i_idx];
|
||||
output_1 += ip_b1_s16[i_idx] * ip_a0_s8[i_idx];
|
||||
}
|
||||
|
||||
ip_a0_s8 += num_col_a;
|
||||
out_vec_0[i_ch] = output_0;
|
||||
out_vec_1[i_ch] = output_1;
|
||||
mult_tail[i_ch] = out_mult[i_ch];
|
||||
shift_tail[i_ch] = out_shift[i_ch];
|
||||
}
|
||||
out_vec_0 = arm_requantize_mve_32x4(out_vec_0, mult_tail, shift_tail);
|
||||
out_vec_1 = arm_requantize_mve_32x4(out_vec_1, mult_tail, shift_tail);
|
||||
|
||||
out_vec_0 = vaddq_n_s32(out_vec_0, out_offset);
|
||||
out_vec_0 = vmaxq_s32(out_vec_0, vdupq_n_s32(activation_min));
|
||||
out_vec_0 = vminq_s32(out_vec_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out_0, out_vec_0, p);
|
||||
|
||||
out_vec_1 = vaddq_n_s32(out_vec_1, out_offset);
|
||||
out_vec_1 = vmaxq_s32(out_vec_1, vdupq_n_s32(activation_min));
|
||||
out_vec_1 = vminq_s32(out_vec_1, vdupq_n_s32(activation_max));
|
||||
|
||||
vstrbq_p_s32(out_1, out_vec_1, p);
|
||||
out_1 += row_count;
|
||||
}
|
||||
|
||||
return out_1;
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *out_1 = out_0 + output_ch;
|
||||
const int32_t *bias = output_bias;
|
||||
|
||||
uint16_t row_count = output_ch / 2;
|
||||
const q7_t *ip_a0 = input_a;
|
||||
/* this loop over rows in A */
|
||||
while (row_count)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *ip_a1 = ip_a0 + num_col_a;
|
||||
|
||||
/* Init accumulator with bias for channel N and N + 1 */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = *bias++;
|
||||
q31_t ch_1_out_0 = *bias;
|
||||
q31_t ch_1_out_1 = *bias++;
|
||||
|
||||
uint16_t col_count = num_col_a / 4;
|
||||
/* accumulate over the vector */
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02, a11, a12;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
ip_a1 = read_and_pad(ip_a1, &a11, &a12);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
col_count = num_col_a & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q7_t a1 = *ip_a1++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
ch_1_out_0 += a1 * b0;
|
||||
ch_1_out_1 += a1 * b1;
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift);
|
||||
ch_1_out_0 += out_offset;
|
||||
ch_1_out_0 = MAX(ch_1_out_0, activation_min);
|
||||
ch_1_out_0 = MIN(ch_1_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_1_out_0;
|
||||
|
||||
ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift);
|
||||
ch_1_out_1 += out_offset;
|
||||
ch_1_out_1 = MAX(ch_1_out_1, activation_min);
|
||||
ch_1_out_1 = MIN(ch_1_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_1_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
/* skip row */
|
||||
ip_a0 += num_col_a;
|
||||
row_count--;
|
||||
}
|
||||
|
||||
/* compute the last odd numbered row if any */
|
||||
if (output_ch & 0x1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* load the bias */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = *bias++;
|
||||
|
||||
uint16_t col_count = num_col_a >> 2;
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
col_count = num_col_a & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
col_count--;
|
||||
}
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
}
|
||||
|
||||
out_0 += output_ch;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return out_0;
|
||||
#else
|
||||
(void)input_a;
|
||||
(void)input_b;
|
||||
(void)output_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)num_col_a;
|
||||
(void)output_bias;
|
||||
(void)out_0;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
|
@ -1,201 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_s8_s16_reordered.c
|
||||
* Description: Matrix-multiplication function for convolution with reordered columns
|
||||
*
|
||||
* $Date: February 27, 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_math.h"
|
||||
|
||||
/*
|
||||
* Matrix-multiplication with re-ordered input and bias inputs for convolution with per-channel
|
||||
* requantization. The re-ordering is a consequence of sign extension is done by the SXTB16 command.
|
||||
*
|
||||
* Refer header file for details. This function differs from arm_nn_mat_mult_kernel_s8_s16(), in that it uses
|
||||
* read_and_pad_reordered() instead of arm_nn_mat_mult_kernel_s8_s16(). Investigating the cycles impact and
|
||||
* unifying these two functions is a potential future improvement.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a,
|
||||
const q15_t *input_b,
|
||||
const uint16_t output_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t num_col_a,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out_0)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *out_1 = out_0 + output_ch;
|
||||
const int32_t *bias = output_bias;
|
||||
|
||||
uint16_t row_count = output_ch / 2;
|
||||
const q7_t *ip_a0 = input_a;
|
||||
/* this loop over rows in A */
|
||||
while (row_count)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *ip_a1 = ip_a0 + num_col_a;
|
||||
|
||||
/* Init accumulator with bias for channel N and N + 1 */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = *bias++;
|
||||
q31_t ch_1_out_0 = *bias;
|
||||
q31_t ch_1_out_1 = *bias++;
|
||||
|
||||
uint16_t col_count = num_col_a / 4;
|
||||
/* accumulate over the vector */
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02, a11, a12;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02);
|
||||
ip_a1 = read_and_pad_reordered(ip_a1, &a11, &a12);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift);
|
||||
ch_1_out_0 += out_offset;
|
||||
ch_1_out_0 = MAX(ch_1_out_0, activation_min);
|
||||
ch_1_out_0 = MIN(ch_1_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_1_out_0;
|
||||
|
||||
ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift);
|
||||
ch_1_out_1 += out_offset;
|
||||
ch_1_out_1 = MAX(ch_1_out_1, activation_min);
|
||||
ch_1_out_1 = MIN(ch_1_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_1_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
/* skip row */
|
||||
ip_a0 += num_col_a;
|
||||
row_count--;
|
||||
}
|
||||
|
||||
if (output_ch & 1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* Init accumulator with bias for channel N + 1 */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = ch_0_out_0;
|
||||
|
||||
int32_t col_count = num_col_a / 4;
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
}
|
||||
|
||||
out_0 += output_ch;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return out_0;
|
||||
#else
|
||||
(void)input_a;
|
||||
(void)input_b;
|
||||
(void)output_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)num_col_a;
|
||||
(void)output_bias;
|
||||
(void)out_0;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
|
@ -1,181 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_s8.c
|
||||
* Description: General Matrix-multiplication function
|
||||
*
|
||||
* $Date: July 27, 2020
|
||||
* $Revision: V.2.0.4
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/*
|
||||
* s8 General matrix multiplication function with per-channel requantization for upto 4 column batches.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_s8(const q7_t *input_row,
|
||||
const q7_t *input_col,
|
||||
const uint16_t output_ch,
|
||||
const uint16_t col_batches,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t col_offset,
|
||||
const int32_t row_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t row_len,
|
||||
const int32_t *const bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)row_offset;
|
||||
if (col_batches == 4)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t row_len_tmp = row_len;
|
||||
const int8_t *ip_r0 = input_row + (i_out_ch * row_len);
|
||||
const int8_t *ip_c0 = input_col;
|
||||
const int8_t *ip_c1 = input_col + row_len;
|
||||
const int8_t *ip_c2 = input_col + (2 * row_len);
|
||||
const int8_t *ip_c3 = input_col + (3 * row_len);
|
||||
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
int32_t acc_2 = 0;
|
||||
int32_t acc_3 = 0;
|
||||
const int32_t row_loop_cnt = (row_len + 7) / 8;
|
||||
|
||||
for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++)
|
||||
{
|
||||
mve_pred16_t p = vctp16q((uint32_t)row_len_tmp);
|
||||
const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p);
|
||||
row_len_tmp -= 8;
|
||||
|
||||
int16x8_t r0 = vldrbq_z_s16(ip_r0, p);
|
||||
ip_r0 += 8;
|
||||
|
||||
int16x8_t c0 = vldrbq_z_s16(ip_c0, p);
|
||||
ip_c0 += 8;
|
||||
c0 = vaddq_m_s16(vuninitializedq_s16(), c0, offset, p);
|
||||
|
||||
int16x8_t c1 = vldrbq_z_s16(ip_c1, p);
|
||||
ip_c1 += 8;
|
||||
c1 = vaddq_m_s16(vuninitializedq_s16(), c1, offset, p);
|
||||
|
||||
int16x8_t c2 = vldrbq_z_s16(ip_c2, p);
|
||||
ip_c2 += 8;
|
||||
c2 = vaddq_m_s16(vuninitializedq_s16(), c2, offset, p);
|
||||
|
||||
int16x8_t c3 = vldrbq_z_s16(ip_c3, p);
|
||||
ip_c3 += 8;
|
||||
c3 = vaddq_m_s16(vuninitializedq_s16(), c3, offset, p);
|
||||
|
||||
acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p);
|
||||
acc_1 = vmladavaq_p_s16(acc_1, r0, c1, p);
|
||||
acc_2 = vmladavaq_p_s16(acc_2, r0, c2, p);
|
||||
acc_3 = vmladavaq_p_s16(acc_3, r0, c3, p);
|
||||
}
|
||||
|
||||
int32x4_t res = {acc_0, acc_1, acc_2, acc_3};
|
||||
if (bias)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias[i_out_ch]);
|
||||
}
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(&out[i_out_ch], scatter_offset, res);
|
||||
}
|
||||
out += 4 * output_ch;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_col_batch = (col_batches & ~0x3); i_col_batch < (col_batches & 0x3); i_col_batch++)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t row_len_tmp = row_len;
|
||||
|
||||
const int8_t *ip_r0 = input_row + (i_out_ch * row_len);
|
||||
const int8_t *ip_c0 = input_col + (i_col_batch * row_len);
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t row_loop_cnt = (row_len + 7) / 8;
|
||||
|
||||
for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++)
|
||||
{
|
||||
const mve_pred16_t p = vctp16q((uint32_t)row_len_tmp);
|
||||
const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p);
|
||||
row_len_tmp -= 8;
|
||||
|
||||
int16x8_t r0 = vldrbq_z_s16(ip_r0, p);
|
||||
ip_r0 += 8;
|
||||
int16x8_t c0 = vldrbq_z_s16(ip_c0, p);
|
||||
ip_c0 += 8;
|
||||
|
||||
c0 = vaddq_m_s16(vuninitializedq_s16(), c0, offset, p);
|
||||
acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p);
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_0 += bias[i_out_ch];
|
||||
}
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
acc_0 += out_offset;
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
out[i_out_ch] = (q7_t)acc_0;
|
||||
}
|
||||
out += output_ch;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
|
||||
#else
|
||||
(void)input_row;
|
||||
(void)input_col;
|
||||
(void)output_ch;
|
||||
(void)col_batches;
|
||||
(void)output_shift;
|
||||
(void)output_mult;
|
||||
(void)out_offset;
|
||||
(void)col_offset;
|
||||
(void)row_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_len;
|
||||
(void)bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
|
@ -1,199 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_mat_q7_vec_q15.c
|
||||
* Description: Mixed Q15-Q7 fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Q7_Q15 version of the fully connected layer
|
||||
*
|
||||
* Weights are in q7_t and Activations are in q15_t
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pB2;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV, inM11, inM12, inM21, inM22;
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
pB2 = read_and_pad(pB2, &inM21, &inM22);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
sum2 = __SMLAD(inV, inM21, sum2);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM12, sum);
|
||||
sum2 = __SMLAD(inV, inM22, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
|
||||
|
||||
/*adjust the pointers and counters */
|
||||
pB += dim_vec;
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
int i, j;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,404 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_mat_q7_vec_q15_opt.c
|
||||
* Description: Mixed Q15-Q7 opt fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Q7_Q15 version of the fully connected layer
|
||||
*
|
||||
* Weights are in q7_t and Activations are in q15_t
|
||||
*
|
||||
* Limitation: x4 version requires weight reordering to work
|
||||
*
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original q7_t matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
|
||||
*
|
||||
* | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
|
||||
*
|
||||
* | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
|
||||
*
|
||||
* | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
|
||||
*
|
||||
* | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
|
||||
*
|
||||
* | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 |
|
||||
*
|
||||
* | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 |
|
||||
*
|
||||
* The column left over will be in-order.
|
||||
* which is:
|
||||
* | a17 | a27 | a37 | a47 |
|
||||
*
|
||||
* For the left-over rows, we do 1x1 computation, so the data remains
|
||||
* as its original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
* | a11 | a21 | a12 | a22 | a31 | a41 |
|
||||
*
|
||||
* | a32 | a42 | a13 | a23 | a14 | a24 |
|
||||
*
|
||||
* | a33 | a43 | a34 | a44 | a15 | a25 |
|
||||
*
|
||||
* | a16 | a26 | a35 | a45 | a36 | a46 |
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 | a51 | a52 |
|
||||
*
|
||||
* | a53 | a54 | a55 | a56 | a57 | a61 |
|
||||
*
|
||||
* | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer)
|
||||
{
|
||||
|
||||
(void)vec_buffer;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = *__SIMD32(pA)++;
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r1, [%[pB]], #8\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
||||
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
||||
#else
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r1, [%[pB]], #8\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
||||
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB++;
|
||||
q7_t inM3 = *pB++;
|
||||
q7_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q7_t *pB = pM;
|
||||
const q15_t *pA;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inA2 = *pA++;
|
||||
|
||||
q7_t inB1 = *pB++;
|
||||
q7_t inB3 = *pB++;
|
||||
q7_t inB2 = *pB++;
|
||||
q7_t inB4 = *pB++;
|
||||
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
sum2 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
sum4 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,193 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q15.c
|
||||
* Description: Q15 basic fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_q15(const q15_t * pV,
|
||||
const q15_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q15_t *pB = pM;
|
||||
const q15_t *pB2 = pB + dim_vec;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pA;
|
||||
const q15_t *pBias = bias;
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
/* this loop loops over different output */
|
||||
while (rowCnt) {
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inM1, inM2;
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
sum2 = __SMLAD(inV1, inM2, sum2);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
sum2 = __SMLAD(inV1, inM2, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
pB = pB + dim_vec;
|
||||
rowCnt --;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt) {
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt) {
|
||||
q31_t inV1, inM1;
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while(colCnt) {
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt --;
|
||||
}
|
||||
|
||||
#else
|
||||
int i, j;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,332 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q15_opt.c
|
||||
* Description: Q15 opt fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 |
|
||||
*
|
||||
* | a21 | a22 | a23 |
|
||||
*
|
||||
* | a31 | a32 | a33 |
|
||||
*
|
||||
* | a41 | a42 | a43 |
|
||||
*
|
||||
* | a51 | a52 | a53 |
|
||||
*
|
||||
* | a61 | a62 | a63 |
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a33 | a43 |
|
||||
*
|
||||
* Remaining rows are kept the same original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
*
|
||||
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
|
||||
*
|
||||
* | a62 | a63 |
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_q15_opt(const q15_t * pV,
|
||||
const q15_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q15_t *pB = pM;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
inM12 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum2 = __SMLAD(inV, inM12, sum2);
|
||||
inM13 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum3 = __SMLAD(inV, inM13, sum3);
|
||||
inM14 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum4 = __SMLAD(inV, inM14, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r0, [%[pB]], #16\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"ldr.w r1, [%[pB] , #-12]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r2, [%[pB] , #-8]\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"ldr.w r3, [%[pB] , #-4]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
||||
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB++;
|
||||
q15_t inM3 = *pB++;
|
||||
q15_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
|
||||
*pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM1, inM2;
|
||||
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB);
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q15_t *pB = pM;
|
||||
const q15_t *pA;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inA2 = *pA++;
|
||||
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inB2 = *pB++;
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum2 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum4 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q15_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
|
||||
*pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q15_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,198 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q7.c
|
||||
* Description: Q7 basic fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 basic fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: dim_vec
|
||||
*
|
||||
* This basic function is designed to work with regular weight
|
||||
* matrix without interleaving.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_q7(const q7_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pB2;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA;
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
/* expand the vector into the buffer */
|
||||
arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV, inM11, inM12, inM21, inM22;
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
pB2 = read_and_pad_reordered(pB2, &inM21, &inM22);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
sum2 = __SMLAD(inV, inM21, sum2);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM12, sum);
|
||||
sum2 = __SMLAD(inV, inM22, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
|
||||
*pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
pB += dim_vec;
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
int i, j;
|
||||
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,484 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q7_opt.c
|
||||
* Description: Q7 basic fully-connected layer function
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: dim_vec
|
||||
*
|
||||
* This opt function is designed to work with interleaved weight
|
||||
* matrix. The vector input is assumed in q7_t format, we call
|
||||
* arm_q7_to_q15_no_shift_shuffle function to expand into
|
||||
* q15_t format with certain weight re-ordering, refer to the function
|
||||
* comments for more details.
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original q7_t matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
|
||||
*
|
||||
* | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
|
||||
*
|
||||
* | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
|
||||
*
|
||||
* | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
|
||||
*
|
||||
* | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
|
||||
*
|
||||
* | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 |
|
||||
*
|
||||
* | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 |
|
||||
*
|
||||
* | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 |
|
||||
*
|
||||
* So within the kernel, we first read the re-ordered vector in as:
|
||||
*
|
||||
* | b1 | b3 | and | b2 | b4 |
|
||||
*
|
||||
* the four q31_t weights will look like
|
||||
*
|
||||
* | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 |
|
||||
*
|
||||
* | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 |
|
||||
*
|
||||
* The column left over will be in-order.
|
||||
* which is:
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 |
|
||||
*
|
||||
* For the left-over rows, we do 1x1 computation, so the data remains
|
||||
* as its original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
* | a11 | a21 | a13 | a23 | a31 | a41 |
|
||||
*
|
||||
* | a33 | a43 | a12 | a22 | a14 | a24 |
|
||||
*
|
||||
* | a32 | a42 | a34 | a44 | a15 | a25 |
|
||||
*
|
||||
* | a35 | a45 | a16 | a26 | a36 | a46 |
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 | a51 | a52 |
|
||||
*
|
||||
* | a53 | a54 | a55 | a56 | a57 | a61 |
|
||||
*
|
||||
* | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_q7_opt(const q7_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut,
|
||||
q15_t * vec_buffer)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA;
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #8\n"
|
||||
"ldr.w r1, [%[pB]], #16\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-12]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"ldr.w r4, [%[pA], #-4]\n"
|
||||
"ldr.w r1, [%[pB], #-8]\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
||||
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
||||
#else
|
||||
asm volatile ("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #8\n"
|
||||
"ldr.w r1, [%[pB]], #16\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-12]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"ldr.w r4, [%[pA], #-4]\n"
|
||||
"ldr.w r1, [%[pB], #-8]\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
||||
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
||||
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB++;
|
||||
q7_t inM3 = *pB++;
|
||||
q7_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
|
||||
*pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
|
||||
*pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8));
|
||||
*pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pA;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q7_t inA3 = *pA++;
|
||||
q7_t inA2 = *pA++;
|
||||
q7_t inA4 = *pA++;
|
||||
|
||||
q7_t inB1 = *pB++;
|
||||
q7_t inB3 = *pB++;
|
||||
q7_t inB2 = *pB++;
|
||||
q7_t inB4 = *pB++;
|
||||
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
sum2 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
sum4 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum += inA3 * inB1 + inA4 * inB2;
|
||||
sum2 += inA3 * inB3 + inA4 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA3 * inB1 + inA4 * inB2;
|
||||
sum4 += inA3 * inB3 + inA4 * inB4;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
||||
*pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
||||
*pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
||||
*pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q7_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,97 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_s8
|
||||
* Description: Fully connected function compatible with TF Lite.
|
||||
*
|
||||
* $Date: May 2, 2020
|
||||
* $Revision: V.2.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M and Cortex-A cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* S8 basic fully-connected and matrix multiplication layer function for TensorFlow Lite
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_fully_connected_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_fc_params *fc_params,
|
||||
const cmsis_nn_per_tensor_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
int32_t batch_cnt = input_dims->n;
|
||||
|
||||
while (batch_cnt)
|
||||
{
|
||||
arm_nn_vec_mat_mult_t_s8(input,
|
||||
kernel,
|
||||
bias,
|
||||
output,
|
||||
fc_params->input_offset,
|
||||
fc_params->filter_offset,
|
||||
fc_params->output_offset,
|
||||
quant_params->multiplier,
|
||||
quant_params->shift,
|
||||
filter_dims->n, /* col_dim or accum_depth */
|
||||
output_dims->c, /* row_dim or output_depth */
|
||||
fc_params->activation.min,
|
||||
fc_params->activation.max);
|
||||
input += filter_dims->n;
|
||||
output += output_dims->c;
|
||||
batch_cnt--;
|
||||
}
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
|
@ -1,81 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_accumulate_q7_to_q15.c
|
||||
* Description: Accumulate q7 vector into q15 one.
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* pSrc Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_nn_accumulate_q7_to_q15(q15_t *pDst, const q7_t *pSrc, uint32_t length)
|
||||
{
|
||||
q15_t *pCnt = pDst;
|
||||
const q7_t *pV = pSrc;
|
||||
q31_t v1, v2, vo1, vo2;
|
||||
int32_t cnt = length >> 2;
|
||||
q31_t in;
|
||||
|
||||
while (cnt > 0l)
|
||||
{
|
||||
q31_t value = arm_nn_read_q7x4_ia(&pV);
|
||||
v1 = __SXTB16(__ROR((uint32_t)value, 8));
|
||||
v2 = __SXTB16(value);
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
vo2 = (q31_t)__PKHTB(v1, v2, 16);
|
||||
vo1 = (q31_t)__PKHBT(v2, v1, 16);
|
||||
#else
|
||||
vo1 = (q31_t)__PKHTB(v1, v2, 16);
|
||||
vo2 = (q31_t)__PKHBT(v2, v1, 16);
|
||||
#endif
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
write_q15x2_ia(&pCnt, __QADD16(vo1, in));
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
write_q15x2_ia(&pCnt, __QADD16(vo2, in));
|
||||
|
||||
cnt--;
|
||||
}
|
||||
cnt = length & 0x3;
|
||||
while (cnt > 0l)
|
||||
{
|
||||
*pCnt++ += *pV++;
|
||||
cnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,82 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_add_q7.c
|
||||
* Description: Non saturating addition of elements of a q7 vector.
|
||||
*
|
||||
* $Date: July 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size)
|
||||
{
|
||||
uint32_t block_count;
|
||||
q31_t result = 0;
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* Loop unrolling: Compute 4 outputs at a time */
|
||||
block_count = block_size >> 2U;
|
||||
|
||||
while (block_count > 0U)
|
||||
{
|
||||
const int32_t mult_q15x2 = (1UL << 16) | 1UL;
|
||||
q31_t in_q7x4 = arm_nn_read_q7x4_ia(&input);
|
||||
q31_t temp_q15x2 = __SXTAB16(__SXTB16(in_q7x4),
|
||||
__ROR((uint32_t)in_q7x4, 8));
|
||||
|
||||
result = __SMLAD(temp_q15x2, mult_q15x2, result);
|
||||
|
||||
/* Decrement loop counter */
|
||||
block_count--;
|
||||
}
|
||||
|
||||
/* Loop unrolling: Compute remaining outputs */
|
||||
block_count = block_size & 0x3;
|
||||
#else
|
||||
block_count = block_size;
|
||||
#endif
|
||||
while (block_count > 0U)
|
||||
{
|
||||
/* Add and store result in destination buffer. */
|
||||
result += *input++;
|
||||
|
||||
/* Decrement loop counter */
|
||||
block_count--;
|
||||
}
|
||||
|
||||
*output = result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,169 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_nt_t_padded_s8.c
|
||||
* Description: Depthwise convolution with padded matrices.
|
||||
*
|
||||
* $Date: March 17, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors with MVE extension
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Depthwise convolution of transposed rhs matrix with 4 lhs matrices. One or more of the rhs matrices are padded.
|
||||
* Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t input_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t loop_count = (num_ch + 3) / 4;
|
||||
const int32_t *bias = output_bias;
|
||||
uint32_t num_ch_to_process = num_ch;
|
||||
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count;
|
||||
num_ch_to_process -= 4, out += 4, offset += 4, i_loop_cnt++)
|
||||
{
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
int32x4_t out_2 = out_0;
|
||||
int32x4_t out_3 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int8_t *rhs_0 = rhs + offset;
|
||||
const int8_t *lhs_0 = lhs + offset;
|
||||
const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset;
|
||||
const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset;
|
||||
const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset;
|
||||
|
||||
for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(rhs_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(lhs_0);
|
||||
ip_0 = vaddq_n_s32(ip_0, input_offset);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
int32x4_t ip_1 = vldrbq_s32(lhs_1);
|
||||
ip_1 = vaddq_n_s32(ip_1, input_offset);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
int32x4_t ip_2 = vldrbq_s32(lhs_2);
|
||||
ip_2 = vaddq_n_s32(ip_2, input_offset);
|
||||
out_2 += vmulq_s32(ip_2, ker_0);
|
||||
|
||||
int32x4_t ip_3 = vldrbq_s32(lhs_3);
|
||||
ip_3 = vaddq_n_s32(ip_3, input_offset);
|
||||
|
||||
out_3 += vmulq_s32(ip_3, ker_0);
|
||||
|
||||
lhs_0 += num_ch;
|
||||
lhs_1 += num_ch;
|
||||
lhs_2 += num_ch;
|
||||
lhs_3 += num_ch;
|
||||
|
||||
rhs_0 += num_ch;
|
||||
}
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
mve_pred16_t p = vctp32q(num_ch_to_process);
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + num_ch, out_1, p);
|
||||
|
||||
out_2 = arm_requantize_mve_32x4(out_2, mult, shift);
|
||||
out_2 = vaddq_n_s32(out_2, out_offset);
|
||||
out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min));
|
||||
out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 2 * num_ch, out_2, p);
|
||||
|
||||
out_3 = arm_requantize_mve_32x4(out_3, mult, shift);
|
||||
out_3 = vaddq_n_s32(out_3, out_offset);
|
||||
out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min));
|
||||
out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 3 * num_ch, out_3, p);
|
||||
}
|
||||
|
||||
const int tail_ch = num_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
return out + (3 * num_ch);
|
||||
|
||||
#else
|
||||
(void)lhs;
|
||||
(void)rhs;
|
||||
(void)input_offset;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_x_col;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,171 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_nt_t_s8.c
|
||||
* Description: Depthwise convolution on matrices with no padding.
|
||||
*
|
||||
* $Date: March 17, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors with MVE extension.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Depthwise convolution of rhs matrix with 4 lhs matrices with no padding. Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t input_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
const int32_t *bias = output_bias;
|
||||
int32_t loop_count = (num_ch + 3) / 4;
|
||||
uint32_t num_ch_to_process = num_ch;
|
||||
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count;
|
||||
num_ch_to_process -= 4, offset += 4, out += 4, i_loop_cnt++)
|
||||
{
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
int32x4_t out_2 = out_0;
|
||||
int32x4_t out_3 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int8_t *rhs_0 = rhs + offset;
|
||||
const int8_t *lhs_0 = lhs + offset;
|
||||
const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset;
|
||||
const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset;
|
||||
const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset;
|
||||
int32x4_t ker_sum = vdupq_n_s32(0);
|
||||
|
||||
for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(rhs_0);
|
||||
ker_sum = vaddq_s32(ker_sum, ker_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(lhs_0);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
int32x4_t ip_1 = vldrbq_s32(lhs_1);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
int32x4_t ip_2 = vldrbq_s32(lhs_2);
|
||||
out_2 += vmulq_s32(ip_2, ker_0);
|
||||
|
||||
int32x4_t ip_3 = vldrbq_s32(lhs_3);
|
||||
out_3 += vmulq_s32(ip_3, ker_0);
|
||||
|
||||
lhs_0 += num_ch;
|
||||
lhs_1 += num_ch;
|
||||
lhs_2 += num_ch;
|
||||
lhs_3 += num_ch;
|
||||
|
||||
rhs_0 += num_ch;
|
||||
}
|
||||
|
||||
ker_sum = vmulq_n_s32(ker_sum, input_offset);
|
||||
out_0 = ker_sum + out_0;
|
||||
out_1 = ker_sum + out_1;
|
||||
out_2 = ker_sum + out_2;
|
||||
out_3 = ker_sum + out_3;
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
mve_pred16_t p = vctp32q(num_ch_to_process);
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + num_ch, out_1, p);
|
||||
|
||||
out_2 = arm_requantize_mve_32x4(out_2, mult, shift);
|
||||
out_2 = vaddq_n_s32(out_2, out_offset);
|
||||
out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min));
|
||||
out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 2 * num_ch, out_2, p);
|
||||
|
||||
out_3 = arm_requantize_mve_32x4(out_3, mult, shift);
|
||||
out_3 = vaddq_n_s32(out_3, out_offset);
|
||||
out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min));
|
||||
out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 3 * num_ch, out_3, p);
|
||||
}
|
||||
|
||||
const int tail_ch = num_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
|
||||
return out + (3 * num_ch);
|
||||
#else
|
||||
(void)lhs;
|
||||
(void)rhs;
|
||||
(void)input_offset;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_x_col;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,91 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mul_core_1x_s8.c
|
||||
* Description: General Matrix-multiplication function
|
||||
*
|
||||
* $Date: January 20, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication to process 1 row
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base,
|
||||
int32_t *const sum_col,
|
||||
int32_t *const output)
|
||||
{
|
||||
int32_t acc_n0 = 0;
|
||||
int32_t sum_tmp = 0;
|
||||
|
||||
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
|
||||
__asm volatile (
|
||||
" vldrb.8 q0, [%[col]], 16 \n"
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vaddva.s8 %[sum], q0 \n"
|
||||
" vldrb.8 q1, [%[row0]], 16 \n"
|
||||
" vmladava.s8 %[out0], q0, q1 \n"
|
||||
" vldrb.8 q0, [%[col]], 16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
:[col] "+r"(col_base)
|
||||
,[sum] "+Te"(sum_tmp)
|
||||
,[row0] "+r"(row_base)
|
||||
,[out0] "+Te"(acc_n0)
|
||||
:[cnt] "r"(row_elements)
|
||||
:"q0","q1", "memory", "r14");
|
||||
#else
|
||||
for (int i = 0; i < row_elements; i++)
|
||||
{
|
||||
sum_tmp += col_base[i];
|
||||
acc_n0 += row_base[i] * col_base[i];
|
||||
}
|
||||
#endif
|
||||
|
||||
*sum_col = sum_tmp;
|
||||
*output = acc_n0;
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,118 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mul_core_4x_s8.c
|
||||
* Description: General matrix multiplication function for MVE extension
|
||||
*
|
||||
* $Date: January 20, 2020
|
||||
* $Revision: V.2.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication to process 4 rows and one column
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements,
|
||||
const int32_t offset,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base,
|
||||
int32_t *const sum_col,
|
||||
int32_t *const output)
|
||||
{
|
||||
int32_t acc_n0 = 0;
|
||||
int32_t acc_n1 = 0;
|
||||
int32_t acc_n2 = 0;
|
||||
int32_t acc_n3 = 0;
|
||||
|
||||
const int8_t *ip_row_0 = row_base;
|
||||
const int8_t *ip_row_1 = row_base + offset;
|
||||
const int8_t *ip_row_2 = row_base + (2 * offset);
|
||||
const int8_t *ip_row_3 = row_base + (3 * offset);
|
||||
int32_t sum_tmp = 0;
|
||||
|
||||
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
__asm volatile(
|
||||
" vldrb.8 q0, [%[col]], 16 \n"
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vaddva.s8 %[sum], q0 \n"
|
||||
" vldrb.8 q1, [%[row0]], 16 \n"
|
||||
" vmladava.s8 %[out0], q0, q1 \n"
|
||||
" vldrb.8 q2, [%[row1]], 16 \n"
|
||||
" vmladava.s8 %[out1], q0, q2 \n"
|
||||
" vldrb.8 q3, [%[row2]], 16 \n"
|
||||
" vmladava.s8 %[out2], q0, q3 \n"
|
||||
" vldrb.8 q4, [%[row3]], 16 \n"
|
||||
" vmladava.s8 %[out3], q0, q4 \n"
|
||||
" vldrb.8 q0, [%[col]], 16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
:[col] "+r"(col_base)
|
||||
,[sum] "+Te"(sum_tmp)
|
||||
,[row0] "+r"(ip_row_0)
|
||||
,[row1] "+r"(ip_row_1)
|
||||
,[row2] "+r"(ip_row_2)
|
||||
,[row3] "+r"(ip_row_3)
|
||||
,[out0] "+Te"(acc_n0)
|
||||
,[out1] "+Te"(acc_n1)
|
||||
,[out2] "+Te"(acc_n2)
|
||||
,[out3] "+Te"(acc_n3)
|
||||
: [cnt] "r"(row_elements)
|
||||
: "q0", "q1", "q2", "q3", "q4", "memory", "r14");
|
||||
#else
|
||||
for (int i = 0; i < row_elements; i++)
|
||||
{
|
||||
int32_t col = col_base[i];
|
||||
sum_tmp += col;
|
||||
acc_n0 += ip_row_0[i] * col;
|
||||
acc_n1 += ip_row_1[i] * col;
|
||||
acc_n2 += ip_row_2[i] * col;
|
||||
acc_n3 += ip_row_3[i] * col;
|
||||
}
|
||||
#endif
|
||||
output[0] = acc_n0;
|
||||
output[1] = acc_n1;
|
||||
output[2] = acc_n2;
|
||||
output[3] = acc_n3;
|
||||
|
||||
*sum_col = sum_tmp;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,584 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_s8_nt_t_s8
|
||||
* Description: Matrix multiplication support function with the right-hand-side (rhs) matrix transposed
|
||||
*
|
||||
* $Date: July 27 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication with the right-hand-side matrix transposed
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t *dst_multipliers,
|
||||
const int32_t *dst_shifts,
|
||||
const int32_t lhs_rows,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
const int32_t off0 = rhs_cols - 4;
|
||||
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
q31_t lhs_offset_contribution0 = 0;
|
||||
q31_t lhs_offset_contribution1 = 0;
|
||||
|
||||
for (int32_t x = 0; x < rhs_cols; ++x)
|
||||
{
|
||||
lhs_offset_contribution0 += rhs[x];
|
||||
lhs_offset_contribution1 += rhs[x + rhs_cols];
|
||||
}
|
||||
|
||||
lhs_offset_contribution0 *= lhs_offset;
|
||||
lhs_offset_contribution1 *= lhs_offset;
|
||||
if (bias)
|
||||
{
|
||||
lhs_offset_contribution0 += bias[rhs_rows_idx];
|
||||
lhs_offset_contribution1 += bias[rhs_rows_idx + 1];
|
||||
}
|
||||
|
||||
int32_t lhs_rows_idx = lhs_rows >> 1;
|
||||
|
||||
while (lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
q31_t res10 = lhs_offset_contribution0;
|
||||
q31_t res11 = lhs_offset_contribution1;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3, val4, val5;
|
||||
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
}
|
||||
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
lhs_value = lhs_ptr[rhs_cols];
|
||||
res10 += lhs_value * rhs_value0;
|
||||
res11 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
res10 += dst_offset;
|
||||
res11 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res10 = MAX(res10, activation_min);
|
||||
res10 = MIN(res10, activation_max);
|
||||
res11 = MAX(res11, activation_min);
|
||||
res11 = MIN(res11, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
dst_ptr += rhs_rows;
|
||||
dst_ptr[0] = (q7_t)res10;
|
||||
dst_ptr[1] = (q7_t)res11;
|
||||
dst_ptr += rhs_rows;
|
||||
|
||||
lhs_ptr += rhs_cols;
|
||||
|
||||
lhs_rows_idx--;
|
||||
}
|
||||
|
||||
// Left-over rows
|
||||
if (lhs_rows % 2)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3, val4, val5;
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
}
|
||||
|
||||
// Left-over accumulations
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
}
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
q31_t res00 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = bias[rhs_rows - 1];
|
||||
}
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value = rhs_ptr[0];
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr += rhs_rows;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
q31_t lhs_offset_contribution0 = 0;
|
||||
q31_t lhs_offset_contribution1 = 0;
|
||||
|
||||
for (int32_t x = 0; x < rhs_cols; ++x)
|
||||
{
|
||||
lhs_offset_contribution0 += rhs[x];
|
||||
lhs_offset_contribution1 += rhs[x + rhs_cols];
|
||||
}
|
||||
|
||||
lhs_offset_contribution0 *= lhs_offset;
|
||||
lhs_offset_contribution1 *= lhs_offset;
|
||||
if (bias)
|
||||
{
|
||||
lhs_offset_contribution0 += bias[rhs_rows_idx];
|
||||
lhs_offset_contribution1 += bias[rhs_rows_idx + 1];
|
||||
}
|
||||
|
||||
int32_t lhs_rows_idx = lhs_rows >> 1;
|
||||
|
||||
while (lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
q31_t res10 = lhs_offset_contribution0;
|
||||
q31_t res11 = lhs_offset_contribution1;
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
lhs_value = lhs_ptr[rhs_cols];
|
||||
res10 += lhs_value * rhs_value0;
|
||||
res11 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
res10 += dst_offset;
|
||||
res11 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res10 = MAX(res10, activation_min);
|
||||
res10 = MIN(res10, activation_max);
|
||||
res11 = MAX(res11, activation_min);
|
||||
res11 = MIN(res11, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
dst_ptr += rhs_rows;
|
||||
dst_ptr[0] = (q7_t)res10;
|
||||
dst_ptr[1] = (q7_t)res11;
|
||||
dst_ptr += rhs_rows;
|
||||
|
||||
lhs_ptr += rhs_cols;
|
||||
|
||||
lhs_rows_idx--;
|
||||
}
|
||||
|
||||
// Left-over rows
|
||||
if (lhs_rows % 2)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
}
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
q31_t res00 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = bias[rhs_rows - 1];
|
||||
}
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value = rhs_ptr[0];
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr += rhs_rows;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,145 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mult_q15.c
|
||||
* Description: Q15 vector multiplication with variable output shifts
|
||||
*
|
||||
* $Date: 29. April 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
|
||||
q15_t out1, out2, out3, out4; /* temporary output variables */
|
||||
q31_t mul1, mul2, mul3, mul4; /* temporary variables */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read two samples at a time from sourceA */
|
||||
inA1 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcA);
|
||||
/* read two samples at a time from sourceB */
|
||||
inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcB);
|
||||
/* read two samples at a time from sourceA */
|
||||
inA2 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcA);
|
||||
/* read two samples at a time from sourceB */
|
||||
inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcB);
|
||||
|
||||
/* multiply mul = sourceA * sourceB */
|
||||
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
|
||||
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
|
||||
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
|
||||
|
||||
/* saturate result to 16 bit */
|
||||
out1 = (q15_t) __SSAT((q31_t) (mul1 + NN_ROUND(out_shift)) >> out_shift, 16);
|
||||
out2 = (q15_t) __SSAT((q31_t) (mul2 + NN_ROUND(out_shift)) >> out_shift, 16);
|
||||
out3 = (q15_t) __SSAT((q31_t) (mul3 + NN_ROUND(out_shift)) >> out_shift, 16);
|
||||
out4 = (q15_t) __SSAT((q31_t) (mul4 + NN_ROUND(out_shift)) >> out_shift, 16);
|
||||
|
||||
/* store the result */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
|
||||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
|
||||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q15_t) __SSAT(((q31_t) ((q31_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,118 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mult_q7.c
|
||||
* Description: Q7 vector multiplication with variable output shifts
|
||||
*
|
||||
* $Date: 29. April 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the results in temporary variables */
|
||||
out1 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
out2 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
out3 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
out4 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
|
||||
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */
|
||||
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,462 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_vec_mat_mult_t_s8
|
||||
* Description: s8 vector by matrix (transposed) multiplication
|
||||
*
|
||||
* $Date: April 2, 2020
|
||||
* $Revision: V.1.5.0
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 vector(lhs) by matrix (transposed) multiplication
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t rhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t dst_multiplier,
|
||||
const int32_t dst_shift,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
const int16x8_t rhs_offset_vec = vdupq_n_s16((int16_t)rhs_offset);
|
||||
const int16x8_t lhs_offset_vec = vdupq_n_s16((int16_t)lhs_offset);
|
||||
|
||||
int32_t row_loop_cnt = rhs_rows / 4;
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc1 = bias[0];
|
||||
int32_t acc2 = bias[1];
|
||||
int32_t acc3 = bias[2];
|
||||
int32_t acc4 = bias[3];
|
||||
bias += 4;
|
||||
|
||||
int32x4_t acc;
|
||||
const int32_t col_loop_cnt = (rhs_cols + 7) / 8;
|
||||
|
||||
const int8_t *vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
const int8_t *rhs_2 = rhs + 2 * rhs_cols;
|
||||
const int8_t *rhs_3 = rhs + 3 * rhs_cols;
|
||||
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp16q(col_cnt);
|
||||
col_cnt -= 8;
|
||||
const int16x8_t tmp_b = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(vec, p), lhs_offset_vec, p);
|
||||
|
||||
const int16x8_t tmp_a0 = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(rhs_0, p), rhs_offset_vec, p);
|
||||
acc1 = vmladavaq_p_s16(acc1, tmp_a0, tmp_b, p);
|
||||
|
||||
const int16x8_t tmp_a1 = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(rhs_1, p), rhs_offset_vec, p);
|
||||
acc2 = vmladavaq_p_s16(acc2, tmp_a1, tmp_b, p);
|
||||
|
||||
const int16x8_t tmp_a2 = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(rhs_2, p), rhs_offset_vec, p);
|
||||
acc3 = vmladavaq_p_s16(acc3, tmp_a2, tmp_b, p);
|
||||
|
||||
const int16x8_t tmp_a3 = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(rhs_3, p), rhs_offset_vec, p);
|
||||
acc4 = vmladavaq_p_s16(acc4, tmp_a3, tmp_b, p);
|
||||
|
||||
vec += 8;
|
||||
rhs_0 += 8;
|
||||
rhs_1 += 8;
|
||||
rhs_2 += 8;
|
||||
rhs_3 += 8;
|
||||
}
|
||||
rhs += 4 * rhs_cols;
|
||||
|
||||
acc[0] = acc1;
|
||||
acc[1] = acc2;
|
||||
acc[2] = acc3;
|
||||
acc[3] = acc4;
|
||||
|
||||
acc = arm_requantize_mve(acc, dst_multiplier, dst_shift);
|
||||
acc = vaddq_s32(acc, vdupq_n_s32(dst_offset));
|
||||
acc = vmaxq_s32(acc, vdupq_n_s32(activation_min));
|
||||
acc = vminq_s32(acc, vdupq_n_s32(activation_max));
|
||||
|
||||
vstrbq_s32(dst, acc);
|
||||
dst += 4;
|
||||
}
|
||||
|
||||
row_loop_cnt = rhs_rows & 3;
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt;
|
||||
i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc = *bias++;
|
||||
const int32_t col_loop_cnt = (rhs_cols + 7) / 8;
|
||||
const int8_t *vec = lhs;
|
||||
const int8_t *kernel_cur = rhs;
|
||||
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp16q(col_cnt);
|
||||
col_cnt -= 8;
|
||||
const int16x8_t tmp_b = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(vec, p), lhs_offset_vec, p);
|
||||
|
||||
const int16x8_t tmp_a = vaddq_m_s16(vuninitializedq_s16(),
|
||||
vldrbq_z_s16(kernel_cur, p), rhs_offset_vec, p);
|
||||
acc = vmladavaq_p_s16(acc, tmp_a, tmp_b, p);
|
||||
vec += 8;
|
||||
kernel_cur += 8;
|
||||
}
|
||||
rhs += rhs_cols;
|
||||
|
||||
acc = arm_nn_requantize(acc, dst_multiplier, dst_shift);
|
||||
acc += dst_offset;
|
||||
|
||||
acc = MAX(acc, activation_min);
|
||||
acc = MIN(acc, activation_max);
|
||||
*dst++ = (int8_t)(acc);
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
const int32_t off0 = rhs_cols - 4;
|
||||
const int16_t lhs_offset_s16 = lhs_offset;
|
||||
const int16_t rhs_offset_s16 = rhs_offset;
|
||||
|
||||
const uint32_t lhs_offset_s16x2 = __PKHBT(lhs_offset_s16, lhs_offset_s16, 16);
|
||||
const uint32_t rhs_offset_s16x2 = __PKHBT(rhs_offset_s16, rhs_offset_s16, 16);
|
||||
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = *bias++;
|
||||
q31_t res01 = *bias++;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3, val4, val5;
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val2 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
// Read 4 x int8 values from the LHS vector
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val1);
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0);
|
||||
val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8));
|
||||
|
||||
// Perform the accumulations
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTAB16(rhs_offset_s16x2, val4);
|
||||
res00 = __SMLAD(val1, val0, res00);
|
||||
val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8));
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val1, val4, res01);
|
||||
|
||||
val2 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
// Read 4 x int8 values from the LHS vector
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val1);
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0);
|
||||
val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8));
|
||||
|
||||
// Perform the accumulations
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTAB16(rhs_offset_s16x2, val4);
|
||||
res00 = __SMLAD(val1, val0, res00);
|
||||
val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8));
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val1, val4, res01);
|
||||
|
||||
val2 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
// Read 4 x int8 values from the LHS vector
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val1);
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0);
|
||||
val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8));
|
||||
|
||||
// Perform the accumulations
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTAB16(rhs_offset_s16x2, val4);
|
||||
res00 = __SMLAD(val1, val0, res00);
|
||||
val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8));
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val1, val4, res01);
|
||||
|
||||
val2 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
// Read 4 x int8 values from the LHS vector
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val1);
|
||||
// Read 4 x int8 values from the RHS matrix
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0);
|
||||
val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8));
|
||||
|
||||
// Perform the accumulations
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTAB16(rhs_offset_s16x2, val4);
|
||||
res00 = __SMLAD(val1, val0, res00);
|
||||
val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8));
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val1, val4, res01);
|
||||
}
|
||||
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = rhs_ptr[0] + rhs_offset;
|
||||
q31_t rhs_value1 = rhs_ptr[rhs_cols] + rhs_offset;
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
*dst++ = (q7_t)res00;
|
||||
*dst++ = (q7_t)res01;
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = *bias++;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3;
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val2);
|
||||
val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8));
|
||||
|
||||
// Partial accumulations
|
||||
res00 = __SMLAD(val3, val1, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val2);
|
||||
val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8));
|
||||
|
||||
// Partial accumulations
|
||||
res00 = __SMLAD(val3, val1, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val2);
|
||||
val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8));
|
||||
|
||||
// Partial accumulations
|
||||
res00 = __SMLAD(val3, val1, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = __SXTAB16(rhs_offset_s16x2, val0);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8));
|
||||
val3 = __SXTAB16(lhs_offset_s16x2, val2);
|
||||
val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8));
|
||||
|
||||
// Partial accumulations
|
||||
res00 = __SMLAD(val3, val1, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
}
|
||||
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = rhs_ptr[0] + rhs_offset;
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
*dst = (q7_t)res00;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = *bias++;
|
||||
q31_t res01 = *bias++;
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = rhs_ptr[0] + rhs_offset;
|
||||
q31_t rhs_value1 = rhs_ptr[rhs_cols] + rhs_offset;
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
*dst++ = (q7_t)res00;
|
||||
*dst++ = (q7_t)res01;
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = *bias++;
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = rhs_ptr[0] + rhs_offset;
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
*dst = (q7_t)res00;
|
||||
}
|
||||
#endif
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
|
@ -1,297 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nntables.c
|
||||
* Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @brief tables for various activation functions
|
||||
*
|
||||
* This file include the declaration of common tables.
|
||||
* Most of them are used for activation functions
|
||||
*
|
||||
* Assumption:
|
||||
* Unified table: input is 3.x format, i.e, range of [-8, 8)
|
||||
* sigmoid(8) = 0.9996646498695336
|
||||
* tanh(8) = 0.9999997749296758
|
||||
* The accuracy here should be good enough
|
||||
*
|
||||
* 2-stage HL table:
|
||||
*
|
||||
* The entire input range is divided into two parts:
|
||||
*
|
||||
* Low range table: 0x000x xxxx or 0x111x xxxx
|
||||
* table entry will be the binary number excluding the first
|
||||
* two digits, i.e., 0x0x xxxx or 0x1x xxxx
|
||||
*
|
||||
*
|
||||
*
|
||||
* High range table 0x0010 0000 -- 0x0111 1111
|
||||
* 0x1000 0000 -- 0x1101 1111
|
||||
*
|
||||
* For positive numbers, table entry will be
|
||||
* 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000
|
||||
* i.e., 0x0000 0000 - 0x0101 11111
|
||||
*
|
||||
* same thing for the negative numbers, table entry will be
|
||||
* 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000
|
||||
* i.e., 0x0110 0000 - 0x1011 1111
|
||||
*/
|
||||
|
||||
const q7_t sigmoidTable_q7[256] = {
|
||||
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
|
||||
0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c,
|
||||
0x5e, 0x5f, 0x61, 0x62, 0x63, 0x65, 0x66, 0x67,
|
||||
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
|
||||
0x71, 0x72, 0x72, 0x73, 0x74, 0x74, 0x75, 0x76,
|
||||
0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a,
|
||||
0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c,
|
||||
0x7c, 0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e,
|
||||
0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
|
||||
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
|
||||
0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
|
||||
0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04,
|
||||
0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06,
|
||||
0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09,
|
||||
0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e,
|
||||
0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
|
||||
0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21,
|
||||
0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d, 0x2e,
|
||||
0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
|
||||
};
|
||||
|
||||
const q15_t sigmoidTable_q15[256] = {
|
||||
0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8,
|
||||
0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8, 0x5a57, 0x5bfb,
|
||||
0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f,
|
||||
0x68a6, 0x69d2, 0x6af1, 0x6c05, 0x6d0d, 0x6e09, 0x6efb, 0x6fe2,
|
||||
0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
|
||||
0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
|
||||
0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
|
||||
0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
|
||||
0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
|
||||
0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
|
||||
0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
|
||||
0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
|
||||
0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
|
||||
0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
|
||||
0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
|
||||
0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
|
||||
0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
|
||||
0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
|
||||
0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
|
||||
0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
|
||||
0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
|
||||
0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
|
||||
0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
|
||||
0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
|
||||
0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
|
||||
0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
|
||||
0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
|
||||
0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
|
||||
0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e,
|
||||
0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea, 0x1f5f, 0x20e0,
|
||||
0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76,
|
||||
0x3053, 0x3238, 0x3424, 0x3615, 0x380b, 0x3a04, 0x3c01, 0x3e00,
|
||||
};
|
||||
|
||||
const q15_t sigmoidLTable_q15[128] = {
|
||||
0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9,
|
||||
0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc, 0x4cd3, 0x4dc8, 0x4ebb,
|
||||
0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f,
|
||||
0x56ef, 0x57cd, 0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9,
|
||||
0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216, 0x62cc,
|
||||
0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c,
|
||||
0x68a6, 0x693d, 0x69d2, 0x6a63, 0x6af1, 0x6b7c, 0x6c05, 0x6c8a,
|
||||
0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051,
|
||||
0x0f42, 0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273,
|
||||
0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d, 0x162e, 0x16c3,
|
||||
0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2,
|
||||
0x1c81, 0x1d34, 0x1dea, 0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5,
|
||||
0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833,
|
||||
0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64,
|
||||
0x3053, 0x3145, 0x3238, 0x332d, 0x3424, 0x351b, 0x3615, 0x370f,
|
||||
0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00,
|
||||
};
|
||||
|
||||
const q15_t sigmoidHTable_q15[192] = {
|
||||
0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
|
||||
0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
|
||||
0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
|
||||
0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
|
||||
0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
|
||||
0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
|
||||
0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
|
||||
0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
|
||||
0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
|
||||
0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
|
||||
0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
|
||||
0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
|
||||
0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
|
||||
0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
|
||||
0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
|
||||
0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
|
||||
0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
|
||||
0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
|
||||
0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
|
||||
0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
|
||||
0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
|
||||
0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
|
||||
0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
|
||||
0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
|
||||
};
|
||||
|
||||
const q7_t tanhTable_q7[256] = {
|
||||
0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35,
|
||||
0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e,
|
||||
0x61, 0x65, 0x68, 0x6a, 0x6d, 0x6f, 0x71, 0x72,
|
||||
0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b,
|
||||
0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e,
|
||||
0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81,
|
||||
0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82,
|
||||
0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84,
|
||||
0x85, 0x85, 0x86, 0x87, 0x88, 0x88, 0x8a, 0x8b,
|
||||
0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b,
|
||||
0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9, 0xbf,
|
||||
0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8,
|
||||
};
|
||||
|
||||
const q15_t tanhTable_q15[256] = {
|
||||
0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae,
|
||||
0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2, 0x5a1a, 0x5df6,
|
||||
0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254,
|
||||
0x73dc, 0x753a, 0x7672, 0x7788, 0x787f, 0x795b, 0x7a1e, 0x7acb,
|
||||
0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
|
||||
0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
|
||||
0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
|
||||
0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
|
||||
0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
|
||||
0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
|
||||
0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
|
||||
0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
|
||||
0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
|
||||
0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
|
||||
0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
|
||||
0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
|
||||
0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
|
||||
0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
|
||||
0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6,
|
||||
0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9, 0x9869, 0x9b50,
|
||||
0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe,
|
||||
0xc4d9, 0xcb52, 0xd221, 0xd941, 0xe0a7, 0xe847, 0xf015, 0xf803,
|
||||
};
|
||||
|
||||
const q15_t tanhLTable_q15[128] = {
|
||||
0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90,
|
||||
0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf, 0x3151, 0x34ae, 0x37f6,
|
||||
0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd,
|
||||
0x514d, 0x53a3, 0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4,
|
||||
0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37, 0x6b6e,
|
||||
0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e,
|
||||
0x73dc, 0x7490, 0x753a, 0x75da, 0x7672, 0x7701, 0x7788, 0x7807,
|
||||
0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b,
|
||||
0x849b, 0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710,
|
||||
0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26, 0x8ac6, 0x8b70,
|
||||
0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254,
|
||||
0x936b, 0x9492, 0x95c9, 0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0,
|
||||
0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d,
|
||||
0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0,
|
||||
0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221, 0xd5a8, 0xd941, 0xdcec,
|
||||
0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00,
|
||||
};
|
||||
|
||||
const q15_t tanhHTable_q15[192] = {
|
||||
0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
|
||||
0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
|
||||
0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
|
||||
0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
|
||||
0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
|
||||
0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
|
||||
0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
|
||||
0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
|
||||
0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
|
||||
0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
|
||||
0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
|
||||
0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
|
||||
0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
|
||||
0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
|
||||
};
|
|
@ -1,122 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_no_shift.c
|
||||
* Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*
|
||||
* \par Description:
|
||||
*
|
||||
* The equation used for the conversion process is:
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = (q15_t) pSrc[n]; 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
|
||||
{
|
||||
const q7_t *pIn = pSrc;
|
||||
uint32_t blkCnt;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
q31_t in;
|
||||
q31_t in1, in2;
|
||||
q31_t out1, out2;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. */
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
in = arm_nn_read_q7x4_ia(&pIn);
|
||||
|
||||
/* rotatate in by 8 and extend two q7_t values to q15_t values */
|
||||
in1 = __SXTB16(__ROR((uint32_t)in, 8));
|
||||
|
||||
/* extend remaining two q7_t values to q15_t values */
|
||||
in2 = __SXTB16(in);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
out2 = (int32_t)__PKHTB(in1, in2, 16);
|
||||
out1 = (int32_t)__PKHBT(in2, in1, 16);
|
||||
#else
|
||||
out1 = (int32_t)__PKHTB(in1, in2, 16);
|
||||
out2 = (int32_t)__PKHBT(in2, in1, 16);
|
||||
#endif
|
||||
write_q15x2_ia(&pDst, out1);
|
||||
write_q15x2_ia(&pDst, out2);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Loop over blockSize number of values */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
*pDst++ = (q15_t)*pIn++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of nndata_convert group
|
||||
*/
|
|
@ -1,144 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_reordered_no_shift.c
|
||||
* Description: Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* This function does the q7 to q15 expansion with re-ordering
|
||||
*
|
||||
* <pre>
|
||||
* | A1 | A2 | A3 | A4 |
|
||||
*
|
||||
* 0 7 8 15 16 23 24 31
|
||||
* </pre>
|
||||
*
|
||||
* is converted into:
|
||||
*
|
||||
* <pre>
|
||||
* | A1 | A3 | and | A2 | A4 |
|
||||
*
|
||||
* 0 15 16 31 0 15 16 31
|
||||
* </pre>
|
||||
*
|
||||
*
|
||||
* This looks strange but is natural considering how sign-extension is done at
|
||||
* assembly level.
|
||||
*
|
||||
* The expansion of other other oprand will follow the same rule so that the end
|
||||
* results are the same.
|
||||
*
|
||||
* The tail (i.e., last (N % 4) elements) will still be in original order.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
|
||||
{
|
||||
const q7_t *pIn = pSrc; /* Src pointer */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
q31_t in;
|
||||
q31_t in1, in2;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* C = (q15_t) A << 8 */
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
in = arm_nn_read_q7x4_ia(&pIn);
|
||||
|
||||
/* rotatate in by 8 and extend two q7_t values to q15_t values */
|
||||
in1 = __SXTB16(__ROR((uint32_t)in, 8));
|
||||
|
||||
/* extend remainig two q7_t values to q15_t values */
|
||||
in2 = __SXTB16(in);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*__SIMD32(pDst)++ = in2;
|
||||
*__SIMD32(pDst)++ = in1;
|
||||
#else
|
||||
*__SIMD32(pDst)++ = in1;
|
||||
*__SIMD32(pDst)++ = in2;
|
||||
#endif
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Loop over blockSize number of values */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* C = (q15_t) A << 8 */
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
*pDst++ = (q15_t) * pIn++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of q7_to_x group
|
||||
*/
|
|
@ -1,100 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_reordered_with_offset.c
|
||||
* Description: Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset. The re-ordering
|
||||
* is a signature of sign extension intrinsic(DSP extension).
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.2.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset.
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
uint32_t block_cnt;
|
||||
/* Run the below code for cores that support SIMD instructions */
|
||||
q31_t in_q7x4;
|
||||
q31_t out_q15x2_1;
|
||||
q31_t out_q15x2_2;
|
||||
|
||||
/*loop unrolling */
|
||||
block_cnt = block_size >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. */
|
||||
const q31_t offset_q15x2 = (q31_t)__PKHBT(offset, offset, 16);
|
||||
while (block_cnt > 0u)
|
||||
{
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
in_q7x4 = arm_nn_read_q7x4_ia(&src);
|
||||
|
||||
/* Extract and sign extend each of the four q7 values to q15 */
|
||||
out_q15x2_1 = __SXTAB16(offset_q15x2, __ROR((uint32_t)in_q7x4, 8));
|
||||
out_q15x2_2 = __SXTAB16(offset_q15x2, in_q7x4);
|
||||
|
||||
write_q15x2_ia(&dst, out_q15x2_2);
|
||||
write_q15x2_ia(&dst, out_q15x2_1);
|
||||
|
||||
block_cnt--;
|
||||
}
|
||||
/* Handle left over samples */
|
||||
block_cnt = block_size % 0x4u;
|
||||
|
||||
while (block_cnt > 0u)
|
||||
{
|
||||
*dst++ = (q15_t)*src++ + offset;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
block_cnt--;
|
||||
}
|
||||
#else
|
||||
(void)src;
|
||||
(void)dst;
|
||||
(void)block_size;
|
||||
(void)offset;
|
||||
/* Not available */
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of nndata_convert group
|
||||
*/
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue