Kernel Support rk3568.(TODO: Fix user apps)

This commit is contained in:
TXuian 2024-06-06 18:22:53 +08:00
parent 2bdc1245ba
commit 872a2df6ff
36 changed files with 538 additions and 1134 deletions

View File

@ -73,7 +73,7 @@ Modification:
#include "cortex_a72.h"
#define NR_CPU 4 // maximum number of CPUs
#define NR_CPU 1 // maximum number of CPUs
__attribute__((always_inline)) static inline uint64_t EL0_mode() // Set ARM mode to EL0
{

View File

@ -1,87 +1,119 @@
// #include "memlayout.h"
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
#include "core.h"
// #include "registers.h"
// #include "cortex_a72.h"
// qemu -kernel loads the kernel at 0x40000000
// and causes each CPU to jump there.
// kernel.ld causes the following code to
// be placed at 0x40000000.
.section ".text"
//.global _entry
#define HCR_VALUE (1 << 31)
#define SPSR_EL2_VALUE (7 << 6) | (5 << 0)
#define SCTLR_EL1_VALUE (0x30D00800)
.section ".text", "ax"
.global _boot_start
.global primary_cpu_init
.global el2_setup
_boot_start:
// set up a stack for C.
// stack0 is declared in start.c,
// with a 4096-byte stack per CPU.
// sp = stack0 + ((cpuid+1) * 4096)
// cpuid = mpidr_el1 & 0xff
// save r0 for cores 1-3, r0 arg field passed by ROM
// r0 is a function pointer for secondary cpus
bl el2_setup
// mov x4, x0
/* set NSACR, both Secure and Non-secure access are allowed to NEON */
mov x0, #(3 << 20)
msr cpacr_el1, x0
isb
mrs x0, spsr_el1 /* Enter EL1 (Exception Level 1) */
bic x0, x0, #0x1f
MOV x1, #0xC5
ORR x0, x0, x1
msr spsr_el1, x0
// clear some registers
msr elr_el1, XZR
ldr x0, =stacks_top
mov x1, #MODE_STACK_SIZE
/* set NSACR, both Secure and Non-secure access are allowed to NEON */
MRS X1, CPACR_EL1
ORR X1, X1, #(0X3 << 20)
MSR CPACR_EL1, X1
ISB
// get cpu id, and subtract the offset from the stacks base address
mrs x2, mpidr_el1
and x2, x2, #0x3
mov x5, x2
mul x3, x2, x1
sub x0, x0, x3
mrs x0, sctlr_el1
and x0, x0, #~(1 << 0)
and x0, x0, #~(1 << 2)
and x0, x0, #~(1 << 12)
msr sctlr_el1, x0
mov x2, #ARM_MODE_EL1_h | DIS_INT
msr spsr_el1, x2
mov sp, x0
// clear some registers
msr elr_el1, XZR
// bl el2_setup
ldr x0, =stacks_top
mov x1, #MODE_STACK_SIZE
// check cpu id - cpu0 is primary cpu
mrs x2, mpidr_el1
and x2, x2, #0x3
mov x5, x2
cmp x5, #0
beq primary_cpu_init
bl bootmain // for secondary cpus, jump to argument function pointer passed in by ROM
// get cpu id, and subtract the offset from the stacks base address
mrs x2, mpidr_el1
and x2, x2, #0x3
mov x5, x2
mul x3, x2, x1
sub x0, x0, x3
MOV X2, #ARM_MODE_EL1_h | DIS_INT
MSR SPSR_EL1, X2
mov sp, x0
SUB x0, x0,x1
// check cpu id - cpu0 is primary cpu
cmp x5, #0
beq primary_cpu_init
bl bootmain // for secondary cpus, jump to argument function pointer passed in by ROM
bl .
bl .
primary_cpu_init:
/* init .bss */
/* clear the .bss section (zero init) */
ldr x1, =boot_start_addr
ldr x2, =boot_end_addr
mov x3, #0
1:
cmp x1, x2
stp x3, x3, [x1], #16
b.lt 1b
// branch to c library entry point
mov x0, #0 // argc
mov x1, #0 // argv
mov x2, #0 // env
/* clear the .bss section (zero init) */
ldr x1, =boot_start_addr
ldr x2, =boot_end_addr
mov x3, #0
1:
cmp x1, x2
stp x3, x3, [x1], #16
b.lt 1b
bl bootmain
.end
.func el2_setup
el2_setup:
mrs x0, CurrentEL
lsr x0, x0, #2
and x0, x0, #3
cmp x0, #2
beq 1f
ret
/* Hyp configuration. */
1:
mov x0, #(1 << 31)
msr hcr_el2, x0
/* Generic timers. */
mrs x0, cnthctl_el2
orr x0, x0, #3 // Enable EL1 physicaltimers
msr cnthctl_el2, x0
/* Populate ID registers. */
mrs x0, midr_el1
mrs x1, mpidr_el1
msr vpidr_el2, x0
msr vmpidr_el2, x1
/* Disable Coprocessor traps. */
mov x0, #0x33ff
msr cptr_el2, x0 // Disable copro. traps to EL2
msr hstr_el2, xzr // Disable CP15 traps to EL2
mov x0, sp
msr sp_el1, x0
mrs x0, sctlr_el1
orr x0, x0, #(1 << 0)
orr x0, x0, #(1 << 2)
msr sctlr_el1, x0
/* spsr */
mov x0, #SPSR_EL2_VALUE
msr spsr_el2, x0
msr elr_el2, lr
eret
.endfunc
.end

View File

@ -1,6 +1,6 @@
export CROSS_COMPILE ?= aarch64-none-elf-
export DEVICE = -mtune=cortex-a55 -ffreestanding -fno-common -fno-stack-protector -fno-pie -no-pie
export CFLAGS := $(DEVICE) -Wall -Werror -O2 -g -fno-omit-frame-pointer -fPIC
export CFLAGS := $(DEVICE) -Wall -Werror -O0 -g -fno-omit-frame-pointer -fPIC
# export AFLAGS := -c $(DEVICE) -x assembler-with-cpp -D__ASSEMBLY__ -gdwarf-2
export LFLAGS := $(DEVICE) -Wl,-T -Wl,$(KERNEL_ROOT)/hardkernel/arch/arm/armv8-a/cortex-a72/preboot_for_ok1028a-c/nxp_ls1028.lds -Wl,--start-group,-lgcc,-lc,--end-group
export CXXFLAGS :=

View File

@ -46,33 +46,35 @@ ENTRY( _boot_start )
MEMORY {
phy_ddr3 (rwx) : ORIGIN = 0x0000000010000000, LENGTH = 1024M
vir_ddr3 (rwx) : ORIGIN = 0x000000604040D000, LENGTH = 1024M
vir_ddr3 (rwx) : ORIGIN = 0x000000601040E000, LENGTH = 1024M
}
SECTIONS
{
.start_sec : {
. = ALIGN(0x1000);
. = ORIGIN(phy_ddr3);
/* initialization start checkpoint. */
boot.o(.text)
bootmmu.o(.text .text.*)
ns16550.o(.text .text.*)
_start_image_addr = .;
boot.o(.rodata .rodata.*)
bootmmu.o(.rodata .rodata.*)
ns16550.o(.rodata .rodata.*)
boot.o(.text)
bootmmu.o(.text .text.*)
/* ns16550.o(.text .text.*) */
boot.o(.data .data.*)
bootmmu.o(.data .data.*)
ns16550.o(.data .data.*)
boot.o(.rodata .rodata.*)
bootmmu.o(.rodata .rodata.*)
/* ns16550.o(.rodata .rodata.*) */
PROVIDE(boot_start_addr = .);
boot.o(.data .data.*)
bootmmu.o(.data .data.*)
/* ns16550.o(.data .data.*) */
boot.o(.bss .bss.* COMMON)
bootmmu.o(.bss .bss.* COMMON)
ns16550.o(.bss .bss.* COMMON)
PROVIDE(boot_start_addr = .);
boot.o(.bss .bss.* COMMON)
bootmmu.o(.bss .bss.* COMMON)
/* ns16550.o(.bss .bss.* COMMON) */
/* stack for booting code. */
. = ALIGN(0x1000);
@ -85,7 +87,7 @@ SECTIONS
PROVIDE(boot_end_addr = .);
} > phy_ddr3
.text : AT(0x1040D000) {
.text : AT(0x1040E000) {
. = ALIGN(0x1000);
*(.text .text.* .gnu.linkonce.t.*)
} > vir_ddr3
@ -107,12 +109,14 @@ SECTIONS
PROVIDE(_binary_default_fs_start = .);
*(.rawdata_memfs*)
PROVIDE(_binary_default_fs_end = .);
PROVIDE(__init_array_start = .);
PROVIDE(__init_array_end = .);
} > vir_ddr3
. = ALIGN(0x1000);
PROVIDE(kernel_data_begin = .);
_image_size = . - 0x0000006040000000;
_image_size = . - 0x0000006010000000;
.bss : {
PROVIDE(__bss_start__ = .);
*(.bss .bss.* COMMON)

View File

@ -50,40 +50,40 @@ Modification:
void dump_tf(struct trapframe* tf)
{
KPrintf(" sp: 0x%x\n", tf->sp);
KPrintf(" pc: 0x%x\n", tf->pc);
KPrintf(" spsr: 0x%x\n", tf->spsr);
KPrintf(" x0: 0x%x\n", tf->x0);
KPrintf(" x1: 0x%x\n", tf->x1);
KPrintf(" x2: 0x%x\n", tf->x2);
KPrintf(" x3: 0x%x\n", tf->x3);
KPrintf(" x4: 0x%x\n", tf->x4);
KPrintf(" x5: 0x%x\n", tf->x5);
KPrintf(" x6: 0x%x\n", tf->x6);
KPrintf(" x7: 0x%x\n", tf->x7);
KPrintf(" x8: 0x%x\n", tf->x8);
KPrintf(" x9: 0x%x\n", tf->x9);
KPrintf(" x10: 0x%x\n", tf->x10);
KPrintf(" x11: 0x%x\n", tf->x11);
KPrintf(" x12: 0x%x\n", tf->x12);
KPrintf(" x13: 0x%x\n", tf->x13);
KPrintf(" x14: 0x%x\n", tf->x14);
KPrintf(" x15: 0x%x\n", tf->x15);
KPrintf(" x16: 0x%x\n", tf->x16);
KPrintf(" x17: 0x%x\n", tf->x17);
KPrintf(" x18: 0x%x\n", tf->x18);
KPrintf(" x19: 0x%x\n", tf->x19);
KPrintf(" x20: 0x%x\n", tf->x20);
KPrintf(" x21: 0x%x\n", tf->x21);
KPrintf(" x22: 0x%x\n", tf->x22);
KPrintf(" x23: 0x%x\n", tf->x23);
KPrintf(" x24: 0x%x\n", tf->x24);
KPrintf(" x25: 0x%x\n", tf->x25);
KPrintf(" x26: 0x%x\n", tf->x26);
KPrintf(" x27: 0x%x\n", tf->x27);
KPrintf(" x28: 0x%x\n", tf->x28);
KPrintf(" x29: 0x%x\n", tf->x29);
KPrintf(" x30: 0x%x\n", tf->x30);
KPrintf(" sp: 0x%016lx\n", tf->sp);
KPrintf(" pc: 0x%016lx\n", tf->pc);
KPrintf(" spsr: 0x%016lx\n", tf->spsr);
KPrintf(" x0: 0x%016lx\n", tf->x0);
KPrintf(" x1: 0x%016lx\n", tf->x1);
KPrintf(" x2: 0x%016lx\n", tf->x2);
KPrintf(" x3: 0x%016lx\n", tf->x3);
KPrintf(" x4: 0x%016lx\n", tf->x4);
KPrintf(" x5: 0x%016lx\n", tf->x5);
KPrintf(" x6: 0x%016lx\n", tf->x6);
KPrintf(" x7: 0x%016lx\n", tf->x7);
KPrintf(" x8: 0x%016lx\n", tf->x8);
KPrintf(" x9: 0x%016lx\n", tf->x9);
KPrintf(" x10: 0x%016lx\n", tf->x10);
KPrintf(" x11: 0x%016lx\n", tf->x11);
KPrintf(" x12: 0x%016lx\n", tf->x12);
KPrintf(" x13: 0x%016lx\n", tf->x13);
KPrintf(" x14: 0x%016lx\n", tf->x14);
KPrintf(" x15: 0x%016lx\n", tf->x15);
KPrintf(" x16: 0x%016lx\n", tf->x16);
KPrintf(" x17: 0x%016lx\n", tf->x17);
KPrintf(" x18: 0x%016lx\n", tf->x18);
KPrintf(" x19: 0x%016lx\n", tf->x19);
KPrintf(" x20: 0x%016lx\n", tf->x20);
KPrintf(" x21: 0x%016lx\n", tf->x21);
KPrintf(" x22: 0x%016lx\n", tf->x22);
KPrintf(" x23: 0x%016lx\n", tf->x23);
KPrintf(" x24: 0x%016lx\n", tf->x24);
KPrintf(" x25: 0x%016lx\n", tf->x25);
KPrintf(" x26: 0x%016lx\n", tf->x26);
KPrintf(" x27: 0x%016lx\n", tf->x27);
KPrintf(" x28: 0x%016lx\n", tf->x28);
KPrintf(" x29: 0x%016lx\n", tf->x29);
KPrintf(" x30: 0x%016lx\n", tf->x30);
}
void dabort_reason(struct trapframe* r)
@ -91,8 +91,8 @@ void dabort_reason(struct trapframe* r)
uint32_t fault_status, fault_address;
__asm__ __volatile__("mrs %0, esr_el1" : "=r"(fault_status));
__asm__ __volatile__("mrs %0, far_el1" : "=r"(fault_address));
LOG("program counter: 0x%x caused\n", r->pc);
LOG("data abort at 0x%x, status 0x%x\n", fault_address, fault_status);
LOG("program counter: 0x%016lx caused\n", r->pc);
LOG("data abort at 0x%016lx, status 0x%016lx\n", fault_address, fault_status);
if ((fault_status & 0x3f) == 0x21) // Alignment failure
KPrintf("reason: alignment\n");
else if ((fault_status & 0x3f) == 0x4) // Translation fault, level 0
@ -131,8 +131,8 @@ void iabort_reason(struct trapframe* r)
uint32_t fault_status, fault_address;
__asm__ __volatile__("mrs %0, esr_el1" : "=r"(fault_status));
__asm__ __volatile__("mrs %0, far_el1" : "=r"(fault_address));
LOG("program counter: 0x%x caused\n", r->pc);
LOG("data abort at 0x%x, status 0x%x\n", fault_address, fault_status);
LOG("program counter: 0x%016lx caused\n", r->pc);
LOG("data abort at 0x%016lx, status 0x%016lx\n", fault_address, fault_status);
if ((fault_status & 0x3f) == 0x21) // Alignment failure
KPrintf("reason: alignment\n");
else if ((fault_status & 0x3f) == 0x4) // Translation fault, level 0

View File

@ -30,8 +30,8 @@ Modification:
// clang-format off
// interrupt controller GICv3
#define GICV3 MMIO_P2V_WO(0x08000000ULL)
#define GICV3_REDIST MMIO_P2V_WO(0x080a0000ULL)
#define GICV3 MMIO_P2V_WO(0xFD400000ULL)
#define GICV3_REDIST MMIO_P2V_WO(0xFD460000ULL)
#define D_CTLR 0x0
#define D_TYPER 0x4

View File

@ -87,7 +87,7 @@ void syscall_arch_handler(struct trapframe* tf)
iabort_handler(tf);
break;
default: {
ERROR("USYSCALL: unexpected ec: %016lx", esr);
ERROR("USYSCALL: unexpected ec: %016lx\n", esr);
ERROR(" elr = %016lx far = %016lx\n", r_elr_el1(), r_far_el1());
// kill error task
xizi_enter_kernel();

View File

@ -52,10 +52,10 @@ static void _sys_irq_init(int cpu_id)
// primary core init intr
xizi_trap_driver.switch_hw_irqtbl((uintptr_t*)alltraps);
// if (cpu_id == 0) {
// gic_init();
// }
// gicv3inithart(cpu_id);
if (cpu_id == 0) {
gic_init();
}
gicv3inithart(cpu_id);
}
static void _cpu_irq_enable(void)

View File

@ -48,7 +48,7 @@ uint32_t boot_pgdir[NR_PDE_ENTRIES] __attribute__((aligned(0x4000))) = { 0 };
static void build_boot_pgdir()
{
// dev mem
uint32_t dev_mem_end_idx = (DEV_PHYMEM_BASE + DEV_MEM_SZ) >> LEVEL3_PDE_SHIFT;
uint32_t dev_mem_end_idx = (DEV_PHYMEM_BASE + DEV_MEM_SIZE) >> LEVEL3_PDE_SHIFT;
for (uint32_t i = DEV_PHYMEM_BASE >> LEVEL3_PDE_SHIFT; i < dev_mem_end_idx; i++) {
boot_pgdir[i] = (i << LEVEL3_PDE_SHIFT) | L1_TYPE_SEC | L1_SECT_DEV | L1_SECT_AP0;
boot_pgdir[MMIO_P2V_WO(i << LEVEL3_PDE_SHIFT) >> LEVEL3_PDE_SHIFT] = (i << LEVEL3_PDE_SHIFT) | L1_TYPE_SEC | L1_SECT_DEV | L1_SECT_AP0;

View File

@ -67,7 +67,7 @@ Modification:
/* Deivce memory layout */
#define DEV_PHYMEM_BASE (0x00000000)
#define DEV_VRTMEM_BASE (0x80000000)
#define DEV_MEM_SZ (0x10000000)
#define DEV_MEM_SIZE (0x10000000)
/* Kernel memory layout */
#define KERN_MEM_BASE (0x90000000) // First kernel virtual address

View File

@ -66,7 +66,7 @@ Modification:
/* Deivce memory layout */
#define DEV_PHYMEM_BASE (0xE0000000)
#define DEV_VRTMEM_BASE (0x80000000)
#define DEV_MEM_SZ (0x1FFFFFFF)
#define DEV_MEM_SIZE (0x1FFFFFFF)
/* Kernel memory layout */
#define KERN_MEM_BASE (0xA0000000) // First kernel virtual address

View File

@ -64,9 +64,7 @@ extern uint64_t kernel_data_begin[];
uint64_t boot_l2pgdir[NUM_LEVEL2_PDE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_dev_l3pgdir[NUM_LEVEL3_PDE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_virt_dev_l3pgdir[NUM_LEVEL3_PDE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_kern_l3pgdir[NUM_LEVEL3_PDE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_virt_kern_l3pgdir[NUM_LEVEL3_PDE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_dev_l4pgdirs[NUM_LEVEL3_PDE][NUM_LEVEL4_PTE] __attribute__((aligned(0x1000))) = { 0 };
uint64_t boot_kern_l4pgdirs[NUM_LEVEL3_PDE][NUM_LEVEL4_PTE] __attribute__((aligned(0x1000))) = { 0 };
@ -79,82 +77,142 @@ static inline int cpu_id()
}
extern int debug_printf_(const char* format, ...);
static void build_boot_pgdir()
{
uint64_t dev_phy_mem_base = DEV_PHYMEM_BASE;
debug_printf_("l2 table addr %016x\r\n", boot_l2pgdir);
debug_printf_("l3 table addr %016x\r\n", boot_dev_l3pgdir);
debug_printf_("l4 table addr %016x\r\n", boot_dev_l4pgdirs);
static bool built = false;
if (!built) {
uint64_t dev_phy_mem_base = DEV_PHYMEM_BASE;
// dev mem
boot_l2pgdir[(dev_phy_mem_base >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_dev_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
boot_l2pgdir[(MMIO_P2V_WO(dev_phy_mem_base) >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_dev_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
// dev mem
boot_l2pgdir[(dev_phy_mem_base >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_dev_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
// boot_l2pgdir[(dev_phy_mem_base >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)0xEFFF1000ULL | L2_TYPE_TAB | L2_PTE_VALID;
boot_l2pgdir[(MMIO_P2V_WO(dev_phy_mem_base) >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_dev_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
// boot_l2pgdir[(MMIO_P2V_WO(dev_phy_mem_base) >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)0xEFFF1000ULL | L2_TYPE_TAB | L2_PTE_VALID;
uint64_t cur_mem_paddr = ALIGNDOWN((uint64_t)DEV_PHYMEM_BASE, LEVEL2_PDE_SIZE);
for (size_t i = 0; i < NUM_LEVEL3_PDE; i++) {
// debug_printf_("Loading (%d)(%016x) -> %p\r\n", cpu_id(), &boot_dev_l3pgdir[i], cur_mem_paddr);
boot_dev_l3pgdir[i] = (uint64_t)boot_dev_l4pgdirs[i] | L3_TYPE_TAB | L3_PTE_VALID;
uint64_t cur_mem_paddr = ALIGNDOWN((uint64_t)DEV_PHYMEM_BASE, LEVEL2_PDE_SIZE);
for (size_t i = 0; i < NUM_LEVEL3_PDE; i++) {
boot_dev_l3pgdir[i] = (uint64_t)boot_dev_l4pgdirs[i] | L3_TYPE_TAB | L3_PTE_VALID;
for (size_t j = 0; j < NUM_LEVEL4_PTE; j++) {
// debug_printf_("Loading (%d)%016x -> %p\r\n", cpu_id(), (uintptr_t*)&boot_dev_l4pgdirs[i][j], cur_mem_paddr);
boot_dev_l4pgdirs[i][j] = cur_mem_paddr | L4_TYPE_PAGE | L4_PTE_DEV | L4_PTE_AF | L4_PTE_XN;
for (size_t j = 0; j < NUM_LEVEL4_PTE; j++) {
boot_dev_l4pgdirs[i][j] = cur_mem_paddr | L4_TYPE_PAGE | L4_PTE_DEV | L4_PTE_AF | L4_PTE_XN;
if (cur_mem_paddr >= DEV_PHYMEM_BASE && cur_mem_paddr < DEV_PHYMEM_BASE + DEV_MEM_SIZE) {
boot_dev_l4pgdirs[i][j] = cur_mem_paddr | 0x403;
} else {
// boot_dev_l4pgdirs[i][j] = cur_mem_paddr | 0x713;
boot_dev_l4pgdirs[i][j] = cur_mem_paddr | 0x403;
}
cur_mem_paddr += PAGE_SIZE;
cur_mem_paddr += PAGE_SIZE;
}
// if (cur_mem_paddr >= DEV_PHYMEM_BASE && cur_mem_paddr < DEV_PHYMEM_BASE + DEV_MEM_SIZE) {
// boot_dev_l3pgdir[i] = cur_mem_paddr | 0x401;
// } else {
// boot_dev_l3pgdir[i] = cur_mem_paddr | 0x711;
// }
// cur_mem_paddr += PAGE_SIZE * 0x200;
}
}
// debug_printf_("Dev Table loading done.\n");
// identical mem
boot_l2pgdir[(PHY_MEM_BASE >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_kern_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
boot_l2pgdir[(P2V_WO(PHY_MEM_BASE) >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_kern_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
// identical mem
boot_l2pgdir[(PHY_MEM_BASE >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_kern_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
boot_l2pgdir[(P2V_WO(PHY_MEM_BASE) >> LEVEL2_PDE_SHIFT) & IDX_MASK] = (uint64_t)boot_kern_l3pgdir | L2_TYPE_TAB | L2_PTE_VALID;
cur_mem_paddr = ALIGNDOWN((uint64_t)0x00000000ULL, PAGE_SIZE);
for (size_t i = 0; i < NUM_LEVEL3_PDE; i++) {
boot_kern_l3pgdir[i] = (uint64_t)boot_kern_l4pgdirs[i] | L3_TYPE_TAB | L3_PTE_VALID;
cur_mem_paddr = ALIGNDOWN((uint64_t)PHY_MEM_BASE, PAGE_SIZE);
for (size_t i = 0; i < NUM_LEVEL3_PDE; i++) {
boot_kern_l3pgdir[i] = (uint64_t)boot_kern_l4pgdirs[i] | L3_TYPE_TAB | L3_PTE_VALID;
for (size_t j = 0; j < NUM_LEVEL4_PTE; j++) {
// boot_kern_l4pgdirs[i][j] = cur_mem_paddr | L4_TYPE_PAGE | L4_PTE_NORMAL | L4_PTE_AF;
boot_kern_l4pgdirs[i][j] = cur_mem_paddr | 0x713;
for (size_t j = 0; j < NUM_LEVEL4_PTE; j++) {
boot_kern_l4pgdirs[i][j] = cur_mem_paddr | L4_TYPE_PAGE | L4_PTE_NORMAL | L4_PTE_AF;
debug_printf_("Loading %p\r\n", cur_mem_paddr);
cur_mem_paddr += PAGE_SIZE;
cur_mem_paddr += PAGE_SIZE;
}
}
built = true;
}
}
extern void el2_setup(void);
static void load_boot_pgdir()
{
uint64_t val;
// debug_printf_("Loading TTBR0 %x.\r\n", boot_l2pgdir);
TTBR0_W((uintptr_t)boot_l2pgdir);
TTBR1_W(0);
// TTBR0_W((uintptr_t)0xEFFF0000);
// TTBR1_W(0);
TCR_W(TCR_VALUE);
MAIR_W((MT_DEVICE_nGnRnE << (8 * AI_DEVICE_nGnRnE_IDX)) | (MT_NORMAL_NC << (8 * AI_NORMAL_NC_IDX)));
#define TCR_TRUE_VALUE (0x0000000080813519ULL)
uint64_t tcr = 0;
TCR_W(TCR_TRUE_VALUE);
TCR_R(tcr);
uint64_t mair = 0;
MAIR_R(mair);
// MAIR_W((MT_DEVICE_nGnRnE << (8 * AI_DEVICE_nGnRnE_IDX)) | (MT_NORMAL_NC << (8 * AI_NORMAL_NC_IDX)));
// debug_printf_("TCR: %016lx(0x%016lx)\r\n", tcr, TCR_VALUE);
// debug_printf_("MAIR: %016lx\r\n", mair);
// Enable paging using read/modify/write
SCTLR_R(val);
val |= (1 << 0); // EL1 and EL0 stage 1 address translation enabled.
SCTLR_W(val);
// debug_printf_("Loading SCTLR.\r\n");
// uint32_t val = 0;
// SCTLR_R(val);
// debug_printf_("Old SCTLR: %016lx\r\n", val);
// val |= (1 << 0); // EL1 and EL0 stage 1 address translation enabled.
// debug_printf_("New SCTLR: %08x\r\n", val);
// val &= (uint32_t) ~(0x1 << 2);
// debug_printf_("New SCTLR: %08x\r\n", val);
// SCTLR_W(val);
// debug_printf_("l2[0]: %p\r\n", boot_l2pgdir[0]);
// debug_printf_("l2[1]: %p\r\n", boot_l2pgdir[1]);
// debug_printf_("l2[2]: %p\r\n", boot_l2pgdir[2]);
// debug_printf_("l2[3]: %p\r\n", boot_l2pgdir[3]);
// debug_printf_("test upper address: %x\r\n", *(uintptr_t*)boot_l2pgdir);
// debug_printf_("pgdir[%d] = %p\r\n", 384, boot_l2pgdir[384]);
// debug_printf_("test upper address: %x\r\n", *(uintptr_t*)P2V(boot_l2pgdir));
// flush all TLB
// debug_printf_("Flushing TLB.\r\n");
DSB();
CLEARTLB(0);
ISB();
// debug_printf_("Alive after TLB.\r\n");
}
static inline unsigned int current_el(void)
{
unsigned int el;
asm volatile("mrs %0, CurrentEL" : "=r"(el) : : "cc");
return el >> 2;
}
extern void main(void);
static bool _bss_inited = false;
void bootmain()
{
if (!_bss_inited) {
build_boot_pgdir();
}
// debug_printf_("building pgdir.\r\n");
build_boot_pgdir();
// debug_printf_("l2[0]: %p\r\n", boot_l2pgdir[0]);
// debug_printf_("l2[1]: %p\r\n", boot_l2pgdir[1]);
// debug_printf_("l2[2]: %p\r\n", boot_l2pgdir[2]);
// debug_printf_("l2[3]: %p\r\n", boot_l2pgdir[3]);
// debug_printf_("loading pgdir, current el: %d\r\n", current_el());
load_boot_pgdir();
__asm__ __volatile__("add sp, sp, %0" ::"r"(KERN_MEM_BASE - PHY_MEM_BASE));
// debug_printf_("loading pgdir, current el: %d\r\n", current_el());
// debug_printf_("test upper address: %x\r\n", *(uintptr_t*)P2V(boot_l2pgdir));
// el2_setup();
// unsigned int el = current_el();
// debug_printf_("loading pgdir, current el: %d\r\n", el);
// debug_printf_("Fix stack.\r\n");
__asm__ __volatile__("add sp, sp, %0" ::"r"(KERN_OFFSET));
// debug_printf_("Alive after fix stack.\r\n");
if (!_bss_inited) {
// debug_printf_("Clear bss.\r\n");
memset(&kernel_data_begin, 0x00, (size_t)((uint64_t)kernel_data_end - (uint64_t)kernel_data_begin));
_bss_inited = true;
}
// debug_printf_("Going main.\r\n");
main();
}

View File

@ -61,35 +61,36 @@ void GetPdeAttr(uintptr_t* attr);
/*
Enable MMU, cache, write buffer, etc.
*/
#define SCTLR_R(val) __asm__ volatile("mrs %0, sctlr_el1" : "=r"(val))
#define SCTLR_W(val) __asm__ volatile("msr sctlr_el1, %0" ::"r"(val))
#define SCTLR_R(val) __asm__ volatile("mrs %0, sctlr_el1" : "=r"(val)::"memory")
#define SCTLR_W(val) __asm__ volatile("msr sctlr_el1, %0" ::"r"(val) : "memory")
/*
Read and write mmu pagetable register base addr
*/
#define TTBR0_R(val) __asm__ volatile("mrs %0, ttbr0_el1" : "=r"(val))
#define TTBR0_W(val) __asm__ volatile("msr ttbr0_el1, %0" ::"r"(val))
#define TTBR0_R(val) __asm__ volatile("mrs %0, ttbr0_el1" : "=r"(val)::"memory")
#define TTBR0_W(val) __asm__ volatile("msr ttbr0_el1, %0" ::"r"(val) : "memory")
/*
Read and write mmu pagetable register base addr
*/
#define TTBR1_R(val) __asm__ volatile("mrs %0, ttbr1_el1" : "=r"(val))
#define TTBR1_W(val) __asm__ volatile("msr ttbr1_el1, %0" ::"r"(val))
#define TTBR1_R(val) __asm__ volatile("mrs %0, ttbr1_el1" : "=r"(val)::"memory")
#define TTBR1_W(val) __asm__ volatile("msr ttbr1_el1, %0" ::"r"(val) : "memory")
/*
Translation Control RegisterTCR
*/
#define TCR_R(val) __asm__ volatile("mrs %0, tcr_el1" : "=r"(val))
#define TCR_W(val) __asm__ volatile("msr tcr_el1, %0" ::"r"(val))
#define TCR_R(val) __asm__ volatile("mrs %0, tcr_el1" : "=r"(val)::"memory")
#define TCR_W(val) __asm__ volatile("msr tcr_el1, %0" ::"r"(val) : "memory")
#define MAIR_R(val) __asm__ volatile("mrs %0, mair_el1" : "=r"(val))
#define MAIR_W(val) __asm__ volatile("msr mair_el1, %0" ::"r"(val))
#define MAIR_R(val) __asm__ volatile("mrs %0, mair_el1" : "=r"(val)::"memory")
#define MAIR_W(val) __asm__ volatile("msr mair_el1, %0" ::"r"(val) : "memory")
/*
Flush TLB when loading a new page table.
@note If nG is not set in the pte attribute, process switching need flush tlb.
*/
#define CLEARTLB(val) __asm__ volatile("tlbi vmalle1")
// #define CLEARTLB(val) __asm__ volatile("tlbi vmalle1" ::: "memory")
#define CLEARTLB(val) __asm__ volatile("tlbi vmalle1is" ::: "memory")
/*
When nG is set in the pte attribute, the process is assigned an ASID, which is stored in the lower 8 bits of the CONTEXTIDR register.

View File

@ -35,6 +35,8 @@ Modification:
#include "mmu_common.h"
#include "trap_common.h"
#include "log.h"
// extern struct MmuCommonDone mmu_common_done;
static struct MmuDriverRightGroup right_group;
@ -45,7 +47,9 @@ void load_pgdir(uintptr_t pgdir_paddr)
struct DCacheDone* p_dcache_done = AchieveResource(&right_group.dcache_driver_tag);
TTBR0_W((uint64_t)pgdir_paddr);
DSB();
CLEARTLB(0);
ISB();
p_icache_done->invalidateall();
p_dcache_done->flushall();
}

View File

@ -35,9 +35,9 @@ Modification:
/* A72 physical memory layout */
#define PHY_MEM_BASE (0x0000000010000000ULL)
#define PHY_USER_FREEMEM_BASE (0x0000000020000000ULL)
#define PHY_USER_FREEMEM_TOP (0x00000000E0000000ULL)
#define PHY_MEM_STOP (0x00000000E0000000ULL)
#define PHY_USER_FREEMEM_BASE (0x0000000030000000ULL)
#define PHY_USER_FREEMEM_TOP (0x0000000040000000ULL)
#define PHY_MEM_STOP (0x0000000040000000ULL)
/* PTE-PAGE_SIZE */
#define LEVEL4_PTE_SHIFT 12
@ -61,9 +61,9 @@ Modification:
#define MAX_NR_FREE_PAGES ((PHY_MEM_STOP - PHY_MEM_BASE) >> LEVEL4_PTE_SHIFT)
/* Deivce memory layout */
#define DEV_PHYMEM_BASE (0x00000000F0000000ULL)
#define DEV_VRTMEM_BASE (0x0000004000000000ULL)
#define DEV_MEM_SZ (0x0000000010000000ULL)
#define DEV_PHYMEM_BASE (0x00000000C0000000ULL)
#define DEV_VRTMEM_BASE (0x00000040C0000000ULL)
#define DEV_MEM_SIZE (0x0000000040000000ULL)
/* User memory layout */
#define USER_STACK_SIZE PAGE_SIZE
@ -74,7 +74,7 @@ Modification:
#define USER_IPC_SPACE_TOP (USER_IPC_SPACE_BASE + 0x10000000ULL)
/* Kernel memory layout */
#define KERN_MEM_BASE (0x0000006040000000ULL) // First kernel virtual address
#define KERN_MEM_BASE (0x0000006010000000ULL) // First kernel virtual address
#define KERN_OFFSET (KERN_MEM_BASE - PHY_MEM_BASE)
#define V2P(a) (((uint64_t)(a)) - KERN_OFFSET)

View File

@ -52,22 +52,27 @@ Modification:
void GetUsrPteAttr(uintptr_t* attr)
{
*attr = ARMV8_PTE_AP_U | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_NORMAL | ARMV8_PTE_VALID;
// *attr = ARMV8_PTE_AP_U | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_NORMAL | ARMV8_PTE_VALID;
*attr = 0x753;
}
void GetUsrDevPteAttr(uintptr_t* attr)
{
*attr = ARMV8_PTE_AP_U | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_DEVICE | ARMV8_PTE_XN | ARMV8_PTE_VALID;
// *attr = ARMV8_PTE_AP_U | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_DEVICE | ARMV8_PTE_XN | ARMV8_PTE_VALID;
*attr = 0x443;
}
void GetDevPteAttr(uintptr_t* attr)
{
*attr = ARMV8_PTE_AP_K | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_DEVICE | ARMV8_PTE_XN | ARMV8_PTE_VALID;
// *attr = ARMV8_PTE_AP_K | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_DEVICE | ARMV8_PTE_XN | ARMV8_PTE_VALID;
*attr = 0x403ULL;
// *attr = 0x711;
}
void GetKernPteAttr(uintptr_t* attr)
{
*attr = ARMV8_PTE_AP_K | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_NORMAL | ARMV8_PTE_VALID;
// *attr = ARMV8_PTE_AP_K | ARMV8_PTE_AP_RW | ARMV8_PTE_AF | ARMV8_PTE_NORMAL | ARMV8_PTE_VALID;
*attr = 0x713ULL;
}
void GetPdeAttr(uintptr_t* attr)

View File

@ -9,8 +9,8 @@
#include "mmio_access.h"
#include "ns16550.h"
// #define UART_ADDR MMIO_P2V_WO(0xFE660000)
#define UART_ADDR (0xFE660000)
#define UART_ADDR MMIO_P2V_WO(0xFE660000)
// #define UART_ADDR (0xFE660000)
#define UART_LCRVAL UART_LCR_8N1 /* 8 data, 1 stop, no parity */
#define UART_MCRVAL (UART_MCR_DTR | UART_MCR_RTS) /* RTS/DTR */
@ -81,7 +81,11 @@ void _debug_uart_init(void)
void _debug_uart_putc(int ch)
{
struct NS16550* com_port = (struct NS16550*)UART_ADDR;
static struct NS16550* com_port = (struct NS16550*)UART_ADDR;
if (ch == '\n') {
_debug_uart_putc('\r');
}
while (!(serial_din(&com_port->lsr) & UART_LSR_THRE))
;
@ -90,852 +94,10 @@ void _debug_uart_putc(int ch)
int _debug_uart_getc(void)
{
struct NS16550* com_port = (struct NS16550*)UART_ADDR;
static struct NS16550* com_port = (struct NS16550*)UART_ADDR;
while (!(serial_din(&com_port->lsr) & UART_LSR_DR))
;
return serial_din(&com_port->rbr);
}
// 'ntoa' conversion buffer size, this must be big enough to hold one converted
// numeric number including padded zeros (dynamically created on stack)
// default: 32 byte
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define PRINTF_NTOA_BUFFER_SIZE 32U
#define PRINTF_FTOA_BUFFER_SIZE 32U
// support for the floating point type (%f)
// default: activated
#define PRINTF_SUPPORT_FLOAT
// support for exponential floating point notation (%e/%g)
// default: activated
#define PRINTF_SUPPORT_EXPONENTIAL
// define the default floating point precision
// default: 6 digits
#define PRINTF_DEFAULT_FLOAT_PRECISION 6U
// define the largest float suitable to print with %f
// default: 1e9
#define PRINTF_MAX_FLOAT 1e9
// support for the long long types (%llu or %p)
// default: activated
#define PRINTF_SUPPORT_LONG_LONG
// support for the ptrdiff_t type (%t)
// ptrdiff_t is normally defined in <stddef.h> as long or long long type
// default: activated
#define PRINTF_SUPPORT_PTRDIFF_T
#define _putchar _debug_uart_putc
///////////////////////////////////////////////////////////////////////////////
// internal flag definitions
#define FLAGS_ZEROPAD (1U << 0U)
#define FLAGS_LEFT (1U << 1U)
#define FLAGS_PLUS (1U << 2U)
#define FLAGS_SPACE (1U << 3U)
#define FLAGS_HASH (1U << 4U)
#define FLAGS_UPPERCASE (1U << 5U)
#define FLAGS_CHAR (1U << 6U)
#define FLAGS_SHORT (1U << 7U)
#define FLAGS_LONG (1U << 8U)
#define FLAGS_LONG_LONG (1U << 9U)
#define FLAGS_PRECISION (1U << 10U)
#define FLAGS_ADAPT_EXP (1U << 11U)
// import float.h for DBL_MAX
#if defined(PRINTF_SUPPORT_FLOAT)
#include <float.h>
#endif
// output function type
typedef void (*out_fct_type)(char character, void* buffer, size_t idx, size_t maxlen);
// wrapper (used as buffer) for output function type
typedef struct {
void (*fct)(char character, void* arg);
void* arg;
} out_fct_wrap_type;
// internal buffer output
static inline void _out_buffer(char character, void* buffer, size_t idx, size_t maxlen)
{
if (idx < maxlen) {
((char*)buffer)[idx] = character;
}
}
// internal null output
static inline void _out_null(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)character;
(void)buffer;
(void)idx;
(void)maxlen;
}
// internal _putchar wrapper
static inline void _out_char(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)buffer;
(void)idx;
(void)maxlen;
if (character) {
_putchar(character);
}
}
// internal output function wrapper
static inline void _out_fct(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)idx;
(void)maxlen;
if (character) {
// buffer is the output fct pointer
((out_fct_wrap_type*)buffer)->fct(character, ((out_fct_wrap_type*)buffer)->arg);
}
}
// internal secure strlen
// \return The length of the string (excluding the terminating 0) limited by 'maxsize'
static inline unsigned int _strnlen_s(const char* str, size_t maxsize)
{
const char* s;
for (s = str; *s && maxsize--; ++s)
;
return (unsigned int)(s - str);
}
// internal test if char is a digit (0-9)
// \return true if char is a digit
static inline bool _is_digit(char ch)
{
return (ch >= '0') && (ch <= '9');
}
// internal ASCII string to unsigned int conversion
static unsigned int _atoi(const char** str)
{
unsigned int i = 0U;
while (_is_digit(**str)) {
i = i * 10U + (unsigned int)(*((*str)++) - '0');
}
return i;
}
// output the specified string in reverse, taking care of any zero-padding
static size_t _out_rev(out_fct_type out, char* buffer, size_t idx, size_t maxlen, const char* buf, size_t len, unsigned int width, unsigned int flags)
{
const size_t start_idx = idx;
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (size_t i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
while (len) {
out(buf[--len], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
// internal itoa format
static size_t _ntoa_format(out_fct_type out, char* buffer, size_t idx, size_t maxlen, char* buf, size_t len, bool negative, unsigned int base, unsigned int prec, unsigned int width, unsigned int flags)
{
// pad leading zeros
if (!(flags & FLAGS_LEFT)) {
if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < prec) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
// handle hash
if (flags & FLAGS_HASH) {
if (!(flags & FLAGS_PRECISION) && len && ((len == prec) || (len == width))) {
len--;
if (len && (base == 16U)) {
len--;
}
}
if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'x';
} else if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'X';
} else if ((base == 2U) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'b';
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
buf[len++] = '0';
}
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
} else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
} else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
// internal itoa for 'long' type
static size_t _ntoa_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long value, bool negative, unsigned long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
// internal itoa for 'long long' type
#if defined(PRINTF_SUPPORT_LONG_LONG)
static size_t _ntoa_long_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long long value, bool negative, unsigned long long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
#endif // PRINTF_SUPPORT_LONG_LONG
#if defined(PRINTF_SUPPORT_FLOAT)
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// forward declaration so that _ftoa can switch to exp notation for values > PRINTF_MAX_FLOAT
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags);
#endif
// internal ftoa for fixed decimal floating point
static size_t _ftoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_FTOA_BUFFER_SIZE];
size_t len = 0U;
double diff = 0.0;
// powers of 10
static const double pow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
// test for special values
if (value != value)
return _out_rev(out, buffer, idx, maxlen, "nan", 3, width, flags);
if (value < -DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, "fni-", 4, width, flags);
if (value > DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
// test for very large values
// standard printf behavior is to print EVERY whole number digit -- which could be 100s of characters overflowing your buffers == bad
if ((value > PRINTF_MAX_FLOAT) || (value < -PRINTF_MAX_FLOAT)) {
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
return _etoa(out, buffer, idx, maxlen, value, prec, width, flags);
#else
return 0U;
#endif
}
// test for negative
bool negative = false;
if (value < 0) {
negative = true;
value = 0 - value;
}
// set default precision, if not set explicitly
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// limit precision to 9, cause a prec >= 10 can lead to overflow errors
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (prec > 9U)) {
buf[len++] = '0';
prec--;
}
int whole = (int)value;
double tmp = (value - whole) * pow10[prec];
unsigned long frac = (unsigned long)tmp;
diff = tmp - frac;
if (diff > 0.5) {
++frac;
// handle rollover, e.g. case 0.99 with prec 1 is 1.0
if (frac >= pow10[prec]) {
frac = 0;
++whole;
}
} else if (diff < 0.5) {
} else if ((frac == 0U) || (frac & 1U)) {
// if halfway, round up if odd OR if last digit is 0
++frac;
}
if (prec == 0U) {
diff = value - (double)whole;
if ((!(diff < 0.5) || (diff > 0.5)) && (whole & 1)) {
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
++whole;
}
} else {
unsigned int count = prec;
// now do fractional part, as an unsigned number
while (len < PRINTF_FTOA_BUFFER_SIZE) {
--count;
buf[len++] = (char)(48U + (frac % 10U));
if (!(frac /= 10U)) {
break;
}
}
// add extra 0s
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) {
buf[len++] = '0';
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
// add decimal
buf[len++] = '.';
}
}
// do whole part, number is reversed
while (len < PRINTF_FTOA_BUFFER_SIZE) {
buf[len++] = (char)(48 + (whole % 10));
if (!(whole /= 10)) {
break;
}
}
// pad leading zeros
if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
if (width && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < width) && (len < PRINTF_FTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
} else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
} else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// internal ftoa variant for exponential floating-point type, contributed by Martijn Jasperse <m.jasperse@gmail.com>
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
// check for NaN and special values
if ((value != value) || (value > DBL_MAX) || (value < -DBL_MAX)) {
return _ftoa(out, buffer, idx, maxlen, value, prec, width, flags);
}
// determine the sign
const bool negative = value < 0;
if (negative) {
value = -value;
}
// default precision
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// determine the decimal exponent
// based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
union {
uint64_t U;
double F;
} conv;
conv.F = value;
int exp2 = (int)((conv.U >> 52U) & 0x07FFU) - 1023; // effectively log2
conv.U = (conv.U & ((1ULL << 52U) - 1U)) | (1023ULL << 52U); // drop the exponent so conv.F is now in [1,2)
// now approximate log10 from the log2 integer part and an expansion of ln around 1.5
int expval = (int)(0.1760912590558 + exp2 * 0.301029995663981 + (conv.F - 1.5) * 0.289529654602168);
// now we want to compute 10^expval but we want to be sure it won't overflow
exp2 = (int)(expval * 3.321928094887362 + 0.5);
const double z = expval * 2.302585092994046 - exp2 * 0.6931471805599453;
const double z2 = z * z;
conv.U = (uint64_t)(exp2 + 1023) << 52U;
// compute exp(z) using continued fractions, see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
conv.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
// correct for rounding errors
if (value < conv.F) {
expval--;
conv.F /= 10;
}
// the exponent format is "%+03d" and largest value is "307", so set aside 4-5 characters
unsigned int minwidth = ((expval < 100) && (expval > -100)) ? 4U : 5U;
// in "%g" mode, "prec" is the number of *significant figures* not decimals
if (flags & FLAGS_ADAPT_EXP) {
// do we want to fall-back to "%f" mode?
if ((value >= 1e-4) && (value < 1e6)) {
if ((int)prec > expval) {
prec = (unsigned)((int)prec - expval - 1);
} else {
prec = 0;
}
flags |= FLAGS_PRECISION; // make sure _ftoa respects precision
// no characters in exponent
minwidth = 0U;
expval = 0;
} else {
// we use one sigfig for the whole part
if ((prec > 0) && (flags & FLAGS_PRECISION)) {
--prec;
}
}
}
// will everything fit?
unsigned int fwidth = width;
if (width > minwidth) {
// we didn't fall-back so subtract the characters required for the exponent
fwidth -= minwidth;
} else {
// not enough characters, so go back to default sizing
fwidth = 0U;
}
if ((flags & FLAGS_LEFT) && minwidth) {
// if we're padding on the right, DON'T pad the floating part
fwidth = 0U;
}
// rescale the float value
if (expval) {
value /= conv.F;
}
// output the floating part
const size_t start_idx = idx;
idx = _ftoa(out, buffer, idx, maxlen, negative ? -value : value, prec, fwidth, flags & ~FLAGS_ADAPT_EXP);
// output the exponent part
if (minwidth) {
// output the exponential symbol
out((flags & FLAGS_UPPERCASE) ? 'E' : 'e', buffer, idx++, maxlen);
// output the exponent value
idx = _ntoa_long(out, buffer, idx, maxlen, (expval < 0) ? -expval : expval, expval < 0, 10, 0, minwidth - 1, FLAGS_ZEROPAD | FLAGS_PLUS);
// might need to right-pad spaces
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width)
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
// internal vsnprintf
static int _vsnprintf(out_fct_type out, char* buffer, const size_t maxlen, const char* format, va_list va)
{
unsigned int flags, width, precision, n;
size_t idx = 0U;
if (!buffer) {
// use null output function
out = _out_null;
}
while (*format) {
// format specifier? %[flags][width][.precision][length]
if (*format != '%') {
// no
out(*format, buffer, idx++, maxlen);
format++;
continue;
} else {
// yes, evaluate it
format++;
}
// evaluate flags
flags = 0U;
do {
switch (*format) {
case '0':
flags |= FLAGS_ZEROPAD;
format++;
n = 1U;
break;
case '-':
flags |= FLAGS_LEFT;
format++;
n = 1U;
break;
case '+':
flags |= FLAGS_PLUS;
format++;
n = 1U;
break;
case ' ':
flags |= FLAGS_SPACE;
format++;
n = 1U;
break;
case '#':
flags |= FLAGS_HASH;
format++;
n = 1U;
break;
default:
n = 0U;
break;
}
} while (n);
// evaluate width field
width = 0U;
if (_is_digit(*format)) {
width = _atoi(&format);
} else if (*format == '*') {
const int w = va_arg(va, int);
if (w < 0) {
flags |= FLAGS_LEFT; // reverse padding
width = (unsigned int)-w;
} else {
width = (unsigned int)w;
}
format++;
}
// evaluate precision field
precision = 0U;
if (*format == '.') {
flags |= FLAGS_PRECISION;
format++;
if (_is_digit(*format)) {
precision = _atoi(&format);
} else if (*format == '*') {
const int prec = (int)va_arg(va, int);
precision = prec > 0 ? (unsigned int)prec : 0U;
format++;
}
}
// evaluate length field
switch (*format) {
case 'l':
flags |= FLAGS_LONG;
format++;
if (*format == 'l') {
flags |= FLAGS_LONG_LONG;
format++;
}
break;
case 'h':
flags |= FLAGS_SHORT;
format++;
if (*format == 'h') {
flags |= FLAGS_CHAR;
format++;
}
break;
#if defined(PRINTF_SUPPORT_PTRDIFF_T)
case 't':
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
#endif
case 'j':
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
case 'z':
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
default:
break;
}
// evaluate specifier
switch (*format) {
case 'd':
case 'i':
case 'u':
case 'x':
case 'X':
case 'o':
case 'b': {
// set the base
unsigned int base;
if (*format == 'x' || *format == 'X') {
base = 16U;
} else if (*format == 'o') {
base = 8U;
} else if (*format == 'b') {
base = 2U;
} else {
base = 10U;
flags &= ~FLAGS_HASH; // no hash for dec format
}
// uppercase
if (*format == 'X') {
flags |= FLAGS_UPPERCASE;
}
// no plus or space flag for u, x, X, o, b
if ((*format != 'i') && (*format != 'd')) {
flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
}
// ignore '0' flag when precision is given
if (flags & FLAGS_PRECISION) {
flags &= ~FLAGS_ZEROPAD;
}
// convert the integer
if ((*format == 'i') || (*format == 'd')) {
// signed
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
const long long value = va_arg(va, long long);
idx = _ntoa_long_long(out, buffer, idx, maxlen, (unsigned long long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
#endif
} else if (flags & FLAGS_LONG) {
const long value = va_arg(va, long);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
} else {
const int value = (flags & FLAGS_CHAR) ? (char)va_arg(va, int) : (flags & FLAGS_SHORT) ? (short int)va_arg(va, int)
: va_arg(va, int);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned int)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
} else {
// unsigned
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
idx = _ntoa_long_long(out, buffer, idx, maxlen, va_arg(va, unsigned long long), false, base, precision, width, flags);
#endif
} else if (flags & FLAGS_LONG) {
idx = _ntoa_long(out, buffer, idx, maxlen, va_arg(va, unsigned long), false, base, precision, width, flags);
} else {
const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char)va_arg(va, unsigned int) : (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(va, unsigned int)
: va_arg(va, unsigned int);
idx = _ntoa_long(out, buffer, idx, maxlen, value, false, base, precision, width, flags);
}
}
format++;
break;
}
#if defined(PRINTF_SUPPORT_FLOAT)
case 'f':
case 'F':
if (*format == 'F')
flags |= FLAGS_UPPERCASE;
idx = _ftoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
case 'e':
case 'E':
case 'g':
case 'G':
if ((*format == 'g') || (*format == 'G'))
flags |= FLAGS_ADAPT_EXP;
if ((*format == 'E') || (*format == 'G'))
flags |= FLAGS_UPPERCASE;
idx = _etoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
case 'c': {
unsigned int l = 1U;
// pre padding
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// char output
out((char)va_arg(va, int), buffer, idx++, maxlen);
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 's': {
const char* p = va_arg(va, char*);
unsigned int l = _strnlen_s(p, precision ? precision : (size_t)-1);
// pre padding
if (flags & FLAGS_PRECISION) {
l = (l < precision ? l : precision);
}
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// string output
while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) {
out(*(p++), buffer, idx++, maxlen);
}
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 'p': {
width = sizeof(void*) * 2U;
flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE;
#if defined(PRINTF_SUPPORT_LONG_LONG)
const bool is_ll = sizeof(uintptr_t) == sizeof(long long);
if (is_ll) {
idx = _ntoa_long_long(out, buffer, idx, maxlen, (uintptr_t)va_arg(va, void*), false, 16U, precision, width, flags);
} else {
#endif
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)((uintptr_t)va_arg(va, void*)), false, 16U, precision, width, flags);
#if defined(PRINTF_SUPPORT_LONG_LONG)
}
#endif
format++;
break;
}
case '%':
out('%', buffer, idx++, maxlen);
format++;
break;
default:
out(*format, buffer, idx++, maxlen);
format++;
break;
}
}
// termination
out((char)0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen);
// return written chars without terminating \0
return (int)idx;
}
///////////////////////////////////////////////////////////////////////////////
int debug_printf_(const char* format, ...)
{
va_list va;
va_start(va, format);
char buffer[1];
const int ret = _vsnprintf(_out_char, buffer, (size_t)-1, format, va);
va_end(va);
return ret;
}
// static int sprintf_(char* buffer, const char* format, ...)
// {
// va_list va;
// va_start(va, format);
// const int ret = _vsnprintf(_out_buffer, buffer, (size_t)-1, format, va);
// va_end(va);
// return ret;
// }
// static int snprintf_(char* buffer, size_t count, const char* format, ...)
// {
// va_list va;
// va_start(va, format);
// const int ret = _vsnprintf(_out_buffer, buffer, count, format, va);
// va_end(va);
// return ret;
// }
// static int vprintf_(const char* format, va_list va)
// {
// char buffer[1];
// return _vsnprintf(_out_char, buffer, (size_t)-1, format, va);
// }
// static int vsnprintf_(char* buffer, size_t count, const char* format, va_list va)
// {
// return _vsnprintf(_out_buffer, buffer, count, format, va);
// }
// static int fctprintf(void (*out)(char character, void* arg), void* arg, const char* format, ...)
// {
// va_list va;
// va_start(va, format);
// const out_fct_wrap_type out_fct_wrap = { out, arg };
// const int ret = _vsnprintf(_out_fct, (char*)(uintptr_t)&out_fct_wrap, (size_t)-1, format, va);
// va_end(va);
// return ret;
// }
}

View File

@ -13,7 +13,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
board_specs = stub.o
endif

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,46 +11,214 @@
*/
/// this file is only used for debug
#include <stddef.h>
#include <stdint.h>
#include "libserial.h"
#include "usyscall.h"
#define USER_UART_BASE 0x6FFFF000
/*
* For driver model we always use one byte per register, and sort out the
* differences in the driver
*/
#define CONFIG_SYS_NS16550_REG_SIZE (-1)
#define UART0_BASE (0x09000000ULL)
#define UART0_REG(reg) ((volatile uint32_t*)(USER_UART_BASE + reg))
#define UART_REG(x) \
unsigned char x; \
unsigned char postpad_##x[-CONFIG_SYS_NS16550_REG_SIZE - 1];
// the UART control registers.
// pl011
#define DR 0x00
#define FR 0x18
#define FR_RXFE (1 << 4) // recieve fifo empty
#define FR_TXFF (1 << 5) // transmit fifo full
#define FR_RXFF (1 << 6) // recieve fifo full
#define FR_TXFE (1 << 7) // transmit fifo empty
#define IBRD 0x24
#define FBRD 0x28
#define LCRH 0x2c
#define LCRH_FEN (1 << 4)
#define LCRH_WLEN_8BIT (3 << 5)
#define CR 0x30
#define IMSC 0x38
#define INT_RX_ENABLE (1 << 4)
#define INT_TX_ENABLE (1 << 5)
#define ICR 0x44
/**
* struct ns16550_platdata - information about a NS16550 port
*
* @base: Base register address
* @reg_shift: Shift size of registers (0=byte, 1=16bit, 2=32bit...)
* @clock: UART base clock speed in Hz
*/
struct ns16550_platdata {
unsigned long base;
int reg_shift;
int clock;
int reg_offset;
uint32_t fcr;
};
#define UART_READ_REG(reg) (*(UART0_REG(reg)))
#define UART_WRITE_REG(reg, v) (*(UART0_REG(reg)) = (v))
struct udevice;
#define UART_TX_BUF_SIZE 32
static char uart_tx_buf[UART_TX_BUF_SIZE];
uint64_t uart_tx_w; // write next to uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE]
uint64_t uart_tx_r; // read next from uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE]
struct NS16550 {
UART_REG(rbr); /* 0 */
UART_REG(ier); /* 1 */
UART_REG(fcr); /* 2 */
UART_REG(lcr); /* 3 */
UART_REG(mcr); /* 4 */
UART_REG(lsr); /* 5 */
UART_REG(msr); /* 6 */
UART_REG(spr); /* 7 */
#ifdef CONFIG_SOC_DA8XX
UART_REG(reg8); /* 8 */
UART_REG(reg9); /* 9 */
UART_REG(revid1); /* A */
UART_REG(revid2); /* B */
UART_REG(pwr_mgmt); /* C */
UART_REG(mdr1); /* D */
#else
UART_REG(mdr1); /* 8 */
UART_REG(reg9); /* 9 */
UART_REG(regA); /* A */
UART_REG(regB); /* B */
UART_REG(regC); /* C */
UART_REG(regD); /* D */
UART_REG(regE); /* E */
UART_REG(uasr); /* F */
UART_REG(scr); /* 10*/
UART_REG(ssr); /* 11*/
#endif
#ifdef CONFIG_DM_SERIAL
struct ns16550_platdata* plat;
#endif
};
#define thr rbr
#define iir fcr
#define dll rbr
#define dlm ier
typedef struct NS16550* NS16550_t;
/*
* These are the definitions for the FIFO Control Register
*/
#define UART_FCR_FIFO_EN 0x01 /* Fifo enable */
#define UART_FCR_CLEAR_RCVR 0x02 /* Clear the RCVR FIFO */
#define UART_FCR_CLEAR_XMIT 0x04 /* Clear the XMIT FIFO */
#define UART_FCR_DMA_SELECT 0x08 /* For DMA applications */
#define UART_FCR_TRIGGER_MASK 0xC0 /* Mask for the FIFO trigger range */
#define UART_FCR_TRIGGER_1 0x00 /* Mask for trigger set at 1 */
#define UART_FCR_TRIGGER_4 0x40 /* Mask for trigger set at 4 */
#define UART_FCR_TRIGGER_8 0x80 /* Mask for trigger set at 8 */
#define UART_FCR_TRIGGER_14 0xC0 /* Mask for trigger set at 14 */
#define UART_FCR_RXSR 0x02 /* Receiver soft reset */
#define UART_FCR_TXSR 0x04 /* Transmitter soft reset */
/* Ingenic JZ47xx specific UART-enable bit. */
#define UART_FCR_UME 0x10
/* Clear & enable FIFOs */
#define UART_FCR_DEFVAL (UART_FCR_FIFO_EN | UART_FCR_RXSR | UART_FCR_TXSR)
/*
* These are the definitions for the Modem Control Register
*/
#define UART_MCR_DTR 0x01 /* DTR */
#define UART_MCR_RTS 0x02 /* RTS */
#define UART_MCR_OUT1 0x04 /* Out 1 */
#define UART_MCR_OUT2 0x08 /* Out 2 */
#define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
#define UART_MCR_AFE 0x20 /* Enable auto-RTS/CTS */
#define UART_MCR_DMA_EN 0x04
#define UART_MCR_TX_DFR 0x08
/*
* These are the definitions for the Line Control Register
*
* Note: if the word length is 5 bits (UART_LCR_WLEN5), then setting
* UART_LCR_STOP will select 1.5 stop bits, not 2 stop bits.
*/
#define UART_LCR_WLS_MSK 0x03 /* character length select mask */
#define UART_LCR_WLS_5 0x00 /* 5 bit character length */
#define UART_LCR_WLS_6 0x01 /* 6 bit character length */
#define UART_LCR_WLS_7 0x02 /* 7 bit character length */
#define UART_LCR_WLS_8 0x03 /* 8 bit character length */
#define UART_LCR_STB 0x04 /* # stop Bits, off=1, on=1.5 or 2) */
#define UART_LCR_PEN 0x08 /* Parity eneble */
#define UART_LCR_EPS 0x10 /* Even Parity Select */
#define UART_LCR_STKP 0x20 /* Stick Parity */
#define UART_LCR_SBRK 0x40 /* Set Break */
#define UART_LCR_BKSE 0x80 /* Bank select enable */
#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
/*
* These are the definitions for the Line Status Register
*/
#define UART_LSR_DR 0x01 /* Data ready */
#define UART_LSR_OE 0x02 /* Overrun */
#define UART_LSR_PE 0x04 /* Parity error */
#define UART_LSR_FE 0x08 /* Framing error */
#define UART_LSR_BI 0x10 /* Break */
#define UART_LSR_THRE 0x20 /* Xmit holding register empty */
#define UART_LSR_TEMT 0x40 /* Xmitter empty */
#define UART_LSR_ERR 0x80 /* Error */
#define UART_MSR_DCD 0x80 /* Data Carrier Detect */
#define UART_MSR_RI 0x40 /* Ring Indicator */
#define UART_MSR_DSR 0x20 /* Data Set Ready */
#define UART_MSR_CTS 0x10 /* Clear to Send */
#define UART_MSR_DDCD 0x08 /* Delta DCD */
#define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
#define UART_MSR_DDSR 0x02 /* Delta DSR */
#define UART_MSR_DCTS 0x01 /* Delta CTS */
/*
* These are the definitions for the Interrupt Identification Register
*/
#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
#define UART_IIR_MSI 0x00 /* Modem status interrupt */
#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
/*
* These are the definitions for the Interrupt Enable Register
*/
#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
/* useful defaults for LCR */
#define UART_LCR_8N1 0x03
#define UART_ADDR (0xFE660000)
#define UART_LCRVAL UART_LCR_8N1 /* 8 data, 1 stop, no parity */
#define UART_MCRVAL (UART_MCR_DTR | UART_MCR_RTS) /* RTS/DTR */
#define out_le32(a, v) (*(volatile uint32_t*)(a) = (v))
#define in_le32(a) (*(volatile uint32_t*)(a))
#ifndef CONFIG_SYS_NS16550_IER
#define CONFIG_SYS_NS16550_IER 0x00
#endif /* CONFIG_SYS_NS16550_IER */
#define serial_dout(reg, value) \
serial_out_shift((char*)com_port + ((char*)reg - (char*)com_port) * (1 << 2), \
2, value)
#define serial_din(reg) \
serial_in_shift((char*)com_port + ((char*)reg - (char*)com_port) * (1 << 2), \
2)
static inline void serial_out_shift(void* addr, int shift, int value)
{
out_le32(addr, value);
}
static inline int serial_in_shift(void* addr, int shift)
{
return in_le32(addr);
}
#ifndef CONFIG_SYS_NS16550_CLK
#define CONFIG_SYS_NS16550_CLK 0
#endif
bool init_uart_mmio()
{
static int mapped = 0;
if (mapped == 0) {
if (-1 == mmap(USER_UART_BASE, UART0_BASE, 4096, true)) {
if (-1 == mmap(UART_ADDR, UART_ADDR, 4096, true)) {
return false;
}
mapped = 1;
@ -58,56 +226,25 @@ bool init_uart_mmio()
return true;
}
// if the UART is idle, and a character is waiting
// in the transmit buffer, send it.
// caller must hold uart_tx_lock.
// called from both the top- and bottom-half.
void uartstart()
void putc(char ch)
{
while (1) {
if (uart_tx_w == uart_tx_r) {
// transmit buffer is empty.
return;
}
static struct NS16550* com_port = (struct NS16550*)UART_ADDR;
if (UART_READ_REG(FR) & FR_TXFF) {
// the UART transmit holding register is full,
// so we cannot give it another byte.
// it will interrupt when it's ready for a new byte.
return;
}
int c = uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE];
uart_tx_r += 1;
// maybe uartputc() is waiting for space in the buffer.
UART_WRITE_REG(DR, c);
if (ch == '\n') {
putc('\r');
}
}
// add a character to the output buffer and tell the
// UART to start sending if it isn't already.
// blocks if the output buffer is full.
// because it may block, it can't be called
// from interrupts; it's only suitable for use
// by write().
void putc(char c)
{
while (uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE)
while (!(serial_din(&com_port->lsr) & UART_LSR_THRE))
;
uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE] = c;
uart_tx_w += 1;
uartstart();
return;
serial_dout(&com_port->thr, ch);
}
// read one input character from the UART.
// return -1 if none is waiting.
char getc(void)
{
if (UART_READ_REG(FR) & FR_RXFE)
return 0xFF;
else
return UART_READ_REG(DR);
static struct NS16550* com_port = (struct NS16550*)UART_ADDR;
while (!(serial_din(&com_port->lsr) & UART_LSR_DR))
;
return serial_din(&com_port->rbr);
}

View File

@ -12,7 +12,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc
ld = ${toolchain}g++

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -12,7 +12,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -12,7 +12,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -12,7 +12,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -11,7 +11,7 @@ endif
ifeq ($(BOARD), ok1028a-c)
toolchain ?= aarch64-none-elf-
user_ldflags = -N -Ttext 0
cflags = -Wall -g -std=c11 -mtune=cortex-a72 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
cflags = -Wall -g -std=c11 -mtune=cortex-a55 -nostdlib -nodefaultlibs -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -ggdb -Wno-unused -Werror -fno-omit-frame-pointer -fno-stack-protector -fno-pie
endif
cc = ${toolchain}gcc

View File

@ -43,6 +43,7 @@ bool module_phymem_init()
uintptr_t kern_freemem_end = PHY_USER_FREEMEM_BASE;
uintptr_t user_freemem_start = PHY_USER_FREEMEM_BASE;
uintptr_t user_freemem_end = PHY_MEM_STOP;
user_phy_freemem_buddy.pages = NULL;
KBuddySysInit(&kern_virtmem_buddy, kern_freemem_start, kern_freemem_end);
KBuddyInit(&user_phy_freemem_buddy, user_freemem_start, user_freemem_end);
return true;

View File

@ -269,7 +269,7 @@ void load_kern_pgdir(struct TraceTag* mmu_driver_tag, struct TraceTag* intr_driv
// kern mem
_map_pages((uintptr_t*)kern_pgdir.pd_addr, KERN_MEM_BASE, PHY_MEM_BASE, (PHY_MEM_STOP - PHY_MEM_BASE), kern_attr);
// dev mem
_map_pages((uintptr_t*)kern_pgdir.pd_addr, DEV_VRTMEM_BASE, DEV_PHYMEM_BASE, DEV_MEM_SZ, dev_attr);
_map_pages((uintptr_t*)kern_pgdir.pd_addr, DEV_VRTMEM_BASE, DEV_PHYMEM_BASE, DEV_MEM_SIZE, dev_attr);
_p_pgtbl_mmu_access->LoadPgdir((uintptr_t)V2P(kern_pgdir.pd_addr));
}

View File

@ -48,7 +48,7 @@ uintptr_t* _page_walk(uintptr_t* pgdir, uintptr_t vaddr, bool alloc)
uintptr_t* l3_pde_vaddr;
if (*l2_pde_ptr != 0) {
uintptr_t l3_table_paddr = (*l2_pde_ptr) & ~pde_attr;
uintptr_t l3_table_paddr = ALIGNDOWN(*l2_pde_ptr, PAGE_SIZE);
l3_pde_vaddr = (uintptr_t*)P2V(l3_table_paddr);
} else {
if (!alloc || !(l3_pde_vaddr = (uintptr_t*)kalloc(sizeof(uintptr_t) * NUM_LEVEL3_PDE))) {
@ -63,7 +63,7 @@ uintptr_t* _page_walk(uintptr_t* pgdir, uintptr_t vaddr, bool alloc)
uintptr_t* l4_pte_vaddr;
if (*l3_pde_ptr != 0) {
uintptr_t l4_table_paddr = (*l3_pde_ptr) & ~pde_attr;
uintptr_t l4_table_paddr = ALIGNDOWN(*l3_pde_ptr, PAGE_SIZE);
l4_pte_vaddr = (uintptr_t*)P2V(l4_table_paddr);
} else {
if (!alloc || !(l4_pte_vaddr = (uintptr_t*)kalloc(sizeof(uintptr_t) * NUM_LEVEL4_PTE))) {