forked from xuos/xiuos
fix(yolov2): change static input size to dynamic
This commit is contained in:
parent
af42ebca62
commit
545f1f1b3c
|
@ -1,66 +1,63 @@
|
|||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include "region_layer.h"
|
||||
|
||||
typedef struct
|
||||
{
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
typedef struct {
|
||||
float x;
|
||||
float y;
|
||||
float w;
|
||||
float h;
|
||||
} box_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
typedef struct {
|
||||
int index;
|
||||
int class;
|
||||
float **probs;
|
||||
} sortable_box_t;
|
||||
|
||||
|
||||
int region_layer_init(region_layer_t *rl, int width, int height, int channels, int origin_width, int origin_height)
|
||||
{
|
||||
int flag = 0;
|
||||
|
||||
rl->coords = 4;
|
||||
rl->image_width = 320;
|
||||
rl->image_height = 240;
|
||||
/* As no more parameter adding to this function,
|
||||
image width(height) is regarded as net input shape as well as image capture from sensor.
|
||||
If net input did not match sensor input, `dvp_set_image_size` function can set sensor output shape.
|
||||
*/
|
||||
rl->image_width = origin_width;
|
||||
rl->image_height = origin_height;
|
||||
|
||||
rl->classes = channels / 5 - 5;
|
||||
rl->net_width = origin_width;
|
||||
rl->net_height = origin_height;
|
||||
rl->layer_width = width;
|
||||
rl->layer_height = height;
|
||||
rl->boxes_number = (rl->layer_width * rl->layer_height * rl->anchor_number);
|
||||
rl->boxes_number = (rl->layer_width * rl->layer_height * rl->anchor_number);
|
||||
rl->output_number = (rl->boxes_number * (rl->classes + rl->coords + 1));
|
||||
|
||||
rl->output = malloc(rl->output_number * sizeof(float));
|
||||
if (rl->output == NULL)
|
||||
{
|
||||
if (rl->output == NULL) {
|
||||
flag = -1;
|
||||
goto malloc_error;
|
||||
}
|
||||
rl->boxes = malloc(rl->boxes_number * sizeof(box_t));
|
||||
if (rl->boxes == NULL)
|
||||
{
|
||||
if (rl->boxes == NULL) {
|
||||
flag = -2;
|
||||
goto malloc_error;
|
||||
}
|
||||
rl->probs_buf = malloc(rl->boxes_number * (rl->classes + 1) * sizeof(float));
|
||||
if (rl->probs_buf == NULL)
|
||||
{
|
||||
if (rl->probs_buf == NULL) {
|
||||
flag = -3;
|
||||
goto malloc_error;
|
||||
}
|
||||
rl->probs = malloc(rl->boxes_number * sizeof(float *));
|
||||
if (rl->probs == NULL)
|
||||
{
|
||||
if (rl->probs == NULL) {
|
||||
flag = -4;
|
||||
goto malloc_error;
|
||||
}
|
||||
for (uint32_t i = 0; i < rl->boxes_number; i++)
|
||||
rl->probs[i] = &(rl->probs_buf[i * (rl->classes + 1)]);
|
||||
for (uint32_t i = 0; i < rl->boxes_number; i++) rl->probs[i] = &(rl->probs_buf[i * (rl->classes + 1)]);
|
||||
return 0;
|
||||
malloc_error:
|
||||
free(rl->output);
|
||||
|
@ -78,24 +75,20 @@ void region_layer_deinit(region_layer_t *rl)
|
|||
free(rl->probs);
|
||||
}
|
||||
|
||||
static inline float sigmoid(float x)
|
||||
{
|
||||
return 1.f / (1.f + expf(-x));
|
||||
}
|
||||
static inline float sigmoid(float x) { return 1.f / (1.f + expf(-x)); }
|
||||
|
||||
static void activate_array(region_layer_t *rl, int index, int n)
|
||||
{
|
||||
float *output = &rl->output[index];
|
||||
float *input = &rl->input[index];
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
output[i] = sigmoid(input[i]);
|
||||
for (int i = 0; i < n; ++i) output[i] = sigmoid(input[i]);
|
||||
}
|
||||
|
||||
static int entry_index(region_layer_t *rl, int location, int entry)
|
||||
{
|
||||
int wh = rl->layer_width * rl->layer_height;
|
||||
int n = location / wh;
|
||||
int n = location / wh;
|
||||
int loc = location % wh;
|
||||
|
||||
return n * wh * (rl->coords + rl->classes + 1) + entry * wh + loc;
|
||||
|
@ -109,10 +102,8 @@ static void softmax(region_layer_t *rl, float *input, int n, int stride, float *
|
|||
float sum = 0;
|
||||
float largest_i = input[0];
|
||||
|
||||
for (i = 0; i < n; ++i)
|
||||
{
|
||||
if (input[i * stride] > largest_i)
|
||||
largest_i = input[i * stride];
|
||||
for (i = 0; i < n; ++i) {
|
||||
if (input[i * stride] > largest_i) largest_i = input[i * stride];
|
||||
}
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
|
@ -121,17 +112,16 @@ static void softmax(region_layer_t *rl, float *input, int n, int stride, float *
|
|||
sum += e;
|
||||
output[i * stride] = e;
|
||||
}
|
||||
for (i = 0; i < n; ++i)
|
||||
output[i * stride] /= sum;
|
||||
for (i = 0; i < n; ++i) output[i * stride] /= sum;
|
||||
}
|
||||
|
||||
static void softmax_cpu(region_layer_t *rl, float *input, int n, int batch, int batch_offset, int groups, int stride, float *output)
|
||||
static void softmax_cpu(region_layer_t *rl, float *input, int n, int batch, int batch_offset, int groups, int stride,
|
||||
float *output)
|
||||
{
|
||||
int g, b;
|
||||
|
||||
for (b = 0; b < batch; ++b) {
|
||||
for (g = 0; g < groups; ++g)
|
||||
softmax(rl, input + b * batch_offset + g, n, stride, output + b * batch_offset + g);
|
||||
for (g = 0; g < groups; ++g) softmax(rl, input + b * batch_offset + g, n, stride, output + b * batch_offset + g);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -139,11 +129,9 @@ static void forward_region_layer(region_layer_t *rl)
|
|||
{
|
||||
int index;
|
||||
|
||||
for (index = 0; index < rl->output_number; index++)
|
||||
rl->output[index] = rl->input[index];
|
||||
for (index = 0; index < rl->output_number; index++) rl->output[index] = rl->input[index];
|
||||
|
||||
for (int n = 0; n < rl->anchor_number; ++n)
|
||||
{
|
||||
for (int n = 0; n < rl->anchor_number; ++n) {
|
||||
index = entry_index(rl, n * rl->layer_width * rl->layer_height, 0);
|
||||
activate_array(rl, index, 2 * rl->layer_width * rl->layer_height);
|
||||
index = entry_index(rl, n * rl->layer_width * rl->layer_height, 4);
|
||||
|
@ -151,9 +139,8 @@ static void forward_region_layer(region_layer_t *rl)
|
|||
}
|
||||
|
||||
index = entry_index(rl, 0, rl->coords + 1);
|
||||
softmax_cpu(rl, rl->input + index, rl->classes, rl->anchor_number,
|
||||
rl->output_number / rl->anchor_number, rl->layer_width * rl->layer_height,
|
||||
rl->layer_width * rl->layer_height, rl->output + index);
|
||||
softmax_cpu(rl, rl->input + index, rl->classes, rl->anchor_number, rl->output_number / rl->anchor_number,
|
||||
rl->layer_width * rl->layer_height, rl->layer_width * rl->layer_height, rl->output + index);
|
||||
}
|
||||
|
||||
static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
|
||||
|
@ -166,8 +153,7 @@ static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
|
|||
int new_w = 0;
|
||||
int new_h = 0;
|
||||
|
||||
if (((float)net_width / image_width) <
|
||||
((float)net_height / image_height)) {
|
||||
if (((float)net_width / image_width) < ((float)net_height / image_height)) {
|
||||
new_w = net_width;
|
||||
new_h = (image_height * net_width) / image_width;
|
||||
} else {
|
||||
|
@ -177,10 +163,8 @@ static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
|
|||
for (int i = 0; i < boxes_number; ++i) {
|
||||
box_t b = boxes[i];
|
||||
|
||||
b.x = (b.x - (net_width - new_w) / 2. / net_width) /
|
||||
((float)new_w / net_width);
|
||||
b.y = (b.y - (net_height - new_h) / 2. / net_height) /
|
||||
((float)new_h / net_height);
|
||||
b.x = (b.x - (net_width - new_w) / 2. / net_width) / ((float)new_w / net_width);
|
||||
b.y = (b.y - (net_height - new_h) / 2. / net_height) / ((float)new_h / net_height);
|
||||
b.w *= (float)net_width / new_w;
|
||||
b.h *= (float)net_height / new_h;
|
||||
boxes[i] = b;
|
||||
|
@ -207,34 +191,29 @@ static void get_region_boxes(region_layer_t *rl, float *predictions, float **pro
|
|||
uint32_t coords = rl->coords;
|
||||
float threshold = rl->threshold;
|
||||
|
||||
for (int i = 0; i < layer_width * layer_height; ++i)
|
||||
{
|
||||
for (int i = 0; i < layer_width * layer_height; ++i) {
|
||||
int row = i / layer_width;
|
||||
int col = i % layer_width;
|
||||
|
||||
for (int n = 0; n < anchor_number; ++n)
|
||||
{
|
||||
for (int n = 0; n < anchor_number; ++n) {
|
||||
int index = n * layer_width * layer_height + i;
|
||||
|
||||
for (int j = 0; j < classes; ++j)
|
||||
probs[index][j] = 0;
|
||||
for (int j = 0; j < classes; ++j) probs[index][j] = 0;
|
||||
int obj_index = entry_index(rl, n * layer_width * layer_height + i, coords);
|
||||
int box_index = entry_index(rl, n * layer_width * layer_height + i, 0);
|
||||
float scale = predictions[obj_index];
|
||||
float scale = predictions[obj_index];
|
||||
|
||||
boxes[index] = get_region_box(predictions, rl->anchor, n, box_index, col, row,
|
||||
layer_width, layer_height, layer_width * layer_height);
|
||||
boxes[index] = get_region_box(predictions, rl->anchor, n, box_index, col, row, layer_width, layer_height,
|
||||
layer_width * layer_height);
|
||||
|
||||
float max = 0;
|
||||
|
||||
for (int j = 0; j < classes; ++j)
|
||||
{
|
||||
for (int j = 0; j < classes; ++j) {
|
||||
int class_index = entry_index(rl, n * layer_width * layer_height + i, coords + 1 + j);
|
||||
float prob = scale * predictions[class_index];
|
||||
|
||||
probs[index][j] = (prob > threshold) ? prob : 0;
|
||||
if (prob > max)
|
||||
max = prob;
|
||||
if (prob > max) max = prob;
|
||||
}
|
||||
probs[index][classes] = max;
|
||||
}
|
||||
|
@ -257,11 +236,11 @@ static int nms_comparator(void *pa, void *pb)
|
|||
|
||||
static float overlap(float x1, float w1, float x2, float w2)
|
||||
{
|
||||
float l1 = x1 - w1/2;
|
||||
float l2 = x2 - w2/2;
|
||||
float l1 = x1 - w1 / 2;
|
||||
float l2 = x2 - w2 / 2;
|
||||
float left = l1 > l2 ? l1 : l2;
|
||||
float r1 = x1 + w1/2;
|
||||
float r2 = x2 + w2/2;
|
||||
float r1 = x1 + w1 / 2;
|
||||
float r2 = x2 + w2 / 2;
|
||||
float right = r1 < r2 ? r1 : r2;
|
||||
|
||||
return right - left;
|
||||
|
@ -272,8 +251,7 @@ static float box_intersection(box_t a, box_t b)
|
|||
float w = overlap(a.x, a.w, b.x, b.w);
|
||||
float h = overlap(a.y, a.h, b.y, b.h);
|
||||
|
||||
if (w < 0 || h < 0)
|
||||
return 0;
|
||||
if (w < 0 || h < 0) return 0;
|
||||
return w * h;
|
||||
}
|
||||
|
||||
|
@ -285,10 +263,7 @@ static float box_union(box_t a, box_t b)
|
|||
return u;
|
||||
}
|
||||
|
||||
static float box_iou(box_t a, box_t b)
|
||||
{
|
||||
return box_intersection(a, b) / box_union(a, b);
|
||||
}
|
||||
static float box_iou(box_t a, box_t b) { return box_intersection(a, b) / box_union(a, b); }
|
||||
|
||||
static void do_nms_sort(region_layer_t *rl, box_t *boxes, float **probs)
|
||||
{
|
||||
|
@ -298,30 +273,23 @@ static void do_nms_sort(region_layer_t *rl, box_t *boxes, float **probs)
|
|||
int i, j, k;
|
||||
sortable_box_t s[boxes_number];
|
||||
|
||||
for (i = 0; i < boxes_number; ++i)
|
||||
{
|
||||
for (i = 0; i < boxes_number; ++i) {
|
||||
s[i].index = i;
|
||||
s[i].class = 0;
|
||||
s[i].probs = probs;
|
||||
}
|
||||
|
||||
for (k = 0; k < classes; ++k)
|
||||
{
|
||||
for (i = 0; i < boxes_number; ++i)
|
||||
s[i].class = k;
|
||||
for (k = 0; k < classes; ++k) {
|
||||
for (i = 0; i < boxes_number; ++i) s[i].class = k;
|
||||
qsort(s, boxes_number, sizeof(sortable_box_t), nms_comparator);
|
||||
for (i = 0; i < boxes_number; ++i)
|
||||
{
|
||||
if (probs[s[i].index][k] == 0)
|
||||
continue;
|
||||
for (i = 0; i < boxes_number; ++i) {
|
||||
if (probs[s[i].index][k] == 0) continue;
|
||||
box_t a = boxes[s[i].index];
|
||||
|
||||
for (j = i + 1; j < boxes_number; ++j)
|
||||
{
|
||||
for (j = i + 1; j < boxes_number; ++j) {
|
||||
box_t b = boxes[s[j].index];
|
||||
|
||||
if (box_iou(a, b) > nms_value)
|
||||
probs[s[j].index][k] = 0;
|
||||
if (box_iou(a, b) > nms_value) probs[s[j].index][k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -332,11 +300,9 @@ static int max_index(float *a, int n)
|
|||
int i, max_i = 0;
|
||||
float max = a[0];
|
||||
|
||||
for (i = 1; i < n; ++i)
|
||||
{
|
||||
if (a[i] > max)
|
||||
{
|
||||
max = a[i];
|
||||
for (i = 1; i < n; ++i) {
|
||||
if (a[i] > max) {
|
||||
max = a[i];
|
||||
max_i = i;
|
||||
}
|
||||
}
|
||||
|
@ -351,14 +317,12 @@ static void region_layer_output(region_layer_t *rl, obj_info_t *obj_info)
|
|||
uint32_t boxes_number = rl->boxes_number;
|
||||
float threshold = rl->threshold;
|
||||
box_t *boxes = (box_t *)rl->boxes;
|
||||
|
||||
for (int i = 0; i < rl->boxes_number; ++i)
|
||||
{
|
||||
int class = max_index(rl->probs[i], rl->classes);
|
||||
|
||||
for (int i = 0; i < rl->boxes_number; ++i) {
|
||||
int class = max_index(rl->probs[i], rl->classes);
|
||||
float prob = rl->probs[i][class];
|
||||
|
||||
if (prob > threshold)
|
||||
{
|
||||
if (prob > threshold) {
|
||||
box_t *b = boxes + i;
|
||||
obj_info->obj[obj_number].x1 = b->x * image_width - (b->w * image_width / 2);
|
||||
obj_info->obj[obj_number].y1 = b->y * image_height - (b->h * image_height / 2);
|
||||
|
@ -380,7 +344,8 @@ void region_layer_run(region_layer_t *rl, obj_info_t *obj_info)
|
|||
region_layer_output(rl, obj_info);
|
||||
}
|
||||
|
||||
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color)
|
||||
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color, uint16_t image_width,
|
||||
uint16_t image_height)
|
||||
{
|
||||
uint32_t data = ((uint32_t)color << 16) | (uint32_t)color;
|
||||
uint32_t *addr1, *addr2, *addr3, *addr4, x1, y1, x2, y2;
|
||||
|
@ -390,48 +355,41 @@ void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t co
|
|||
x2 = obj_info->obj[index].x2;
|
||||
y2 = obj_info->obj[index].y2;
|
||||
|
||||
if (x1 <= 0)
|
||||
x1 = 1;
|
||||
if (x2 >= 319)
|
||||
x2 = 318;
|
||||
if (y1 <= 0)
|
||||
y1 = 1;
|
||||
if (y2 >= 239)
|
||||
y2 = 238;
|
||||
if (x1 <= 0) x1 = 1;
|
||||
if (x2 >= image_width - 1) x2 = image_width - 2;
|
||||
if (y1 <= 0) y1 = 1;
|
||||
if (y2 >= image_height - 1) y2 = image_height - 2;
|
||||
|
||||
addr1 = gram + (320 * y1 + x1) / 2;
|
||||
addr2 = gram + (320 * y1 + x2 - 8) / 2;
|
||||
addr3 = gram + (320 * (y2 - 1) + x1) / 2;
|
||||
addr4 = gram + (320 * (y2 - 1) + x2 - 8) / 2;
|
||||
for (uint32_t i = 0; i < 4; i++)
|
||||
{
|
||||
addr1 = gram + (image_width * y1 + x1) / 2;
|
||||
addr2 = gram + (image_width * y1 + x2 - 8) / 2;
|
||||
addr3 = gram + (image_width * (y2 - 1) + x1) / 2;
|
||||
addr4 = gram + (image_width * (y2 - 1) + x2 - 8) / 2;
|
||||
for (uint32_t i = 0; i < 4; i++) {
|
||||
*addr1 = data;
|
||||
*(addr1 + 160) = data;
|
||||
*(addr1 + image_width / 2) = data;
|
||||
*addr2 = data;
|
||||
*(addr2 + 160) = data;
|
||||
*(addr2 + image_width / 2) = data;
|
||||
*addr3 = data;
|
||||
*(addr3 + 160) = data;
|
||||
*(addr3 + image_width / 2) = data;
|
||||
*addr4 = data;
|
||||
*(addr4 + 160) = data;
|
||||
*(addr4 + image_width / 2) = data;
|
||||
addr1++;
|
||||
addr2++;
|
||||
addr3++;
|
||||
addr4++;
|
||||
}
|
||||
addr1 = gram + (320 * y1 + x1) / 2;
|
||||
addr2 = gram + (320 * y1 + x2 - 2) / 2;
|
||||
addr3 = gram + (320 * (y2 - 8) + x1) / 2;
|
||||
addr4 = gram + (320 * (y2 - 8) + x2 - 2) / 2;
|
||||
for (uint32_t i = 0; i < 8; i++)
|
||||
{
|
||||
addr1 = gram + (image_width * y1 + x1) / 2;
|
||||
addr2 = gram + (image_width * y1 + x2 - 2) / 2;
|
||||
addr3 = gram + (image_width * (y2 - 8) + x1) / 2;
|
||||
addr4 = gram + (image_width * (y2 - 8) + x2 - 2) / 2;
|
||||
for (uint32_t i = 0; i < 8; i++) {
|
||||
*addr1 = data;
|
||||
*addr2 = data;
|
||||
*addr3 = data;
|
||||
*addr4 = data;
|
||||
addr1 += 160;
|
||||
addr2 += 160;
|
||||
addr3 += 160;
|
||||
addr4 += 160;
|
||||
addr1 += image_width / 2;
|
||||
addr2 += image_width / 2;
|
||||
addr3 += image_width / 2;
|
||||
addr4 += image_width / 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -44,6 +44,6 @@ typedef struct
|
|||
int region_layer_init(region_layer_t *rl, int width, int height, int channels, int origin_width, int origin_height);
|
||||
void region_layer_deinit(region_layer_t *rl);
|
||||
void region_layer_run(region_layer_t *rl, obj_info_t *obj_info);
|
||||
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color);
|
||||
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color, uint16_t image_width, uint16_t image_height);
|
||||
|
||||
#endif // _REGION_LAYER
|
||||
|
|
Loading…
Reference in New Issue