2380 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			2380 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2013 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package ssa
 | 
						|
 | 
						|
// This file implements the BUILD phase of SSA construction.
 | 
						|
//
 | 
						|
// SSA construction has two phases, CREATE and BUILD.  In the CREATE phase
 | 
						|
// (create.go), all packages are constructed and type-checked and
 | 
						|
// definitions of all package members are created, method-sets are
 | 
						|
// computed, and wrapper methods are synthesized.
 | 
						|
// ssa.Packages are created in arbitrary order.
 | 
						|
//
 | 
						|
// In the BUILD phase (builder.go), the builder traverses the AST of
 | 
						|
// each Go source function and generates SSA instructions for the
 | 
						|
// function body.  Initializer expressions for package-level variables
 | 
						|
// are emitted to the package's init() function in the order specified
 | 
						|
// by go/types.Info.InitOrder, then code for each function in the
 | 
						|
// package is generated in lexical order.
 | 
						|
// The BUILD phases for distinct packages are independent and are
 | 
						|
// executed in parallel.
 | 
						|
//
 | 
						|
// TODO(adonovan): indeed, building functions is now embarrassingly parallel.
 | 
						|
// Audit for concurrency then benchmark using more goroutines.
 | 
						|
//
 | 
						|
// The builder's and Program's indices (maps) are populated and
 | 
						|
// mutated during the CREATE phase, but during the BUILD phase they
 | 
						|
// remain constant.  The sole exception is Prog.methodSets and its
 | 
						|
// related maps, which are protected by a dedicated mutex.
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"go/ast"
 | 
						|
	"go/constant"
 | 
						|
	"go/token"
 | 
						|
	"go/types"
 | 
						|
	"os"
 | 
						|
	"sync"
 | 
						|
)
 | 
						|
 | 
						|
type opaqueType struct {
 | 
						|
	types.Type
 | 
						|
	name string
 | 
						|
}
 | 
						|
 | 
						|
func (t *opaqueType) String() string { return t.name }
 | 
						|
 | 
						|
var (
 | 
						|
	varOk    = newVar("ok", tBool)
 | 
						|
	varIndex = newVar("index", tInt)
 | 
						|
 | 
						|
	// Type constants.
 | 
						|
	tBool       = types.Typ[types.Bool]
 | 
						|
	tByte       = types.Typ[types.Byte]
 | 
						|
	tInt        = types.Typ[types.Int]
 | 
						|
	tInvalid    = types.Typ[types.Invalid]
 | 
						|
	tString     = types.Typ[types.String]
 | 
						|
	tUntypedNil = types.Typ[types.UntypedNil]
 | 
						|
	tRangeIter  = &opaqueType{nil, "iter"} // the type of all "range" iterators
 | 
						|
	tEface      = types.NewInterface(nil, nil).Complete()
 | 
						|
 | 
						|
	// SSA Value constants.
 | 
						|
	vZero = intConst(0)
 | 
						|
	vOne  = intConst(1)
 | 
						|
	vTrue = NewConst(constant.MakeBool(true), tBool)
 | 
						|
)
 | 
						|
 | 
						|
// builder holds state associated with the package currently being built.
 | 
						|
// Its methods contain all the logic for AST-to-SSA conversion.
 | 
						|
type builder struct{}
 | 
						|
 | 
						|
// cond emits to fn code to evaluate boolean condition e and jump
 | 
						|
// to t or f depending on its value, performing various simplifications.
 | 
						|
//
 | 
						|
// Postcondition: fn.currentBlock is nil.
 | 
						|
//
 | 
						|
func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
 | 
						|
	switch e := e.(type) {
 | 
						|
	case *ast.ParenExpr:
 | 
						|
		b.cond(fn, e.X, t, f)
 | 
						|
		return
 | 
						|
 | 
						|
	case *ast.BinaryExpr:
 | 
						|
		switch e.Op {
 | 
						|
		case token.LAND:
 | 
						|
			ltrue := fn.newBasicBlock("cond.true")
 | 
						|
			b.cond(fn, e.X, ltrue, f)
 | 
						|
			fn.currentBlock = ltrue
 | 
						|
			b.cond(fn, e.Y, t, f)
 | 
						|
			return
 | 
						|
 | 
						|
		case token.LOR:
 | 
						|
			lfalse := fn.newBasicBlock("cond.false")
 | 
						|
			b.cond(fn, e.X, t, lfalse)
 | 
						|
			fn.currentBlock = lfalse
 | 
						|
			b.cond(fn, e.Y, t, f)
 | 
						|
			return
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.UnaryExpr:
 | 
						|
		if e.Op == token.NOT {
 | 
						|
			b.cond(fn, e.X, f, t)
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// A traditional compiler would simplify "if false" (etc) here
 | 
						|
	// but we do not, for better fidelity to the source code.
 | 
						|
	//
 | 
						|
	// The value of a constant condition may be platform-specific,
 | 
						|
	// and may cause blocks that are reachable in some configuration
 | 
						|
	// to be hidden from subsequent analyses such as bug-finding tools.
 | 
						|
	emitIf(fn, b.expr(fn, e), t, f)
 | 
						|
}
 | 
						|
 | 
						|
// logicalBinop emits code to fn to evaluate e, a &&- or
 | 
						|
// ||-expression whose reified boolean value is wanted.
 | 
						|
// The value is returned.
 | 
						|
//
 | 
						|
func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
 | 
						|
	rhs := fn.newBasicBlock("binop.rhs")
 | 
						|
	done := fn.newBasicBlock("binop.done")
 | 
						|
 | 
						|
	// T(e) = T(e.X) = T(e.Y) after untyped constants have been
 | 
						|
	// eliminated.
 | 
						|
	// TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
 | 
						|
	t := fn.Pkg.typeOf(e)
 | 
						|
 | 
						|
	var short Value // value of the short-circuit path
 | 
						|
	switch e.Op {
 | 
						|
	case token.LAND:
 | 
						|
		b.cond(fn, e.X, rhs, done)
 | 
						|
		short = NewConst(constant.MakeBool(false), t)
 | 
						|
 | 
						|
	case token.LOR:
 | 
						|
		b.cond(fn, e.X, done, rhs)
 | 
						|
		short = NewConst(constant.MakeBool(true), t)
 | 
						|
	}
 | 
						|
 | 
						|
	// Is rhs unreachable?
 | 
						|
	if rhs.Preds == nil {
 | 
						|
		// Simplify false&&y to false, true||y to true.
 | 
						|
		fn.currentBlock = done
 | 
						|
		return short
 | 
						|
	}
 | 
						|
 | 
						|
	// Is done unreachable?
 | 
						|
	if done.Preds == nil {
 | 
						|
		// Simplify true&&y (or false||y) to y.
 | 
						|
		fn.currentBlock = rhs
 | 
						|
		return b.expr(fn, e.Y)
 | 
						|
	}
 | 
						|
 | 
						|
	// All edges from e.X to done carry the short-circuit value.
 | 
						|
	var edges []Value
 | 
						|
	for range done.Preds {
 | 
						|
		edges = append(edges, short)
 | 
						|
	}
 | 
						|
 | 
						|
	// The edge from e.Y to done carries the value of e.Y.
 | 
						|
	fn.currentBlock = rhs
 | 
						|
	edges = append(edges, b.expr(fn, e.Y))
 | 
						|
	emitJump(fn, done)
 | 
						|
	fn.currentBlock = done
 | 
						|
 | 
						|
	phi := &Phi{Edges: edges, Comment: e.Op.String()}
 | 
						|
	phi.pos = e.OpPos
 | 
						|
	phi.typ = t
 | 
						|
	return done.emit(phi)
 | 
						|
}
 | 
						|
 | 
						|
// exprN lowers a multi-result expression e to SSA form, emitting code
 | 
						|
// to fn and returning a single Value whose type is a *types.Tuple.
 | 
						|
// The caller must access the components via Extract.
 | 
						|
//
 | 
						|
// Multi-result expressions include CallExprs in a multi-value
 | 
						|
// assignment or return statement, and "value,ok" uses of
 | 
						|
// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
 | 
						|
// is token.ARROW).
 | 
						|
//
 | 
						|
func (b *builder) exprN(fn *Function, e ast.Expr) Value {
 | 
						|
	typ := fn.Pkg.typeOf(e).(*types.Tuple)
 | 
						|
	switch e := e.(type) {
 | 
						|
	case *ast.ParenExpr:
 | 
						|
		return b.exprN(fn, e.X)
 | 
						|
 | 
						|
	case *ast.CallExpr:
 | 
						|
		// Currently, no built-in function nor type conversion
 | 
						|
		// has multiple results, so we can avoid some of the
 | 
						|
		// cases for single-valued CallExpr.
 | 
						|
		var c Call
 | 
						|
		b.setCall(fn, e, &c.Call)
 | 
						|
		c.typ = typ
 | 
						|
		return fn.emit(&c)
 | 
						|
 | 
						|
	case *ast.IndexExpr:
 | 
						|
		mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map)
 | 
						|
		lookup := &Lookup{
 | 
						|
			X:       b.expr(fn, e.X),
 | 
						|
			Index:   emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
 | 
						|
			CommaOk: true,
 | 
						|
		}
 | 
						|
		lookup.setType(typ)
 | 
						|
		lookup.setPos(e.Lbrack)
 | 
						|
		return fn.emit(lookup)
 | 
						|
 | 
						|
	case *ast.TypeAssertExpr:
 | 
						|
		return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)
 | 
						|
 | 
						|
	case *ast.UnaryExpr: // must be receive <-
 | 
						|
		unop := &UnOp{
 | 
						|
			Op:      token.ARROW,
 | 
						|
			X:       b.expr(fn, e.X),
 | 
						|
			CommaOk: true,
 | 
						|
		}
 | 
						|
		unop.setType(typ)
 | 
						|
		unop.setPos(e.OpPos)
 | 
						|
		return fn.emit(unop)
 | 
						|
	}
 | 
						|
	panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
 | 
						|
}
 | 
						|
 | 
						|
// builtin emits to fn SSA instructions to implement a call to the
 | 
						|
// built-in function obj with the specified arguments
 | 
						|
// and return type.  It returns the value defined by the result.
 | 
						|
//
 | 
						|
// The result is nil if no special handling was required; in this case
 | 
						|
// the caller should treat this like an ordinary library function
 | 
						|
// call.
 | 
						|
//
 | 
						|
func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value {
 | 
						|
	switch obj.Name() {
 | 
						|
	case "make":
 | 
						|
		switch typ.Underlying().(type) {
 | 
						|
		case *types.Slice:
 | 
						|
			n := b.expr(fn, args[1])
 | 
						|
			m := n
 | 
						|
			if len(args) == 3 {
 | 
						|
				m = b.expr(fn, args[2])
 | 
						|
			}
 | 
						|
			if m, ok := m.(*Const); ok {
 | 
						|
				// treat make([]T, n, m) as new([m]T)[:n]
 | 
						|
				cap := m.Int64()
 | 
						|
				at := types.NewArray(typ.Underlying().(*types.Slice).Elem(), cap)
 | 
						|
				alloc := emitNew(fn, at, pos)
 | 
						|
				alloc.Comment = "makeslice"
 | 
						|
				v := &Slice{
 | 
						|
					X:    alloc,
 | 
						|
					High: n,
 | 
						|
				}
 | 
						|
				v.setPos(pos)
 | 
						|
				v.setType(typ)
 | 
						|
				return fn.emit(v)
 | 
						|
			}
 | 
						|
			v := &MakeSlice{
 | 
						|
				Len: n,
 | 
						|
				Cap: m,
 | 
						|
			}
 | 
						|
			v.setPos(pos)
 | 
						|
			v.setType(typ)
 | 
						|
			return fn.emit(v)
 | 
						|
 | 
						|
		case *types.Map:
 | 
						|
			var res Value
 | 
						|
			if len(args) == 2 {
 | 
						|
				res = b.expr(fn, args[1])
 | 
						|
			}
 | 
						|
			v := &MakeMap{Reserve: res}
 | 
						|
			v.setPos(pos)
 | 
						|
			v.setType(typ)
 | 
						|
			return fn.emit(v)
 | 
						|
 | 
						|
		case *types.Chan:
 | 
						|
			var sz Value = vZero
 | 
						|
			if len(args) == 2 {
 | 
						|
				sz = b.expr(fn, args[1])
 | 
						|
			}
 | 
						|
			v := &MakeChan{Size: sz}
 | 
						|
			v.setPos(pos)
 | 
						|
			v.setType(typ)
 | 
						|
			return fn.emit(v)
 | 
						|
		}
 | 
						|
 | 
						|
	case "new":
 | 
						|
		alloc := emitNew(fn, deref(typ), pos)
 | 
						|
		alloc.Comment = "new"
 | 
						|
		return alloc
 | 
						|
 | 
						|
	case "len", "cap":
 | 
						|
		// Special case: len or cap of an array or *array is
 | 
						|
		// based on the type, not the value which may be nil.
 | 
						|
		// We must still evaluate the value, though.  (If it
 | 
						|
		// was side-effect free, the whole call would have
 | 
						|
		// been constant-folded.)
 | 
						|
		t := deref(fn.Pkg.typeOf(args[0])).Underlying()
 | 
						|
		if at, ok := t.(*types.Array); ok {
 | 
						|
			b.expr(fn, args[0]) // for effects only
 | 
						|
			return intConst(at.Len())
 | 
						|
		}
 | 
						|
		// Otherwise treat as normal.
 | 
						|
 | 
						|
	case "panic":
 | 
						|
		fn.emit(&Panic{
 | 
						|
			X:   emitConv(fn, b.expr(fn, args[0]), tEface),
 | 
						|
			pos: pos,
 | 
						|
		})
 | 
						|
		fn.currentBlock = fn.newBasicBlock("unreachable")
 | 
						|
		return vTrue // any non-nil Value will do
 | 
						|
	}
 | 
						|
	return nil // treat all others as a regular function call
 | 
						|
}
 | 
						|
 | 
						|
// addr lowers a single-result addressable expression e to SSA form,
 | 
						|
// emitting code to fn and returning the location (an lvalue) defined
 | 
						|
// by the expression.
 | 
						|
//
 | 
						|
// If escaping is true, addr marks the base variable of the
 | 
						|
// addressable expression e as being a potentially escaping pointer
 | 
						|
// value.  For example, in this code:
 | 
						|
//
 | 
						|
//   a := A{
 | 
						|
//     b: [1]B{B{c: 1}}
 | 
						|
//   }
 | 
						|
//   return &a.b[0].c
 | 
						|
//
 | 
						|
// the application of & causes a.b[0].c to have its address taken,
 | 
						|
// which means that ultimately the local variable a must be
 | 
						|
// heap-allocated.  This is a simple but very conservative escape
 | 
						|
// analysis.
 | 
						|
//
 | 
						|
// Operations forming potentially escaping pointers include:
 | 
						|
// - &x, including when implicit in method call or composite literals.
 | 
						|
// - a[:] iff a is an array (not *array)
 | 
						|
// - references to variables in lexically enclosing functions.
 | 
						|
//
 | 
						|
func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
 | 
						|
	switch e := e.(type) {
 | 
						|
	case *ast.Ident:
 | 
						|
		if isBlankIdent(e) {
 | 
						|
			return blank{}
 | 
						|
		}
 | 
						|
		obj := fn.Pkg.objectOf(e)
 | 
						|
		v := fn.Prog.packageLevelValue(obj) // var (address)
 | 
						|
		if v == nil {
 | 
						|
			v = fn.lookup(obj, escaping)
 | 
						|
		}
 | 
						|
		return &address{addr: v, pos: e.Pos(), expr: e}
 | 
						|
 | 
						|
	case *ast.CompositeLit:
 | 
						|
		t := deref(fn.Pkg.typeOf(e))
 | 
						|
		var v *Alloc
 | 
						|
		if escaping {
 | 
						|
			v = emitNew(fn, t, e.Lbrace)
 | 
						|
		} else {
 | 
						|
			v = fn.addLocal(t, e.Lbrace)
 | 
						|
		}
 | 
						|
		v.Comment = "complit"
 | 
						|
		var sb storebuf
 | 
						|
		b.compLit(fn, v, e, true, &sb)
 | 
						|
		sb.emit(fn)
 | 
						|
		return &address{addr: v, pos: e.Lbrace, expr: e}
 | 
						|
 | 
						|
	case *ast.ParenExpr:
 | 
						|
		return b.addr(fn, e.X, escaping)
 | 
						|
 | 
						|
	case *ast.SelectorExpr:
 | 
						|
		sel, ok := fn.Pkg.info.Selections[e]
 | 
						|
		if !ok {
 | 
						|
			// qualified identifier
 | 
						|
			return b.addr(fn, e.Sel, escaping)
 | 
						|
		}
 | 
						|
		if sel.Kind() != types.FieldVal {
 | 
						|
			panic(sel)
 | 
						|
		}
 | 
						|
		wantAddr := true
 | 
						|
		v := b.receiver(fn, e.X, wantAddr, escaping, sel)
 | 
						|
		last := len(sel.Index()) - 1
 | 
						|
		return &address{
 | 
						|
			addr: emitFieldSelection(fn, v, sel.Index()[last], true, e.Sel),
 | 
						|
			pos:  e.Sel.Pos(),
 | 
						|
			expr: e.Sel,
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.IndexExpr:
 | 
						|
		var x Value
 | 
						|
		var et types.Type
 | 
						|
		switch t := fn.Pkg.typeOf(e.X).Underlying().(type) {
 | 
						|
		case *types.Array:
 | 
						|
			x = b.addr(fn, e.X, escaping).address(fn)
 | 
						|
			et = types.NewPointer(t.Elem())
 | 
						|
		case *types.Pointer: // *array
 | 
						|
			x = b.expr(fn, e.X)
 | 
						|
			et = types.NewPointer(t.Elem().Underlying().(*types.Array).Elem())
 | 
						|
		case *types.Slice:
 | 
						|
			x = b.expr(fn, e.X)
 | 
						|
			et = types.NewPointer(t.Elem())
 | 
						|
		case *types.Map:
 | 
						|
			return &element{
 | 
						|
				m:   b.expr(fn, e.X),
 | 
						|
				k:   emitConv(fn, b.expr(fn, e.Index), t.Key()),
 | 
						|
				t:   t.Elem(),
 | 
						|
				pos: e.Lbrack,
 | 
						|
			}
 | 
						|
		default:
 | 
						|
			panic("unexpected container type in IndexExpr: " + t.String())
 | 
						|
		}
 | 
						|
		v := &IndexAddr{
 | 
						|
			X:     x,
 | 
						|
			Index: emitConv(fn, b.expr(fn, e.Index), tInt),
 | 
						|
		}
 | 
						|
		v.setPos(e.Lbrack)
 | 
						|
		v.setType(et)
 | 
						|
		return &address{addr: fn.emit(v), pos: e.Lbrack, expr: e}
 | 
						|
 | 
						|
	case *ast.StarExpr:
 | 
						|
		return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e}
 | 
						|
	}
 | 
						|
 | 
						|
	panic(fmt.Sprintf("unexpected address expression: %T", e))
 | 
						|
}
 | 
						|
 | 
						|
type store struct {
 | 
						|
	lhs lvalue
 | 
						|
	rhs Value
 | 
						|
}
 | 
						|
 | 
						|
type storebuf struct{ stores []store }
 | 
						|
 | 
						|
func (sb *storebuf) store(lhs lvalue, rhs Value) {
 | 
						|
	sb.stores = append(sb.stores, store{lhs, rhs})
 | 
						|
}
 | 
						|
 | 
						|
func (sb *storebuf) emit(fn *Function) {
 | 
						|
	for _, s := range sb.stores {
 | 
						|
		s.lhs.store(fn, s.rhs)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// assign emits to fn code to initialize the lvalue loc with the value
 | 
						|
// of expression e.  If isZero is true, assign assumes that loc holds
 | 
						|
// the zero value for its type.
 | 
						|
//
 | 
						|
// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
 | 
						|
// better code in some cases, e.g., for composite literals in an
 | 
						|
// addressable location.
 | 
						|
//
 | 
						|
// If sb is not nil, assign generates code to evaluate expression e, but
 | 
						|
// not to update loc.  Instead, the necessary stores are appended to the
 | 
						|
// storebuf sb so that they can be executed later.  This allows correct
 | 
						|
// in-place update of existing variables when the RHS is a composite
 | 
						|
// literal that may reference parts of the LHS.
 | 
						|
//
 | 
						|
func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) {
 | 
						|
	// Can we initialize it in place?
 | 
						|
	if e, ok := unparen(e).(*ast.CompositeLit); ok {
 | 
						|
		// A CompositeLit never evaluates to a pointer,
 | 
						|
		// so if the type of the location is a pointer,
 | 
						|
		// an &-operation is implied.
 | 
						|
		if _, ok := loc.(blank); !ok { // avoid calling blank.typ()
 | 
						|
			if isPointer(loc.typ()) {
 | 
						|
				ptr := b.addr(fn, e, true).address(fn)
 | 
						|
				// copy address
 | 
						|
				if sb != nil {
 | 
						|
					sb.store(loc, ptr)
 | 
						|
				} else {
 | 
						|
					loc.store(fn, ptr)
 | 
						|
				}
 | 
						|
				return
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if _, ok := loc.(*address); ok {
 | 
						|
			if isInterface(loc.typ()) {
 | 
						|
				// e.g. var x interface{} = T{...}
 | 
						|
				// Can't in-place initialize an interface value.
 | 
						|
				// Fall back to copying.
 | 
						|
			} else {
 | 
						|
				// x = T{...} or x := T{...}
 | 
						|
				addr := loc.address(fn)
 | 
						|
				if sb != nil {
 | 
						|
					b.compLit(fn, addr, e, isZero, sb)
 | 
						|
				} else {
 | 
						|
					var sb storebuf
 | 
						|
					b.compLit(fn, addr, e, isZero, &sb)
 | 
						|
					sb.emit(fn)
 | 
						|
				}
 | 
						|
 | 
						|
				// Subtle: emit debug ref for aggregate types only;
 | 
						|
				// slice and map are handled by store ops in compLit.
 | 
						|
				switch loc.typ().Underlying().(type) {
 | 
						|
				case *types.Struct, *types.Array:
 | 
						|
					emitDebugRef(fn, e, addr, true)
 | 
						|
				}
 | 
						|
 | 
						|
				return
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// simple case: just copy
 | 
						|
	rhs := b.expr(fn, e)
 | 
						|
	if sb != nil {
 | 
						|
		sb.store(loc, rhs)
 | 
						|
	} else {
 | 
						|
		loc.store(fn, rhs)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// expr lowers a single-result expression e to SSA form, emitting code
 | 
						|
// to fn and returning the Value defined by the expression.
 | 
						|
//
 | 
						|
func (b *builder) expr(fn *Function, e ast.Expr) Value {
 | 
						|
	e = unparen(e)
 | 
						|
 | 
						|
	tv := fn.Pkg.info.Types[e]
 | 
						|
 | 
						|
	// Is expression a constant?
 | 
						|
	if tv.Value != nil {
 | 
						|
		return NewConst(tv.Value, tv.Type)
 | 
						|
	}
 | 
						|
 | 
						|
	var v Value
 | 
						|
	if tv.Addressable() {
 | 
						|
		// Prefer pointer arithmetic ({Index,Field}Addr) followed
 | 
						|
		// by Load over subelement extraction (e.g. Index, Field),
 | 
						|
		// to avoid large copies.
 | 
						|
		v = b.addr(fn, e, false).load(fn)
 | 
						|
	} else {
 | 
						|
		v = b.expr0(fn, e, tv)
 | 
						|
	}
 | 
						|
	if fn.debugInfo() {
 | 
						|
		emitDebugRef(fn, e, v, false)
 | 
						|
	}
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
 | 
						|
	switch e := e.(type) {
 | 
						|
	case *ast.BasicLit:
 | 
						|
		panic("non-constant BasicLit") // unreachable
 | 
						|
 | 
						|
	case *ast.FuncLit:
 | 
						|
		fn2 := &Function{
 | 
						|
			name:      fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
 | 
						|
			Signature: fn.Pkg.typeOf(e.Type).Underlying().(*types.Signature),
 | 
						|
			pos:       e.Type.Func,
 | 
						|
			parent:    fn,
 | 
						|
			Pkg:       fn.Pkg,
 | 
						|
			Prog:      fn.Prog,
 | 
						|
			syntax:    e,
 | 
						|
		}
 | 
						|
		fn.AnonFuncs = append(fn.AnonFuncs, fn2)
 | 
						|
		b.buildFunction(fn2)
 | 
						|
		if fn2.FreeVars == nil {
 | 
						|
			return fn2
 | 
						|
		}
 | 
						|
		v := &MakeClosure{Fn: fn2}
 | 
						|
		v.setType(tv.Type)
 | 
						|
		for _, fv := range fn2.FreeVars {
 | 
						|
			v.Bindings = append(v.Bindings, fv.outer)
 | 
						|
			fv.outer = nil
 | 
						|
		}
 | 
						|
		return fn.emit(v)
 | 
						|
 | 
						|
	case *ast.TypeAssertExpr: // single-result form only
 | 
						|
		return emitTypeAssert(fn, b.expr(fn, e.X), tv.Type, e.Lparen)
 | 
						|
 | 
						|
	case *ast.CallExpr:
 | 
						|
		if fn.Pkg.info.Types[e.Fun].IsType() {
 | 
						|
			// Explicit type conversion, e.g. string(x) or big.Int(x)
 | 
						|
			x := b.expr(fn, e.Args[0])
 | 
						|
			y := emitConv(fn, x, tv.Type)
 | 
						|
			if y != x {
 | 
						|
				switch y := y.(type) {
 | 
						|
				case *Convert:
 | 
						|
					y.pos = e.Lparen
 | 
						|
				case *ChangeType:
 | 
						|
					y.pos = e.Lparen
 | 
						|
				case *MakeInterface:
 | 
						|
					y.pos = e.Lparen
 | 
						|
				}
 | 
						|
			}
 | 
						|
			return y
 | 
						|
		}
 | 
						|
		// Call to "intrinsic" built-ins, e.g. new, make, panic.
 | 
						|
		if id, ok := unparen(e.Fun).(*ast.Ident); ok {
 | 
						|
			if obj, ok := fn.Pkg.info.Uses[id].(*types.Builtin); ok {
 | 
						|
				if v := b.builtin(fn, obj, e.Args, tv.Type, e.Lparen); v != nil {
 | 
						|
					return v
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// Regular function call.
 | 
						|
		var v Call
 | 
						|
		b.setCall(fn, e, &v.Call)
 | 
						|
		v.setType(tv.Type)
 | 
						|
		return fn.emit(&v)
 | 
						|
 | 
						|
	case *ast.UnaryExpr:
 | 
						|
		switch e.Op {
 | 
						|
		case token.AND: // &X --- potentially escaping.
 | 
						|
			addr := b.addr(fn, e.X, true)
 | 
						|
			if _, ok := unparen(e.X).(*ast.StarExpr); ok {
 | 
						|
				// &*p must panic if p is nil (http://golang.org/s/go12nil).
 | 
						|
				// For simplicity, we'll just (suboptimally) rely
 | 
						|
				// on the side effects of a load.
 | 
						|
				// TODO(adonovan): emit dedicated nilcheck.
 | 
						|
				addr.load(fn)
 | 
						|
			}
 | 
						|
			return addr.address(fn)
 | 
						|
		case token.ADD:
 | 
						|
			return b.expr(fn, e.X)
 | 
						|
		case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
 | 
						|
			v := &UnOp{
 | 
						|
				Op: e.Op,
 | 
						|
				X:  b.expr(fn, e.X),
 | 
						|
			}
 | 
						|
			v.setPos(e.OpPos)
 | 
						|
			v.setType(tv.Type)
 | 
						|
			return fn.emit(v)
 | 
						|
		default:
 | 
						|
			panic(e.Op)
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.BinaryExpr:
 | 
						|
		switch e.Op {
 | 
						|
		case token.LAND, token.LOR:
 | 
						|
			return b.logicalBinop(fn, e)
 | 
						|
		case token.SHL, token.SHR:
 | 
						|
			fallthrough
 | 
						|
		case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
 | 
						|
			return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), tv.Type, e.OpPos)
 | 
						|
 | 
						|
		case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
 | 
						|
			cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos)
 | 
						|
			// The type of x==y may be UntypedBool.
 | 
						|
			return emitConv(fn, cmp, DefaultType(tv.Type))
 | 
						|
		default:
 | 
						|
			panic("illegal op in BinaryExpr: " + e.Op.String())
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.SliceExpr:
 | 
						|
		var low, high, max Value
 | 
						|
		var x Value
 | 
						|
		switch fn.Pkg.typeOf(e.X).Underlying().(type) {
 | 
						|
		case *types.Array:
 | 
						|
			// Potentially escaping.
 | 
						|
			x = b.addr(fn, e.X, true).address(fn)
 | 
						|
		case *types.Basic, *types.Slice, *types.Pointer: // *array
 | 
						|
			x = b.expr(fn, e.X)
 | 
						|
		default:
 | 
						|
			panic("unreachable")
 | 
						|
		}
 | 
						|
		if e.High != nil {
 | 
						|
			high = b.expr(fn, e.High)
 | 
						|
		}
 | 
						|
		if e.Low != nil {
 | 
						|
			low = b.expr(fn, e.Low)
 | 
						|
		}
 | 
						|
		if e.Slice3 {
 | 
						|
			max = b.expr(fn, e.Max)
 | 
						|
		}
 | 
						|
		v := &Slice{
 | 
						|
			X:    x,
 | 
						|
			Low:  low,
 | 
						|
			High: high,
 | 
						|
			Max:  max,
 | 
						|
		}
 | 
						|
		v.setPos(e.Lbrack)
 | 
						|
		v.setType(tv.Type)
 | 
						|
		return fn.emit(v)
 | 
						|
 | 
						|
	case *ast.Ident:
 | 
						|
		obj := fn.Pkg.info.Uses[e]
 | 
						|
		// Universal built-in or nil?
 | 
						|
		switch obj := obj.(type) {
 | 
						|
		case *types.Builtin:
 | 
						|
			return &Builtin{name: obj.Name(), sig: tv.Type.(*types.Signature)}
 | 
						|
		case *types.Nil:
 | 
						|
			return nilConst(tv.Type)
 | 
						|
		}
 | 
						|
		// Package-level func or var?
 | 
						|
		if v := fn.Prog.packageLevelValue(obj); v != nil {
 | 
						|
			if _, ok := obj.(*types.Var); ok {
 | 
						|
				return emitLoad(fn, v) // var (address)
 | 
						|
			}
 | 
						|
			return v // (func)
 | 
						|
		}
 | 
						|
		// Local var.
 | 
						|
		return emitLoad(fn, fn.lookup(obj, false)) // var (address)
 | 
						|
 | 
						|
	case *ast.SelectorExpr:
 | 
						|
		sel, ok := fn.Pkg.info.Selections[e]
 | 
						|
		if !ok {
 | 
						|
			// qualified identifier
 | 
						|
			return b.expr(fn, e.Sel)
 | 
						|
		}
 | 
						|
		switch sel.Kind() {
 | 
						|
		case types.MethodExpr:
 | 
						|
			// (*T).f or T.f, the method f from the method-set of type T.
 | 
						|
			// The result is a "thunk".
 | 
						|
			return emitConv(fn, makeThunk(fn.Prog, sel), tv.Type)
 | 
						|
 | 
						|
		case types.MethodVal:
 | 
						|
			// e.f where e is an expression and f is a method.
 | 
						|
			// The result is a "bound".
 | 
						|
			obj := sel.Obj().(*types.Func)
 | 
						|
			rt := recvType(obj)
 | 
						|
			wantAddr := isPointer(rt)
 | 
						|
			escaping := true
 | 
						|
			v := b.receiver(fn, e.X, wantAddr, escaping, sel)
 | 
						|
			if isInterface(rt) {
 | 
						|
				// If v has interface type I,
 | 
						|
				// we must emit a check that v is non-nil.
 | 
						|
				// We use: typeassert v.(I).
 | 
						|
				emitTypeAssert(fn, v, rt, token.NoPos)
 | 
						|
			}
 | 
						|
			c := &MakeClosure{
 | 
						|
				Fn:       makeBound(fn.Prog, obj),
 | 
						|
				Bindings: []Value{v},
 | 
						|
			}
 | 
						|
			c.setPos(e.Sel.Pos())
 | 
						|
			c.setType(tv.Type)
 | 
						|
			return fn.emit(c)
 | 
						|
 | 
						|
		case types.FieldVal:
 | 
						|
			indices := sel.Index()
 | 
						|
			last := len(indices) - 1
 | 
						|
			v := b.expr(fn, e.X)
 | 
						|
			v = emitImplicitSelections(fn, v, indices[:last])
 | 
						|
			v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
 | 
						|
			return v
 | 
						|
		}
 | 
						|
 | 
						|
		panic("unexpected expression-relative selector")
 | 
						|
 | 
						|
	case *ast.IndexExpr:
 | 
						|
		switch t := fn.Pkg.typeOf(e.X).Underlying().(type) {
 | 
						|
		case *types.Array:
 | 
						|
			// Non-addressable array (in a register).
 | 
						|
			v := &Index{
 | 
						|
				X:     b.expr(fn, e.X),
 | 
						|
				Index: emitConv(fn, b.expr(fn, e.Index), tInt),
 | 
						|
			}
 | 
						|
			v.setPos(e.Lbrack)
 | 
						|
			v.setType(t.Elem())
 | 
						|
			return fn.emit(v)
 | 
						|
 | 
						|
		case *types.Map:
 | 
						|
			// Maps are not addressable.
 | 
						|
			mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map)
 | 
						|
			v := &Lookup{
 | 
						|
				X:     b.expr(fn, e.X),
 | 
						|
				Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
 | 
						|
			}
 | 
						|
			v.setPos(e.Lbrack)
 | 
						|
			v.setType(mapt.Elem())
 | 
						|
			return fn.emit(v)
 | 
						|
 | 
						|
		case *types.Basic: // => string
 | 
						|
			// Strings are not addressable.
 | 
						|
			v := &Lookup{
 | 
						|
				X:     b.expr(fn, e.X),
 | 
						|
				Index: b.expr(fn, e.Index),
 | 
						|
			}
 | 
						|
			v.setPos(e.Lbrack)
 | 
						|
			v.setType(tByte)
 | 
						|
			return fn.emit(v)
 | 
						|
 | 
						|
		case *types.Slice, *types.Pointer: // *array
 | 
						|
			// Addressable slice/array; use IndexAddr and Load.
 | 
						|
			return b.addr(fn, e, false).load(fn)
 | 
						|
 | 
						|
		default:
 | 
						|
			panic("unexpected container type in IndexExpr: " + t.String())
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.CompositeLit, *ast.StarExpr:
 | 
						|
		// Addressable types (lvalues)
 | 
						|
		return b.addr(fn, e, false).load(fn)
 | 
						|
	}
 | 
						|
 | 
						|
	panic(fmt.Sprintf("unexpected expr: %T", e))
 | 
						|
}
 | 
						|
 | 
						|
// stmtList emits to fn code for all statements in list.
 | 
						|
func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
 | 
						|
	for _, s := range list {
 | 
						|
		b.stmt(fn, s)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// receiver emits to fn code for expression e in the "receiver"
 | 
						|
// position of selection e.f (where f may be a field or a method) and
 | 
						|
// returns the effective receiver after applying the implicit field
 | 
						|
// selections of sel.
 | 
						|
//
 | 
						|
// wantAddr requests that the result is an an address.  If
 | 
						|
// !sel.Indirect(), this may require that e be built in addr() mode; it
 | 
						|
// must thus be addressable.
 | 
						|
//
 | 
						|
// escaping is defined as per builder.addr().
 | 
						|
//
 | 
						|
func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *types.Selection) Value {
 | 
						|
	var v Value
 | 
						|
	if wantAddr && !sel.Indirect() && !isPointer(fn.Pkg.typeOf(e)) {
 | 
						|
		v = b.addr(fn, e, escaping).address(fn)
 | 
						|
	} else {
 | 
						|
		v = b.expr(fn, e)
 | 
						|
	}
 | 
						|
 | 
						|
	last := len(sel.Index()) - 1
 | 
						|
	v = emitImplicitSelections(fn, v, sel.Index()[:last])
 | 
						|
	if !wantAddr && isPointer(v.Type()) {
 | 
						|
		v = emitLoad(fn, v)
 | 
						|
	}
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
// setCallFunc populates the function parts of a CallCommon structure
 | 
						|
// (Func, Method, Recv, Args[0]) based on the kind of invocation
 | 
						|
// occurring in e.
 | 
						|
//
 | 
						|
func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
 | 
						|
	c.pos = e.Lparen
 | 
						|
 | 
						|
	// Is this a method call?
 | 
						|
	if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
 | 
						|
		sel, ok := fn.Pkg.info.Selections[selector]
 | 
						|
		if ok && sel.Kind() == types.MethodVal {
 | 
						|
			obj := sel.Obj().(*types.Func)
 | 
						|
			recv := recvType(obj)
 | 
						|
			wantAddr := isPointer(recv)
 | 
						|
			escaping := true
 | 
						|
			v := b.receiver(fn, selector.X, wantAddr, escaping, sel)
 | 
						|
			if isInterface(recv) {
 | 
						|
				// Invoke-mode call.
 | 
						|
				c.Value = v
 | 
						|
				c.Method = obj
 | 
						|
			} else {
 | 
						|
				// "Call"-mode call.
 | 
						|
				c.Value = fn.Prog.declaredFunc(obj)
 | 
						|
				c.Args = append(c.Args, v)
 | 
						|
			}
 | 
						|
			return
 | 
						|
		}
 | 
						|
 | 
						|
		// sel.Kind()==MethodExpr indicates T.f() or (*T).f():
 | 
						|
		// a statically dispatched call to the method f in the
 | 
						|
		// method-set of T or *T.  T may be an interface.
 | 
						|
		//
 | 
						|
		// e.Fun would evaluate to a concrete method, interface
 | 
						|
		// wrapper function, or promotion wrapper.
 | 
						|
		//
 | 
						|
		// For now, we evaluate it in the usual way.
 | 
						|
		//
 | 
						|
		// TODO(adonovan): opt: inline expr() here, to make the
 | 
						|
		// call static and to avoid generation of wrappers.
 | 
						|
		// It's somewhat tricky as it may consume the first
 | 
						|
		// actual parameter if the call is "invoke" mode.
 | 
						|
		//
 | 
						|
		// Examples:
 | 
						|
		//  type T struct{}; func (T) f() {}   // "call" mode
 | 
						|
		//  type T interface { f() }           // "invoke" mode
 | 
						|
		//
 | 
						|
		//  type S struct{ T }
 | 
						|
		//
 | 
						|
		//  var s S
 | 
						|
		//  S.f(s)
 | 
						|
		//  (*S).f(&s)
 | 
						|
		//
 | 
						|
		// Suggested approach:
 | 
						|
		// - consume the first actual parameter expression
 | 
						|
		//   and build it with b.expr().
 | 
						|
		// - apply implicit field selections.
 | 
						|
		// - use MethodVal logic to populate fields of c.
 | 
						|
	}
 | 
						|
 | 
						|
	// Evaluate the function operand in the usual way.
 | 
						|
	c.Value = b.expr(fn, e.Fun)
 | 
						|
}
 | 
						|
 | 
						|
// emitCallArgs emits to f code for the actual parameters of call e to
 | 
						|
// a (possibly built-in) function of effective type sig.
 | 
						|
// The argument values are appended to args, which is then returned.
 | 
						|
//
 | 
						|
func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
 | 
						|
	// f(x, y, z...): pass slice z straight through.
 | 
						|
	if e.Ellipsis != 0 {
 | 
						|
		for i, arg := range e.Args {
 | 
						|
			v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type())
 | 
						|
			args = append(args, v)
 | 
						|
		}
 | 
						|
		return args
 | 
						|
	}
 | 
						|
 | 
						|
	offset := len(args) // 1 if call has receiver, 0 otherwise
 | 
						|
 | 
						|
	// Evaluate actual parameter expressions.
 | 
						|
	//
 | 
						|
	// If this is a chained call of the form f(g()) where g has
 | 
						|
	// multiple return values (MRV), they are flattened out into
 | 
						|
	// args; a suffix of them may end up in a varargs slice.
 | 
						|
	for _, arg := range e.Args {
 | 
						|
		v := b.expr(fn, arg)
 | 
						|
		if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
 | 
						|
			for i, n := 0, ttuple.Len(); i < n; i++ {
 | 
						|
				args = append(args, emitExtract(fn, v, i))
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			args = append(args, v)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Actual->formal assignability conversions for normal parameters.
 | 
						|
	np := sig.Params().Len() // number of normal parameters
 | 
						|
	if sig.Variadic() {
 | 
						|
		np--
 | 
						|
	}
 | 
						|
	for i := 0; i < np; i++ {
 | 
						|
		args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
 | 
						|
	}
 | 
						|
 | 
						|
	// Actual->formal assignability conversions for variadic parameter,
 | 
						|
	// and construction of slice.
 | 
						|
	if sig.Variadic() {
 | 
						|
		varargs := args[offset+np:]
 | 
						|
		st := sig.Params().At(np).Type().(*types.Slice)
 | 
						|
		vt := st.Elem()
 | 
						|
		if len(varargs) == 0 {
 | 
						|
			args = append(args, nilConst(st))
 | 
						|
		} else {
 | 
						|
			// Replace a suffix of args with a slice containing it.
 | 
						|
			at := types.NewArray(vt, int64(len(varargs)))
 | 
						|
			a := emitNew(fn, at, token.NoPos)
 | 
						|
			a.setPos(e.Rparen)
 | 
						|
			a.Comment = "varargs"
 | 
						|
			for i, arg := range varargs {
 | 
						|
				iaddr := &IndexAddr{
 | 
						|
					X:     a,
 | 
						|
					Index: intConst(int64(i)),
 | 
						|
				}
 | 
						|
				iaddr.setType(types.NewPointer(vt))
 | 
						|
				fn.emit(iaddr)
 | 
						|
				emitStore(fn, iaddr, arg, arg.Pos())
 | 
						|
			}
 | 
						|
			s := &Slice{X: a}
 | 
						|
			s.setType(st)
 | 
						|
			args[offset+np] = fn.emit(s)
 | 
						|
			args = args[:offset+np+1]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return args
 | 
						|
}
 | 
						|
 | 
						|
// setCall emits to fn code to evaluate all the parameters of a function
 | 
						|
// call e, and populates *c with those values.
 | 
						|
//
 | 
						|
func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
 | 
						|
	// First deal with the f(...) part and optional receiver.
 | 
						|
	b.setCallFunc(fn, e, c)
 | 
						|
 | 
						|
	// Then append the other actual parameters.
 | 
						|
	sig, _ := fn.Pkg.typeOf(e.Fun).Underlying().(*types.Signature)
 | 
						|
	if sig == nil {
 | 
						|
		panic(fmt.Sprintf("no signature for call of %s", e.Fun))
 | 
						|
	}
 | 
						|
	c.Args = b.emitCallArgs(fn, sig, e, c.Args)
 | 
						|
}
 | 
						|
 | 
						|
// assignOp emits to fn code to perform loc <op>= val.
 | 
						|
func (b *builder) assignOp(fn *Function, loc lvalue, val Value, op token.Token, pos token.Pos) {
 | 
						|
	oldv := loc.load(fn)
 | 
						|
	loc.store(fn, emitArith(fn, op, oldv, emitConv(fn, val, oldv.Type()), loc.typ(), pos))
 | 
						|
}
 | 
						|
 | 
						|
// localValueSpec emits to fn code to define all of the vars in the
 | 
						|
// function-local ValueSpec, spec.
 | 
						|
//
 | 
						|
func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
 | 
						|
	switch {
 | 
						|
	case len(spec.Values) == len(spec.Names):
 | 
						|
		// e.g. var x, y = 0, 1
 | 
						|
		// 1:1 assignment
 | 
						|
		for i, id := range spec.Names {
 | 
						|
			if !isBlankIdent(id) {
 | 
						|
				fn.addLocalForIdent(id)
 | 
						|
			}
 | 
						|
			lval := b.addr(fn, id, false) // non-escaping
 | 
						|
			b.assign(fn, lval, spec.Values[i], true, nil)
 | 
						|
		}
 | 
						|
 | 
						|
	case len(spec.Values) == 0:
 | 
						|
		// e.g. var x, y int
 | 
						|
		// Locals are implicitly zero-initialized.
 | 
						|
		for _, id := range spec.Names {
 | 
						|
			if !isBlankIdent(id) {
 | 
						|
				lhs := fn.addLocalForIdent(id)
 | 
						|
				if fn.debugInfo() {
 | 
						|
					emitDebugRef(fn, id, lhs, true)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	default:
 | 
						|
		// e.g. var x, y = pos()
 | 
						|
		tuple := b.exprN(fn, spec.Values[0])
 | 
						|
		for i, id := range spec.Names {
 | 
						|
			if !isBlankIdent(id) {
 | 
						|
				fn.addLocalForIdent(id)
 | 
						|
				lhs := b.addr(fn, id, false) // non-escaping
 | 
						|
				lhs.store(fn, emitExtract(fn, tuple, i))
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
 | 
						|
// isDef is true if this is a short variable declaration (:=).
 | 
						|
//
 | 
						|
// Note the similarity with localValueSpec.
 | 
						|
//
 | 
						|
func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
 | 
						|
	// Side effects of all LHSs and RHSs must occur in left-to-right order.
 | 
						|
	lvals := make([]lvalue, len(lhss))
 | 
						|
	isZero := make([]bool, len(lhss))
 | 
						|
	for i, lhs := range lhss {
 | 
						|
		var lval lvalue = blank{}
 | 
						|
		if !isBlankIdent(lhs) {
 | 
						|
			if isDef {
 | 
						|
				if obj := fn.Pkg.info.Defs[lhs.(*ast.Ident)]; obj != nil {
 | 
						|
					fn.addNamedLocal(obj)
 | 
						|
					isZero[i] = true
 | 
						|
				}
 | 
						|
			}
 | 
						|
			lval = b.addr(fn, lhs, false) // non-escaping
 | 
						|
		}
 | 
						|
		lvals[i] = lval
 | 
						|
	}
 | 
						|
	if len(lhss) == len(rhss) {
 | 
						|
		// Simple assignment:   x     = f()        (!isDef)
 | 
						|
		// Parallel assignment: x, y  = f(), g()   (!isDef)
 | 
						|
		// or short var decl:   x, y := f(), g()   (isDef)
 | 
						|
		//
 | 
						|
		// In all cases, the RHSs may refer to the LHSs,
 | 
						|
		// so we need a storebuf.
 | 
						|
		var sb storebuf
 | 
						|
		for i := range rhss {
 | 
						|
			b.assign(fn, lvals[i], rhss[i], isZero[i], &sb)
 | 
						|
		}
 | 
						|
		sb.emit(fn)
 | 
						|
	} else {
 | 
						|
		// e.g. x, y = pos()
 | 
						|
		tuple := b.exprN(fn, rhss[0])
 | 
						|
		emitDebugRef(fn, rhss[0], tuple, false)
 | 
						|
		for i, lval := range lvals {
 | 
						|
			lval.store(fn, emitExtract(fn, tuple, i))
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// arrayLen returns the length of the array whose composite literal elements are elts.
 | 
						|
func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
 | 
						|
	var max int64 = -1
 | 
						|
	var i int64 = -1
 | 
						|
	for _, e := range elts {
 | 
						|
		if kv, ok := e.(*ast.KeyValueExpr); ok {
 | 
						|
			i = b.expr(fn, kv.Key).(*Const).Int64()
 | 
						|
		} else {
 | 
						|
			i++
 | 
						|
		}
 | 
						|
		if i > max {
 | 
						|
			max = i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return max + 1
 | 
						|
}
 | 
						|
 | 
						|
// compLit emits to fn code to initialize a composite literal e at
 | 
						|
// address addr with type typ.
 | 
						|
//
 | 
						|
// Nested composite literals are recursively initialized in place
 | 
						|
// where possible. If isZero is true, compLit assumes that addr
 | 
						|
// holds the zero value for typ.
 | 
						|
//
 | 
						|
// Because the elements of a composite literal may refer to the
 | 
						|
// variables being updated, as in the second line below,
 | 
						|
//	x := T{a: 1}
 | 
						|
//	x = T{a: x.a}
 | 
						|
// all the reads must occur before all the writes.  Thus all stores to
 | 
						|
// loc are emitted to the storebuf sb for later execution.
 | 
						|
//
 | 
						|
// A CompositeLit may have pointer type only in the recursive (nested)
 | 
						|
// case when the type name is implicit.  e.g. in []*T{{}}, the inner
 | 
						|
// literal has type *T behaves like &T{}.
 | 
						|
// In that case, addr must hold a T, not a *T.
 | 
						|
//
 | 
						|
func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) {
 | 
						|
	typ := deref(fn.Pkg.typeOf(e))
 | 
						|
	switch t := typ.Underlying().(type) {
 | 
						|
	case *types.Struct:
 | 
						|
		if !isZero && len(e.Elts) != t.NumFields() {
 | 
						|
			// memclear
 | 
						|
			sb.store(&address{addr, e.Lbrace, nil},
 | 
						|
				zeroValue(fn, deref(addr.Type())))
 | 
						|
			isZero = true
 | 
						|
		}
 | 
						|
		for i, e := range e.Elts {
 | 
						|
			fieldIndex := i
 | 
						|
			pos := e.Pos()
 | 
						|
			if kv, ok := e.(*ast.KeyValueExpr); ok {
 | 
						|
				fname := kv.Key.(*ast.Ident).Name
 | 
						|
				for i, n := 0, t.NumFields(); i < n; i++ {
 | 
						|
					sf := t.Field(i)
 | 
						|
					if sf.Name() == fname {
 | 
						|
						fieldIndex = i
 | 
						|
						pos = kv.Colon
 | 
						|
						e = kv.Value
 | 
						|
						break
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			sf := t.Field(fieldIndex)
 | 
						|
			faddr := &FieldAddr{
 | 
						|
				X:     addr,
 | 
						|
				Field: fieldIndex,
 | 
						|
			}
 | 
						|
			faddr.setType(types.NewPointer(sf.Type()))
 | 
						|
			fn.emit(faddr)
 | 
						|
			b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb)
 | 
						|
		}
 | 
						|
 | 
						|
	case *types.Array, *types.Slice:
 | 
						|
		var at *types.Array
 | 
						|
		var array Value
 | 
						|
		switch t := t.(type) {
 | 
						|
		case *types.Slice:
 | 
						|
			at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts))
 | 
						|
			alloc := emitNew(fn, at, e.Lbrace)
 | 
						|
			alloc.Comment = "slicelit"
 | 
						|
			array = alloc
 | 
						|
		case *types.Array:
 | 
						|
			at = t
 | 
						|
			array = addr
 | 
						|
 | 
						|
			if !isZero && int64(len(e.Elts)) != at.Len() {
 | 
						|
				// memclear
 | 
						|
				sb.store(&address{array, e.Lbrace, nil},
 | 
						|
					zeroValue(fn, deref(array.Type())))
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		var idx *Const
 | 
						|
		for _, e := range e.Elts {
 | 
						|
			pos := e.Pos()
 | 
						|
			if kv, ok := e.(*ast.KeyValueExpr); ok {
 | 
						|
				idx = b.expr(fn, kv.Key).(*Const)
 | 
						|
				pos = kv.Colon
 | 
						|
				e = kv.Value
 | 
						|
			} else {
 | 
						|
				var idxval int64
 | 
						|
				if idx != nil {
 | 
						|
					idxval = idx.Int64() + 1
 | 
						|
				}
 | 
						|
				idx = intConst(idxval)
 | 
						|
			}
 | 
						|
			iaddr := &IndexAddr{
 | 
						|
				X:     array,
 | 
						|
				Index: idx,
 | 
						|
			}
 | 
						|
			iaddr.setType(types.NewPointer(at.Elem()))
 | 
						|
			fn.emit(iaddr)
 | 
						|
			if t != at { // slice
 | 
						|
				// backing array is unaliased => storebuf not needed.
 | 
						|
				b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil)
 | 
						|
			} else {
 | 
						|
				b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb)
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if t != at { // slice
 | 
						|
			s := &Slice{X: array}
 | 
						|
			s.setPos(e.Lbrace)
 | 
						|
			s.setType(typ)
 | 
						|
			sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s))
 | 
						|
		}
 | 
						|
 | 
						|
	case *types.Map:
 | 
						|
		m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))}
 | 
						|
		m.setPos(e.Lbrace)
 | 
						|
		m.setType(typ)
 | 
						|
		fn.emit(m)
 | 
						|
		for _, e := range e.Elts {
 | 
						|
			e := e.(*ast.KeyValueExpr)
 | 
						|
 | 
						|
			// If a key expression in a map literal is  itself a
 | 
						|
			// composite literal, the type may be omitted.
 | 
						|
			// For example:
 | 
						|
			//	map[*struct{}]bool{{}: true}
 | 
						|
			// An &-operation may be implied:
 | 
						|
			//	map[*struct{}]bool{&struct{}{}: true}
 | 
						|
			var key Value
 | 
						|
			if _, ok := unparen(e.Key).(*ast.CompositeLit); ok && isPointer(t.Key()) {
 | 
						|
				// A CompositeLit never evaluates to a pointer,
 | 
						|
				// so if the type of the location is a pointer,
 | 
						|
				// an &-operation is implied.
 | 
						|
				key = b.addr(fn, e.Key, true).address(fn)
 | 
						|
			} else {
 | 
						|
				key = b.expr(fn, e.Key)
 | 
						|
			}
 | 
						|
 | 
						|
			loc := element{
 | 
						|
				m:   m,
 | 
						|
				k:   emitConv(fn, key, t.Key()),
 | 
						|
				t:   t.Elem(),
 | 
						|
				pos: e.Colon,
 | 
						|
			}
 | 
						|
 | 
						|
			// We call assign() only because it takes care
 | 
						|
			// of any &-operation required in the recursive
 | 
						|
			// case, e.g.,
 | 
						|
			// map[int]*struct{}{0: {}} implies &struct{}{}.
 | 
						|
			// In-place update is of course impossible,
 | 
						|
			// and no storebuf is needed.
 | 
						|
			b.assign(fn, &loc, e.Value, true, nil)
 | 
						|
		}
 | 
						|
		sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)
 | 
						|
 | 
						|
	default:
 | 
						|
		panic("unexpected CompositeLit type: " + t.String())
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// switchStmt emits to fn code for the switch statement s, optionally
 | 
						|
// labelled by label.
 | 
						|
//
 | 
						|
func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
 | 
						|
	// We treat SwitchStmt like a sequential if-else chain.
 | 
						|
	// Multiway dispatch can be recovered later by ssautil.Switches()
 | 
						|
	// to those cases that are free of side effects.
 | 
						|
	if s.Init != nil {
 | 
						|
		b.stmt(fn, s.Init)
 | 
						|
	}
 | 
						|
	var tag Value = vTrue
 | 
						|
	if s.Tag != nil {
 | 
						|
		tag = b.expr(fn, s.Tag)
 | 
						|
	}
 | 
						|
	done := fn.newBasicBlock("switch.done")
 | 
						|
	if label != nil {
 | 
						|
		label._break = done
 | 
						|
	}
 | 
						|
	// We pull the default case (if present) down to the end.
 | 
						|
	// But each fallthrough label must point to the next
 | 
						|
	// body block in source order, so we preallocate a
 | 
						|
	// body block (fallthru) for the next case.
 | 
						|
	// Unfortunately this makes for a confusing block order.
 | 
						|
	var dfltBody *[]ast.Stmt
 | 
						|
	var dfltFallthrough *BasicBlock
 | 
						|
	var fallthru, dfltBlock *BasicBlock
 | 
						|
	ncases := len(s.Body.List)
 | 
						|
	for i, clause := range s.Body.List {
 | 
						|
		body := fallthru
 | 
						|
		if body == nil {
 | 
						|
			body = fn.newBasicBlock("switch.body") // first case only
 | 
						|
		}
 | 
						|
 | 
						|
		// Preallocate body block for the next case.
 | 
						|
		fallthru = done
 | 
						|
		if i+1 < ncases {
 | 
						|
			fallthru = fn.newBasicBlock("switch.body")
 | 
						|
		}
 | 
						|
 | 
						|
		cc := clause.(*ast.CaseClause)
 | 
						|
		if cc.List == nil {
 | 
						|
			// Default case.
 | 
						|
			dfltBody = &cc.Body
 | 
						|
			dfltFallthrough = fallthru
 | 
						|
			dfltBlock = body
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		var nextCond *BasicBlock
 | 
						|
		for _, cond := range cc.List {
 | 
						|
			nextCond = fn.newBasicBlock("switch.next")
 | 
						|
			// TODO(adonovan): opt: when tag==vTrue, we'd
 | 
						|
			// get better code if we use b.cond(cond)
 | 
						|
			// instead of BinOp(EQL, tag, b.expr(cond))
 | 
						|
			// followed by If.  Don't forget conversions
 | 
						|
			// though.
 | 
						|
			cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), token.NoPos)
 | 
						|
			emitIf(fn, cond, body, nextCond)
 | 
						|
			fn.currentBlock = nextCond
 | 
						|
		}
 | 
						|
		fn.currentBlock = body
 | 
						|
		fn.targets = &targets{
 | 
						|
			tail:         fn.targets,
 | 
						|
			_break:       done,
 | 
						|
			_fallthrough: fallthru,
 | 
						|
		}
 | 
						|
		b.stmtList(fn, cc.Body)
 | 
						|
		fn.targets = fn.targets.tail
 | 
						|
		emitJump(fn, done)
 | 
						|
		fn.currentBlock = nextCond
 | 
						|
	}
 | 
						|
	if dfltBlock != nil {
 | 
						|
		emitJump(fn, dfltBlock)
 | 
						|
		fn.currentBlock = dfltBlock
 | 
						|
		fn.targets = &targets{
 | 
						|
			tail:         fn.targets,
 | 
						|
			_break:       done,
 | 
						|
			_fallthrough: dfltFallthrough,
 | 
						|
		}
 | 
						|
		b.stmtList(fn, *dfltBody)
 | 
						|
		fn.targets = fn.targets.tail
 | 
						|
	}
 | 
						|
	emitJump(fn, done)
 | 
						|
	fn.currentBlock = done
 | 
						|
}
 | 
						|
 | 
						|
// typeSwitchStmt emits to fn code for the type switch statement s, optionally
 | 
						|
// labelled by label.
 | 
						|
//
 | 
						|
func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
 | 
						|
	// We treat TypeSwitchStmt like a sequential if-else chain.
 | 
						|
	// Multiway dispatch can be recovered later by ssautil.Switches().
 | 
						|
 | 
						|
	// Typeswitch lowering:
 | 
						|
	//
 | 
						|
	// var x X
 | 
						|
	// switch y := x.(type) {
 | 
						|
	// case T1, T2: S1                  // >1 	(y := x)
 | 
						|
	// case nil:    SN                  // nil 	(y := x)
 | 
						|
	// default:     SD                  // 0 types 	(y := x)
 | 
						|
	// case T3:     S3                  // 1 type 	(y := x.(T3))
 | 
						|
	// }
 | 
						|
	//
 | 
						|
	//      ...s.Init...
 | 
						|
	// 	x := eval x
 | 
						|
	// .caseT1:
 | 
						|
	// 	t1, ok1 := typeswitch,ok x <T1>
 | 
						|
	// 	if ok1 then goto S1 else goto .caseT2
 | 
						|
	// .caseT2:
 | 
						|
	// 	t2, ok2 := typeswitch,ok x <T2>
 | 
						|
	// 	if ok2 then goto S1 else goto .caseNil
 | 
						|
	// .S1:
 | 
						|
	//      y := x
 | 
						|
	// 	...S1...
 | 
						|
	// 	goto done
 | 
						|
	// .caseNil:
 | 
						|
	// 	if t2, ok2 := typeswitch,ok x <T2>
 | 
						|
	// 	if x == nil then goto SN else goto .caseT3
 | 
						|
	// .SN:
 | 
						|
	//      y := x
 | 
						|
	// 	...SN...
 | 
						|
	// 	goto done
 | 
						|
	// .caseT3:
 | 
						|
	// 	t3, ok3 := typeswitch,ok x <T3>
 | 
						|
	// 	if ok3 then goto S3 else goto default
 | 
						|
	// .S3:
 | 
						|
	//      y := t3
 | 
						|
	// 	...S3...
 | 
						|
	// 	goto done
 | 
						|
	// .default:
 | 
						|
	//      y := x
 | 
						|
	// 	...SD...
 | 
						|
	// 	goto done
 | 
						|
	// .done:
 | 
						|
 | 
						|
	if s.Init != nil {
 | 
						|
		b.stmt(fn, s.Init)
 | 
						|
	}
 | 
						|
 | 
						|
	var x Value
 | 
						|
	switch ass := s.Assign.(type) {
 | 
						|
	case *ast.ExprStmt: // x.(type)
 | 
						|
		x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X)
 | 
						|
	case *ast.AssignStmt: // y := x.(type)
 | 
						|
		x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
 | 
						|
	}
 | 
						|
 | 
						|
	done := fn.newBasicBlock("typeswitch.done")
 | 
						|
	if label != nil {
 | 
						|
		label._break = done
 | 
						|
	}
 | 
						|
	var default_ *ast.CaseClause
 | 
						|
	for _, clause := range s.Body.List {
 | 
						|
		cc := clause.(*ast.CaseClause)
 | 
						|
		if cc.List == nil {
 | 
						|
			default_ = cc
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		body := fn.newBasicBlock("typeswitch.body")
 | 
						|
		var next *BasicBlock
 | 
						|
		var casetype types.Type
 | 
						|
		var ti Value // ti, ok := typeassert,ok x <Ti>
 | 
						|
		for _, cond := range cc.List {
 | 
						|
			next = fn.newBasicBlock("typeswitch.next")
 | 
						|
			casetype = fn.Pkg.typeOf(cond)
 | 
						|
			var condv Value
 | 
						|
			if casetype == tUntypedNil {
 | 
						|
				condv = emitCompare(fn, token.EQL, x, nilConst(x.Type()), token.NoPos)
 | 
						|
				ti = x
 | 
						|
			} else {
 | 
						|
				yok := emitTypeTest(fn, x, casetype, cc.Case)
 | 
						|
				ti = emitExtract(fn, yok, 0)
 | 
						|
				condv = emitExtract(fn, yok, 1)
 | 
						|
			}
 | 
						|
			emitIf(fn, condv, body, next)
 | 
						|
			fn.currentBlock = next
 | 
						|
		}
 | 
						|
		if len(cc.List) != 1 {
 | 
						|
			ti = x
 | 
						|
		}
 | 
						|
		fn.currentBlock = body
 | 
						|
		b.typeCaseBody(fn, cc, ti, done)
 | 
						|
		fn.currentBlock = next
 | 
						|
	}
 | 
						|
	if default_ != nil {
 | 
						|
		b.typeCaseBody(fn, default_, x, done)
 | 
						|
	} else {
 | 
						|
		emitJump(fn, done)
 | 
						|
	}
 | 
						|
	fn.currentBlock = done
 | 
						|
}
 | 
						|
 | 
						|
func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) {
 | 
						|
	if obj := fn.Pkg.info.Implicits[cc]; obj != nil {
 | 
						|
		// In a switch y := x.(type), each case clause
 | 
						|
		// implicitly declares a distinct object y.
 | 
						|
		// In a single-type case, y has that type.
 | 
						|
		// In multi-type cases, 'case nil' and default,
 | 
						|
		// y has the same type as the interface operand.
 | 
						|
		emitStore(fn, fn.addNamedLocal(obj), x, obj.Pos())
 | 
						|
	}
 | 
						|
	fn.targets = &targets{
 | 
						|
		tail:   fn.targets,
 | 
						|
		_break: done,
 | 
						|
	}
 | 
						|
	b.stmtList(fn, cc.Body)
 | 
						|
	fn.targets = fn.targets.tail
 | 
						|
	emitJump(fn, done)
 | 
						|
}
 | 
						|
 | 
						|
// selectStmt emits to fn code for the select statement s, optionally
 | 
						|
// labelled by label.
 | 
						|
//
 | 
						|
func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
 | 
						|
	// A blocking select of a single case degenerates to a
 | 
						|
	// simple send or receive.
 | 
						|
	// TODO(adonovan): opt: is this optimization worth its weight?
 | 
						|
	if len(s.Body.List) == 1 {
 | 
						|
		clause := s.Body.List[0].(*ast.CommClause)
 | 
						|
		if clause.Comm != nil {
 | 
						|
			b.stmt(fn, clause.Comm)
 | 
						|
			done := fn.newBasicBlock("select.done")
 | 
						|
			if label != nil {
 | 
						|
				label._break = done
 | 
						|
			}
 | 
						|
			fn.targets = &targets{
 | 
						|
				tail:   fn.targets,
 | 
						|
				_break: done,
 | 
						|
			}
 | 
						|
			b.stmtList(fn, clause.Body)
 | 
						|
			fn.targets = fn.targets.tail
 | 
						|
			emitJump(fn, done)
 | 
						|
			fn.currentBlock = done
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// First evaluate all channels in all cases, and find
 | 
						|
	// the directions of each state.
 | 
						|
	var states []*SelectState
 | 
						|
	blocking := true
 | 
						|
	debugInfo := fn.debugInfo()
 | 
						|
	for _, clause := range s.Body.List {
 | 
						|
		var st *SelectState
 | 
						|
		switch comm := clause.(*ast.CommClause).Comm.(type) {
 | 
						|
		case nil: // default case
 | 
						|
			blocking = false
 | 
						|
			continue
 | 
						|
 | 
						|
		case *ast.SendStmt: // ch<- i
 | 
						|
			ch := b.expr(fn, comm.Chan)
 | 
						|
			st = &SelectState{
 | 
						|
				Dir:  types.SendOnly,
 | 
						|
				Chan: ch,
 | 
						|
				Send: emitConv(fn, b.expr(fn, comm.Value),
 | 
						|
					ch.Type().Underlying().(*types.Chan).Elem()),
 | 
						|
				Pos: comm.Arrow,
 | 
						|
			}
 | 
						|
			if debugInfo {
 | 
						|
				st.DebugNode = comm
 | 
						|
			}
 | 
						|
 | 
						|
		case *ast.AssignStmt: // x := <-ch
 | 
						|
			recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr)
 | 
						|
			st = &SelectState{
 | 
						|
				Dir:  types.RecvOnly,
 | 
						|
				Chan: b.expr(fn, recv.X),
 | 
						|
				Pos:  recv.OpPos,
 | 
						|
			}
 | 
						|
			if debugInfo {
 | 
						|
				st.DebugNode = recv
 | 
						|
			}
 | 
						|
 | 
						|
		case *ast.ExprStmt: // <-ch
 | 
						|
			recv := unparen(comm.X).(*ast.UnaryExpr)
 | 
						|
			st = &SelectState{
 | 
						|
				Dir:  types.RecvOnly,
 | 
						|
				Chan: b.expr(fn, recv.X),
 | 
						|
				Pos:  recv.OpPos,
 | 
						|
			}
 | 
						|
			if debugInfo {
 | 
						|
				st.DebugNode = recv
 | 
						|
			}
 | 
						|
		}
 | 
						|
		states = append(states, st)
 | 
						|
	}
 | 
						|
 | 
						|
	// We dispatch on the (fair) result of Select using a
 | 
						|
	// sequential if-else chain, in effect:
 | 
						|
	//
 | 
						|
	// idx, recvOk, r0...r_n-1 := select(...)
 | 
						|
	// if idx == 0 {  // receive on channel 0  (first receive => r0)
 | 
						|
	//     x, ok := r0, recvOk
 | 
						|
	//     ...state0...
 | 
						|
	// } else if v == 1 {   // send on channel 1
 | 
						|
	//     ...state1...
 | 
						|
	// } else {
 | 
						|
	//     ...default...
 | 
						|
	// }
 | 
						|
	sel := &Select{
 | 
						|
		States:   states,
 | 
						|
		Blocking: blocking,
 | 
						|
	}
 | 
						|
	sel.setPos(s.Select)
 | 
						|
	var vars []*types.Var
 | 
						|
	vars = append(vars, varIndex, varOk)
 | 
						|
	for _, st := range states {
 | 
						|
		if st.Dir == types.RecvOnly {
 | 
						|
			tElem := st.Chan.Type().Underlying().(*types.Chan).Elem()
 | 
						|
			vars = append(vars, anonVar(tElem))
 | 
						|
		}
 | 
						|
	}
 | 
						|
	sel.setType(types.NewTuple(vars...))
 | 
						|
 | 
						|
	fn.emit(sel)
 | 
						|
	idx := emitExtract(fn, sel, 0)
 | 
						|
 | 
						|
	done := fn.newBasicBlock("select.done")
 | 
						|
	if label != nil {
 | 
						|
		label._break = done
 | 
						|
	}
 | 
						|
 | 
						|
	var defaultBody *[]ast.Stmt
 | 
						|
	state := 0
 | 
						|
	r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
 | 
						|
	for _, cc := range s.Body.List {
 | 
						|
		clause := cc.(*ast.CommClause)
 | 
						|
		if clause.Comm == nil {
 | 
						|
			defaultBody = &clause.Body
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		body := fn.newBasicBlock("select.body")
 | 
						|
		next := fn.newBasicBlock("select.next")
 | 
						|
		emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next)
 | 
						|
		fn.currentBlock = body
 | 
						|
		fn.targets = &targets{
 | 
						|
			tail:   fn.targets,
 | 
						|
			_break: done,
 | 
						|
		}
 | 
						|
		switch comm := clause.Comm.(type) {
 | 
						|
		case *ast.ExprStmt: // <-ch
 | 
						|
			if debugInfo {
 | 
						|
				v := emitExtract(fn, sel, r)
 | 
						|
				emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
 | 
						|
			}
 | 
						|
			r++
 | 
						|
 | 
						|
		case *ast.AssignStmt: // x := <-states[state].Chan
 | 
						|
			if comm.Tok == token.DEFINE {
 | 
						|
				fn.addLocalForIdent(comm.Lhs[0].(*ast.Ident))
 | 
						|
			}
 | 
						|
			x := b.addr(fn, comm.Lhs[0], false) // non-escaping
 | 
						|
			v := emitExtract(fn, sel, r)
 | 
						|
			if debugInfo {
 | 
						|
				emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
 | 
						|
			}
 | 
						|
			x.store(fn, v)
 | 
						|
 | 
						|
			if len(comm.Lhs) == 2 { // x, ok := ...
 | 
						|
				if comm.Tok == token.DEFINE {
 | 
						|
					fn.addLocalForIdent(comm.Lhs[1].(*ast.Ident))
 | 
						|
				}
 | 
						|
				ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
 | 
						|
				ok.store(fn, emitExtract(fn, sel, 1))
 | 
						|
			}
 | 
						|
			r++
 | 
						|
		}
 | 
						|
		b.stmtList(fn, clause.Body)
 | 
						|
		fn.targets = fn.targets.tail
 | 
						|
		emitJump(fn, done)
 | 
						|
		fn.currentBlock = next
 | 
						|
		state++
 | 
						|
	}
 | 
						|
	if defaultBody != nil {
 | 
						|
		fn.targets = &targets{
 | 
						|
			tail:   fn.targets,
 | 
						|
			_break: done,
 | 
						|
		}
 | 
						|
		b.stmtList(fn, *defaultBody)
 | 
						|
		fn.targets = fn.targets.tail
 | 
						|
	} else {
 | 
						|
		// A blocking select must match some case.
 | 
						|
		// (This should really be a runtime.errorString, not a string.)
 | 
						|
		fn.emit(&Panic{
 | 
						|
			X: emitConv(fn, stringConst("blocking select matched no case"), tEface),
 | 
						|
		})
 | 
						|
		fn.currentBlock = fn.newBasicBlock("unreachable")
 | 
						|
	}
 | 
						|
	emitJump(fn, done)
 | 
						|
	fn.currentBlock = done
 | 
						|
}
 | 
						|
 | 
						|
// forStmt emits to fn code for the for statement s, optionally
 | 
						|
// labelled by label.
 | 
						|
//
 | 
						|
func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
 | 
						|
	//	...init...
 | 
						|
	//      jump loop
 | 
						|
	// loop:
 | 
						|
	//      if cond goto body else done
 | 
						|
	// body:
 | 
						|
	//      ...body...
 | 
						|
	//      jump post
 | 
						|
	// post:				 (target of continue)
 | 
						|
	//      ...post...
 | 
						|
	//      jump loop
 | 
						|
	// done:                                 (target of break)
 | 
						|
	if s.Init != nil {
 | 
						|
		b.stmt(fn, s.Init)
 | 
						|
	}
 | 
						|
	body := fn.newBasicBlock("for.body")
 | 
						|
	done := fn.newBasicBlock("for.done") // target of 'break'
 | 
						|
	loop := body                         // target of back-edge
 | 
						|
	if s.Cond != nil {
 | 
						|
		loop = fn.newBasicBlock("for.loop")
 | 
						|
	}
 | 
						|
	cont := loop // target of 'continue'
 | 
						|
	if s.Post != nil {
 | 
						|
		cont = fn.newBasicBlock("for.post")
 | 
						|
	}
 | 
						|
	if label != nil {
 | 
						|
		label._break = done
 | 
						|
		label._continue = cont
 | 
						|
	}
 | 
						|
	emitJump(fn, loop)
 | 
						|
	fn.currentBlock = loop
 | 
						|
	if loop != body {
 | 
						|
		b.cond(fn, s.Cond, body, done)
 | 
						|
		fn.currentBlock = body
 | 
						|
	}
 | 
						|
	fn.targets = &targets{
 | 
						|
		tail:      fn.targets,
 | 
						|
		_break:    done,
 | 
						|
		_continue: cont,
 | 
						|
	}
 | 
						|
	b.stmt(fn, s.Body)
 | 
						|
	fn.targets = fn.targets.tail
 | 
						|
	emitJump(fn, cont)
 | 
						|
 | 
						|
	if s.Post != nil {
 | 
						|
		fn.currentBlock = cont
 | 
						|
		b.stmt(fn, s.Post)
 | 
						|
		emitJump(fn, loop) // back-edge
 | 
						|
	}
 | 
						|
	fn.currentBlock = done
 | 
						|
}
 | 
						|
 | 
						|
// rangeIndexed emits to fn the header for an integer-indexed loop
 | 
						|
// over array, *array or slice value x.
 | 
						|
// The v result is defined only if tv is non-nil.
 | 
						|
// forPos is the position of the "for" token.
 | 
						|
//
 | 
						|
func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
 | 
						|
	//
 | 
						|
	//      length = len(x)
 | 
						|
	//      index = -1
 | 
						|
	// loop:                                   (target of continue)
 | 
						|
	//      index++
 | 
						|
	// 	if index < length goto body else done
 | 
						|
	// body:
 | 
						|
	//      k = index
 | 
						|
	//      v = x[index]
 | 
						|
	//      ...body...
 | 
						|
	// 	jump loop
 | 
						|
	// done:                                   (target of break)
 | 
						|
 | 
						|
	// Determine number of iterations.
 | 
						|
	var length Value
 | 
						|
	if arr, ok := deref(x.Type()).Underlying().(*types.Array); ok {
 | 
						|
		// For array or *array, the number of iterations is
 | 
						|
		// known statically thanks to the type.  We avoid a
 | 
						|
		// data dependence upon x, permitting later dead-code
 | 
						|
		// elimination if x is pure, static unrolling, etc.
 | 
						|
		// Ranging over a nil *array may have >0 iterations.
 | 
						|
		// We still generate code for x, in case it has effects.
 | 
						|
		length = intConst(arr.Len())
 | 
						|
	} else {
 | 
						|
		// length = len(x).
 | 
						|
		var c Call
 | 
						|
		c.Call.Value = makeLen(x.Type())
 | 
						|
		c.Call.Args = []Value{x}
 | 
						|
		c.setType(tInt)
 | 
						|
		length = fn.emit(&c)
 | 
						|
	}
 | 
						|
 | 
						|
	index := fn.addLocal(tInt, token.NoPos)
 | 
						|
	emitStore(fn, index, intConst(-1), pos)
 | 
						|
 | 
						|
	loop = fn.newBasicBlock("rangeindex.loop")
 | 
						|
	emitJump(fn, loop)
 | 
						|
	fn.currentBlock = loop
 | 
						|
 | 
						|
	incr := &BinOp{
 | 
						|
		Op: token.ADD,
 | 
						|
		X:  emitLoad(fn, index),
 | 
						|
		Y:  vOne,
 | 
						|
	}
 | 
						|
	incr.setType(tInt)
 | 
						|
	emitStore(fn, index, fn.emit(incr), pos)
 | 
						|
 | 
						|
	body := fn.newBasicBlock("rangeindex.body")
 | 
						|
	done = fn.newBasicBlock("rangeindex.done")
 | 
						|
	emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done)
 | 
						|
	fn.currentBlock = body
 | 
						|
 | 
						|
	k = emitLoad(fn, index)
 | 
						|
	if tv != nil {
 | 
						|
		switch t := x.Type().Underlying().(type) {
 | 
						|
		case *types.Array:
 | 
						|
			instr := &Index{
 | 
						|
				X:     x,
 | 
						|
				Index: k,
 | 
						|
			}
 | 
						|
			instr.setType(t.Elem())
 | 
						|
			v = fn.emit(instr)
 | 
						|
 | 
						|
		case *types.Pointer: // *array
 | 
						|
			instr := &IndexAddr{
 | 
						|
				X:     x,
 | 
						|
				Index: k,
 | 
						|
			}
 | 
						|
			instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()))
 | 
						|
			v = emitLoad(fn, fn.emit(instr))
 | 
						|
 | 
						|
		case *types.Slice:
 | 
						|
			instr := &IndexAddr{
 | 
						|
				X:     x,
 | 
						|
				Index: k,
 | 
						|
			}
 | 
						|
			instr.setType(types.NewPointer(t.Elem()))
 | 
						|
			v = emitLoad(fn, fn.emit(instr))
 | 
						|
 | 
						|
		default:
 | 
						|
			panic("rangeIndexed x:" + t.String())
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// rangeIter emits to fn the header for a loop using
 | 
						|
// Range/Next/Extract to iterate over map or string value x.
 | 
						|
// tk and tv are the types of the key/value results k and v, or nil
 | 
						|
// if the respective component is not wanted.
 | 
						|
//
 | 
						|
func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
 | 
						|
	//
 | 
						|
	//	it = range x
 | 
						|
	// loop:                                   (target of continue)
 | 
						|
	//	okv = next it                      (ok, key, value)
 | 
						|
	//  	ok = extract okv #0
 | 
						|
	// 	if ok goto body else done
 | 
						|
	// body:
 | 
						|
	// 	k = extract okv #1
 | 
						|
	// 	v = extract okv #2
 | 
						|
	//      ...body...
 | 
						|
	// 	jump loop
 | 
						|
	// done:                                   (target of break)
 | 
						|
	//
 | 
						|
 | 
						|
	if tk == nil {
 | 
						|
		tk = tInvalid
 | 
						|
	}
 | 
						|
	if tv == nil {
 | 
						|
		tv = tInvalid
 | 
						|
	}
 | 
						|
 | 
						|
	rng := &Range{X: x}
 | 
						|
	rng.setPos(pos)
 | 
						|
	rng.setType(tRangeIter)
 | 
						|
	it := fn.emit(rng)
 | 
						|
 | 
						|
	loop = fn.newBasicBlock("rangeiter.loop")
 | 
						|
	emitJump(fn, loop)
 | 
						|
	fn.currentBlock = loop
 | 
						|
 | 
						|
	_, isString := x.Type().Underlying().(*types.Basic)
 | 
						|
 | 
						|
	okv := &Next{
 | 
						|
		Iter:     it,
 | 
						|
		IsString: isString,
 | 
						|
	}
 | 
						|
	okv.setType(types.NewTuple(
 | 
						|
		varOk,
 | 
						|
		newVar("k", tk),
 | 
						|
		newVar("v", tv),
 | 
						|
	))
 | 
						|
	fn.emit(okv)
 | 
						|
 | 
						|
	body := fn.newBasicBlock("rangeiter.body")
 | 
						|
	done = fn.newBasicBlock("rangeiter.done")
 | 
						|
	emitIf(fn, emitExtract(fn, okv, 0), body, done)
 | 
						|
	fn.currentBlock = body
 | 
						|
 | 
						|
	if tk != tInvalid {
 | 
						|
		k = emitExtract(fn, okv, 1)
 | 
						|
	}
 | 
						|
	if tv != tInvalid {
 | 
						|
		v = emitExtract(fn, okv, 2)
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// rangeChan emits to fn the header for a loop that receives from
 | 
						|
// channel x until it fails.
 | 
						|
// tk is the channel's element type, or nil if the k result is
 | 
						|
// not wanted
 | 
						|
// pos is the position of the '=' or ':=' token.
 | 
						|
//
 | 
						|
func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
 | 
						|
	//
 | 
						|
	// loop:                                   (target of continue)
 | 
						|
	//      ko = <-x                           (key, ok)
 | 
						|
	//      ok = extract ko #1
 | 
						|
	//      if ok goto body else done
 | 
						|
	// body:
 | 
						|
	//      k = extract ko #0
 | 
						|
	//      ...
 | 
						|
	//      goto loop
 | 
						|
	// done:                                   (target of break)
 | 
						|
 | 
						|
	loop = fn.newBasicBlock("rangechan.loop")
 | 
						|
	emitJump(fn, loop)
 | 
						|
	fn.currentBlock = loop
 | 
						|
	recv := &UnOp{
 | 
						|
		Op:      token.ARROW,
 | 
						|
		X:       x,
 | 
						|
		CommaOk: true,
 | 
						|
	}
 | 
						|
	recv.setPos(pos)
 | 
						|
	recv.setType(types.NewTuple(
 | 
						|
		newVar("k", x.Type().Underlying().(*types.Chan).Elem()),
 | 
						|
		varOk,
 | 
						|
	))
 | 
						|
	ko := fn.emit(recv)
 | 
						|
	body := fn.newBasicBlock("rangechan.body")
 | 
						|
	done = fn.newBasicBlock("rangechan.done")
 | 
						|
	emitIf(fn, emitExtract(fn, ko, 1), body, done)
 | 
						|
	fn.currentBlock = body
 | 
						|
	if tk != nil {
 | 
						|
		k = emitExtract(fn, ko, 0)
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// rangeStmt emits to fn code for the range statement s, optionally
 | 
						|
// labelled by label.
 | 
						|
//
 | 
						|
func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
 | 
						|
	var tk, tv types.Type
 | 
						|
	if s.Key != nil && !isBlankIdent(s.Key) {
 | 
						|
		tk = fn.Pkg.typeOf(s.Key)
 | 
						|
	}
 | 
						|
	if s.Value != nil && !isBlankIdent(s.Value) {
 | 
						|
		tv = fn.Pkg.typeOf(s.Value)
 | 
						|
	}
 | 
						|
 | 
						|
	// If iteration variables are defined (:=), this
 | 
						|
	// occurs once outside the loop.
 | 
						|
	//
 | 
						|
	// Unlike a short variable declaration, a RangeStmt
 | 
						|
	// using := never redeclares an existing variable; it
 | 
						|
	// always creates a new one.
 | 
						|
	if s.Tok == token.DEFINE {
 | 
						|
		if tk != nil {
 | 
						|
			fn.addLocalForIdent(s.Key.(*ast.Ident))
 | 
						|
		}
 | 
						|
		if tv != nil {
 | 
						|
			fn.addLocalForIdent(s.Value.(*ast.Ident))
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	x := b.expr(fn, s.X)
 | 
						|
 | 
						|
	var k, v Value
 | 
						|
	var loop, done *BasicBlock
 | 
						|
	switch rt := x.Type().Underlying().(type) {
 | 
						|
	case *types.Slice, *types.Array, *types.Pointer: // *array
 | 
						|
		k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)
 | 
						|
 | 
						|
	case *types.Chan:
 | 
						|
		k, loop, done = b.rangeChan(fn, x, tk, s.For)
 | 
						|
 | 
						|
	case *types.Map, *types.Basic: // string
 | 
						|
		k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
 | 
						|
 | 
						|
	default:
 | 
						|
		panic("Cannot range over: " + rt.String())
 | 
						|
	}
 | 
						|
 | 
						|
	// Evaluate both LHS expressions before we update either.
 | 
						|
	var kl, vl lvalue
 | 
						|
	if tk != nil {
 | 
						|
		kl = b.addr(fn, s.Key, false) // non-escaping
 | 
						|
	}
 | 
						|
	if tv != nil {
 | 
						|
		vl = b.addr(fn, s.Value, false) // non-escaping
 | 
						|
	}
 | 
						|
	if tk != nil {
 | 
						|
		kl.store(fn, k)
 | 
						|
	}
 | 
						|
	if tv != nil {
 | 
						|
		vl.store(fn, v)
 | 
						|
	}
 | 
						|
 | 
						|
	if label != nil {
 | 
						|
		label._break = done
 | 
						|
		label._continue = loop
 | 
						|
	}
 | 
						|
 | 
						|
	fn.targets = &targets{
 | 
						|
		tail:      fn.targets,
 | 
						|
		_break:    done,
 | 
						|
		_continue: loop,
 | 
						|
	}
 | 
						|
	b.stmt(fn, s.Body)
 | 
						|
	fn.targets = fn.targets.tail
 | 
						|
	emitJump(fn, loop) // back-edge
 | 
						|
	fn.currentBlock = done
 | 
						|
}
 | 
						|
 | 
						|
// stmt lowers statement s to SSA form, emitting code to fn.
 | 
						|
func (b *builder) stmt(fn *Function, _s ast.Stmt) {
 | 
						|
	// The label of the current statement.  If non-nil, its _goto
 | 
						|
	// target is always set; its _break and _continue are set only
 | 
						|
	// within the body of switch/typeswitch/select/for/range.
 | 
						|
	// It is effectively an additional default-nil parameter of stmt().
 | 
						|
	var label *lblock
 | 
						|
start:
 | 
						|
	switch s := _s.(type) {
 | 
						|
	case *ast.EmptyStmt:
 | 
						|
		// ignore.  (Usually removed by gofmt.)
 | 
						|
 | 
						|
	case *ast.DeclStmt: // Con, Var or Typ
 | 
						|
		d := s.Decl.(*ast.GenDecl)
 | 
						|
		if d.Tok == token.VAR {
 | 
						|
			for _, spec := range d.Specs {
 | 
						|
				if vs, ok := spec.(*ast.ValueSpec); ok {
 | 
						|
					b.localValueSpec(fn, vs)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.LabeledStmt:
 | 
						|
		label = fn.labelledBlock(s.Label)
 | 
						|
		emitJump(fn, label._goto)
 | 
						|
		fn.currentBlock = label._goto
 | 
						|
		_s = s.Stmt
 | 
						|
		goto start // effectively: tailcall stmt(fn, s.Stmt, label)
 | 
						|
 | 
						|
	case *ast.ExprStmt:
 | 
						|
		b.expr(fn, s.X)
 | 
						|
 | 
						|
	case *ast.SendStmt:
 | 
						|
		fn.emit(&Send{
 | 
						|
			Chan: b.expr(fn, s.Chan),
 | 
						|
			X: emitConv(fn, b.expr(fn, s.Value),
 | 
						|
				fn.Pkg.typeOf(s.Chan).Underlying().(*types.Chan).Elem()),
 | 
						|
			pos: s.Arrow,
 | 
						|
		})
 | 
						|
 | 
						|
	case *ast.IncDecStmt:
 | 
						|
		op := token.ADD
 | 
						|
		if s.Tok == token.DEC {
 | 
						|
			op = token.SUB
 | 
						|
		}
 | 
						|
		loc := b.addr(fn, s.X, false)
 | 
						|
		b.assignOp(fn, loc, NewConst(constant.MakeInt64(1), loc.typ()), op, s.Pos())
 | 
						|
 | 
						|
	case *ast.AssignStmt:
 | 
						|
		switch s.Tok {
 | 
						|
		case token.ASSIGN, token.DEFINE:
 | 
						|
			b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
 | 
						|
 | 
						|
		default: // +=, etc.
 | 
						|
			op := s.Tok + token.ADD - token.ADD_ASSIGN
 | 
						|
			b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op, s.Pos())
 | 
						|
		}
 | 
						|
 | 
						|
	case *ast.GoStmt:
 | 
						|
		// The "intrinsics" new/make/len/cap are forbidden here.
 | 
						|
		// panic is treated like an ordinary function call.
 | 
						|
		v := Go{pos: s.Go}
 | 
						|
		b.setCall(fn, s.Call, &v.Call)
 | 
						|
		fn.emit(&v)
 | 
						|
 | 
						|
	case *ast.DeferStmt:
 | 
						|
		// The "intrinsics" new/make/len/cap are forbidden here.
 | 
						|
		// panic is treated like an ordinary function call.
 | 
						|
		v := Defer{pos: s.Defer}
 | 
						|
		b.setCall(fn, s.Call, &v.Call)
 | 
						|
		fn.emit(&v)
 | 
						|
 | 
						|
		// A deferred call can cause recovery from panic,
 | 
						|
		// and control resumes at the Recover block.
 | 
						|
		createRecoverBlock(fn)
 | 
						|
 | 
						|
	case *ast.ReturnStmt:
 | 
						|
		var results []Value
 | 
						|
		if len(s.Results) == 1 && fn.Signature.Results().Len() > 1 {
 | 
						|
			// Return of one expression in a multi-valued function.
 | 
						|
			tuple := b.exprN(fn, s.Results[0])
 | 
						|
			ttuple := tuple.Type().(*types.Tuple)
 | 
						|
			for i, n := 0, ttuple.Len(); i < n; i++ {
 | 
						|
				results = append(results,
 | 
						|
					emitConv(fn, emitExtract(fn, tuple, i),
 | 
						|
						fn.Signature.Results().At(i).Type()))
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			// 1:1 return, or no-arg return in non-void function.
 | 
						|
			for i, r := range s.Results {
 | 
						|
				v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type())
 | 
						|
				results = append(results, v)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if fn.namedResults != nil {
 | 
						|
			// Function has named result parameters (NRPs).
 | 
						|
			// Perform parallel assignment of return operands to NRPs.
 | 
						|
			for i, r := range results {
 | 
						|
				emitStore(fn, fn.namedResults[i], r, s.Return)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// Run function calls deferred in this
 | 
						|
		// function when explicitly returning from it.
 | 
						|
		fn.emit(new(RunDefers))
 | 
						|
		if fn.namedResults != nil {
 | 
						|
			// Reload NRPs to form the result tuple.
 | 
						|
			results = results[:0]
 | 
						|
			for _, r := range fn.namedResults {
 | 
						|
				results = append(results, emitLoad(fn, r))
 | 
						|
			}
 | 
						|
		}
 | 
						|
		fn.emit(&Return{Results: results, pos: s.Return})
 | 
						|
		fn.currentBlock = fn.newBasicBlock("unreachable")
 | 
						|
 | 
						|
	case *ast.BranchStmt:
 | 
						|
		var block *BasicBlock
 | 
						|
		switch s.Tok {
 | 
						|
		case token.BREAK:
 | 
						|
			if s.Label != nil {
 | 
						|
				block = fn.labelledBlock(s.Label)._break
 | 
						|
			} else {
 | 
						|
				for t := fn.targets; t != nil && block == nil; t = t.tail {
 | 
						|
					block = t._break
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		case token.CONTINUE:
 | 
						|
			if s.Label != nil {
 | 
						|
				block = fn.labelledBlock(s.Label)._continue
 | 
						|
			} else {
 | 
						|
				for t := fn.targets; t != nil && block == nil; t = t.tail {
 | 
						|
					block = t._continue
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		case token.FALLTHROUGH:
 | 
						|
			for t := fn.targets; t != nil && block == nil; t = t.tail {
 | 
						|
				block = t._fallthrough
 | 
						|
			}
 | 
						|
 | 
						|
		case token.GOTO:
 | 
						|
			block = fn.labelledBlock(s.Label)._goto
 | 
						|
		}
 | 
						|
		emitJump(fn, block)
 | 
						|
		fn.currentBlock = fn.newBasicBlock("unreachable")
 | 
						|
 | 
						|
	case *ast.BlockStmt:
 | 
						|
		b.stmtList(fn, s.List)
 | 
						|
 | 
						|
	case *ast.IfStmt:
 | 
						|
		if s.Init != nil {
 | 
						|
			b.stmt(fn, s.Init)
 | 
						|
		}
 | 
						|
		then := fn.newBasicBlock("if.then")
 | 
						|
		done := fn.newBasicBlock("if.done")
 | 
						|
		els := done
 | 
						|
		if s.Else != nil {
 | 
						|
			els = fn.newBasicBlock("if.else")
 | 
						|
		}
 | 
						|
		b.cond(fn, s.Cond, then, els)
 | 
						|
		fn.currentBlock = then
 | 
						|
		b.stmt(fn, s.Body)
 | 
						|
		emitJump(fn, done)
 | 
						|
 | 
						|
		if s.Else != nil {
 | 
						|
			fn.currentBlock = els
 | 
						|
			b.stmt(fn, s.Else)
 | 
						|
			emitJump(fn, done)
 | 
						|
		}
 | 
						|
 | 
						|
		fn.currentBlock = done
 | 
						|
 | 
						|
	case *ast.SwitchStmt:
 | 
						|
		b.switchStmt(fn, s, label)
 | 
						|
 | 
						|
	case *ast.TypeSwitchStmt:
 | 
						|
		b.typeSwitchStmt(fn, s, label)
 | 
						|
 | 
						|
	case *ast.SelectStmt:
 | 
						|
		b.selectStmt(fn, s, label)
 | 
						|
 | 
						|
	case *ast.ForStmt:
 | 
						|
		b.forStmt(fn, s, label)
 | 
						|
 | 
						|
	case *ast.RangeStmt:
 | 
						|
		b.rangeStmt(fn, s, label)
 | 
						|
 | 
						|
	default:
 | 
						|
		panic(fmt.Sprintf("unexpected statement kind: %T", s))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// buildFunction builds SSA code for the body of function fn.  Idempotent.
 | 
						|
func (b *builder) buildFunction(fn *Function) {
 | 
						|
	if fn.Blocks != nil {
 | 
						|
		return // building already started
 | 
						|
	}
 | 
						|
 | 
						|
	var recvField *ast.FieldList
 | 
						|
	var body *ast.BlockStmt
 | 
						|
	var functype *ast.FuncType
 | 
						|
	switch n := fn.syntax.(type) {
 | 
						|
	case nil:
 | 
						|
		return // not a Go source function.  (Synthetic, or from object file.)
 | 
						|
	case *ast.FuncDecl:
 | 
						|
		functype = n.Type
 | 
						|
		recvField = n.Recv
 | 
						|
		body = n.Body
 | 
						|
	case *ast.FuncLit:
 | 
						|
		functype = n.Type
 | 
						|
		body = n.Body
 | 
						|
	default:
 | 
						|
		panic(n)
 | 
						|
	}
 | 
						|
 | 
						|
	if body == nil {
 | 
						|
		// External function.
 | 
						|
		if fn.Params == nil {
 | 
						|
			// This condition ensures we add a non-empty
 | 
						|
			// params list once only, but we may attempt
 | 
						|
			// the degenerate empty case repeatedly.
 | 
						|
			// TODO(adonovan): opt: don't do that.
 | 
						|
 | 
						|
			// We set Function.Params even though there is no body
 | 
						|
			// code to reference them.  This simplifies clients.
 | 
						|
			if recv := fn.Signature.Recv(); recv != nil {
 | 
						|
				fn.addParamObj(recv)
 | 
						|
			}
 | 
						|
			params := fn.Signature.Params()
 | 
						|
			for i, n := 0, params.Len(); i < n; i++ {
 | 
						|
				fn.addParamObj(params.At(i))
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if fn.Prog.mode&LogSource != 0 {
 | 
						|
		defer logStack("build function %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))()
 | 
						|
	}
 | 
						|
	fn.startBody()
 | 
						|
	fn.createSyntacticParams(recvField, functype)
 | 
						|
	b.stmt(fn, body)
 | 
						|
	if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
 | 
						|
		// Control fell off the end of the function's body block.
 | 
						|
		//
 | 
						|
		// Block optimizations eliminate the current block, if
 | 
						|
		// unreachable.  It is a builder invariant that
 | 
						|
		// if this no-arg return is ill-typed for
 | 
						|
		// fn.Signature.Results, this block must be
 | 
						|
		// unreachable.  The sanity checker checks this.
 | 
						|
		fn.emit(new(RunDefers))
 | 
						|
		fn.emit(new(Return))
 | 
						|
	}
 | 
						|
	fn.finishBody()
 | 
						|
}
 | 
						|
 | 
						|
// buildFuncDecl builds SSA code for the function or method declared
 | 
						|
// by decl in package pkg.
 | 
						|
//
 | 
						|
func (b *builder) buildFuncDecl(pkg *Package, decl *ast.FuncDecl) {
 | 
						|
	id := decl.Name
 | 
						|
	if isBlankIdent(id) {
 | 
						|
		return // discard
 | 
						|
	}
 | 
						|
	fn := pkg.values[pkg.info.Defs[id]].(*Function)
 | 
						|
	if decl.Recv == nil && id.Name == "init" {
 | 
						|
		var v Call
 | 
						|
		v.Call.Value = fn
 | 
						|
		v.setType(types.NewTuple())
 | 
						|
		pkg.init.emit(&v)
 | 
						|
	}
 | 
						|
	b.buildFunction(fn)
 | 
						|
}
 | 
						|
 | 
						|
// Build calls Package.Build for each package in prog.
 | 
						|
// Building occurs in parallel unless the BuildSerially mode flag was set.
 | 
						|
//
 | 
						|
// Build is intended for whole-program analysis; a typical compiler
 | 
						|
// need only build a single package.
 | 
						|
//
 | 
						|
// Build is idempotent and thread-safe.
 | 
						|
//
 | 
						|
func (prog *Program) Build() {
 | 
						|
	var wg sync.WaitGroup
 | 
						|
	for _, p := range prog.packages {
 | 
						|
		if prog.mode&BuildSerially != 0 {
 | 
						|
			p.Build()
 | 
						|
		} else {
 | 
						|
			wg.Add(1)
 | 
						|
			go func(p *Package) {
 | 
						|
				p.Build()
 | 
						|
				wg.Done()
 | 
						|
			}(p)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	wg.Wait()
 | 
						|
}
 | 
						|
 | 
						|
// Build builds SSA code for all functions and vars in package p.
 | 
						|
//
 | 
						|
// Precondition: CreatePackage must have been called for all of p's
 | 
						|
// direct imports (and hence its direct imports must have been
 | 
						|
// error-free).
 | 
						|
//
 | 
						|
// Build is idempotent and thread-safe.
 | 
						|
//
 | 
						|
func (p *Package) Build() { p.buildOnce.Do(p.build) }
 | 
						|
 | 
						|
func (p *Package) build() {
 | 
						|
	if p.info == nil {
 | 
						|
		return // synthetic package, e.g. "testmain"
 | 
						|
	}
 | 
						|
 | 
						|
	// Ensure we have runtime type info for all exported members.
 | 
						|
	// TODO(adonovan): ideally belongs in memberFromObject, but
 | 
						|
	// that would require package creation in topological order.
 | 
						|
	for name, mem := range p.Members {
 | 
						|
		if ast.IsExported(name) {
 | 
						|
			p.Prog.needMethodsOf(mem.Type())
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if p.Prog.mode&LogSource != 0 {
 | 
						|
		defer logStack("build %s", p)()
 | 
						|
	}
 | 
						|
	init := p.init
 | 
						|
	init.startBody()
 | 
						|
 | 
						|
	var done *BasicBlock
 | 
						|
 | 
						|
	if p.Prog.mode&BareInits == 0 {
 | 
						|
		// Make init() skip if package is already initialized.
 | 
						|
		initguard := p.Var("init$guard")
 | 
						|
		doinit := init.newBasicBlock("init.start")
 | 
						|
		done = init.newBasicBlock("init.done")
 | 
						|
		emitIf(init, emitLoad(init, initguard), done, doinit)
 | 
						|
		init.currentBlock = doinit
 | 
						|
		emitStore(init, initguard, vTrue, token.NoPos)
 | 
						|
 | 
						|
		// Call the init() function of each package we import.
 | 
						|
		for _, pkg := range p.Pkg.Imports() {
 | 
						|
			prereq := p.Prog.packages[pkg]
 | 
						|
			if prereq == nil {
 | 
						|
				panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path()))
 | 
						|
			}
 | 
						|
			var v Call
 | 
						|
			v.Call.Value = prereq.init
 | 
						|
			v.Call.pos = init.pos
 | 
						|
			v.setType(types.NewTuple())
 | 
						|
			init.emit(&v)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	var b builder
 | 
						|
 | 
						|
	// Initialize package-level vars in correct order.
 | 
						|
	for _, varinit := range p.info.InitOrder {
 | 
						|
		if init.Prog.mode&LogSource != 0 {
 | 
						|
			fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n",
 | 
						|
				varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos()))
 | 
						|
		}
 | 
						|
		if len(varinit.Lhs) == 1 {
 | 
						|
			// 1:1 initialization: var x, y = a(), b()
 | 
						|
			var lval lvalue
 | 
						|
			if v := varinit.Lhs[0]; v.Name() != "_" {
 | 
						|
				lval = &address{addr: p.values[v].(*Global), pos: v.Pos()}
 | 
						|
			} else {
 | 
						|
				lval = blank{}
 | 
						|
			}
 | 
						|
			b.assign(init, lval, varinit.Rhs, true, nil)
 | 
						|
		} else {
 | 
						|
			// n:1 initialization: var x, y :=  f()
 | 
						|
			tuple := b.exprN(init, varinit.Rhs)
 | 
						|
			for i, v := range varinit.Lhs {
 | 
						|
				if v.Name() == "_" {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				emitStore(init, p.values[v].(*Global), emitExtract(init, tuple, i), v.Pos())
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Build all package-level functions, init functions
 | 
						|
	// and methods, including unreachable/blank ones.
 | 
						|
	// We build them in source order, but it's not significant.
 | 
						|
	for _, file := range p.files {
 | 
						|
		for _, decl := range file.Decls {
 | 
						|
			if decl, ok := decl.(*ast.FuncDecl); ok {
 | 
						|
				b.buildFuncDecl(p, decl)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Finish up init().
 | 
						|
	if p.Prog.mode&BareInits == 0 {
 | 
						|
		emitJump(init, done)
 | 
						|
		init.currentBlock = done
 | 
						|
	}
 | 
						|
	init.emit(new(Return))
 | 
						|
	init.finishBody()
 | 
						|
 | 
						|
	p.info = nil // We no longer need ASTs or go/types deductions.
 | 
						|
 | 
						|
	if p.Prog.mode&SanityCheckFunctions != 0 {
 | 
						|
		sanityCheckPackage(p)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Like ObjectOf, but panics instead of returning nil.
 | 
						|
// Only valid during p's create and build phases.
 | 
						|
func (p *Package) objectOf(id *ast.Ident) types.Object {
 | 
						|
	if o := p.info.ObjectOf(id); o != nil {
 | 
						|
		return o
 | 
						|
	}
 | 
						|
	panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s",
 | 
						|
		id.Name, p.Prog.Fset.Position(id.Pos())))
 | 
						|
}
 | 
						|
 | 
						|
// Like TypeOf, but panics instead of returning nil.
 | 
						|
// Only valid during p's create and build phases.
 | 
						|
func (p *Package) typeOf(e ast.Expr) types.Type {
 | 
						|
	if T := p.info.TypeOf(e); T != nil {
 | 
						|
		return T
 | 
						|
	}
 | 
						|
	panic(fmt.Sprintf("no type for %T @ %s",
 | 
						|
		e, p.Prog.Fset.Position(e.Pos())))
 | 
						|
}
 |