1326 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1326 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2013 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package pointer
 | |
| 
 | |
| // This file defines the constraint generation phase.
 | |
| 
 | |
| // TODO(adonovan): move the constraint definitions and the store() etc
 | |
| // functions which add them (and are also used by the solver) into a
 | |
| // new file, constraints.go.
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"go/token"
 | |
| 	"go/types"
 | |
| 
 | |
| 	"golang.org/x/tools/go/callgraph"
 | |
| 	"golang.org/x/tools/go/ssa"
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	tEface     = types.NewInterface(nil, nil).Complete()
 | |
| 	tInvalid   = types.Typ[types.Invalid]
 | |
| 	tUnsafePtr = types.Typ[types.UnsafePointer]
 | |
| )
 | |
| 
 | |
| // ---------- Node creation ----------
 | |
| 
 | |
| // nextNode returns the index of the next unused node.
 | |
| func (a *analysis) nextNode() nodeid {
 | |
| 	return nodeid(len(a.nodes))
 | |
| }
 | |
| 
 | |
| // addNodes creates nodes for all scalar elements in type typ, and
 | |
| // returns the id of the first one, or zero if the type was
 | |
| // analytically uninteresting.
 | |
| //
 | |
| // comment explains the origin of the nodes, as a debugging aid.
 | |
| //
 | |
| func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
 | |
| 	id := a.nextNode()
 | |
| 	for _, fi := range a.flatten(typ) {
 | |
| 		a.addOneNode(fi.typ, comment, fi)
 | |
| 	}
 | |
| 	if id == a.nextNode() {
 | |
| 		return 0 // type contained no pointers
 | |
| 	}
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // addOneNode creates a single node with type typ, and returns its id.
 | |
| //
 | |
| // typ should generally be scalar (except for tagged.T nodes
 | |
| // and struct/array identity nodes).  Use addNodes for non-scalar types.
 | |
| //
 | |
| // comment explains the origin of the nodes, as a debugging aid.
 | |
| // subelement indicates the subelement, e.g. ".a.b[*].c".
 | |
| //
 | |
| func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
 | |
| 	id := a.nextNode()
 | |
| 	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)})
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
 | |
| 			id, typ, comment, subelement.path())
 | |
| 	}
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // setValueNode associates node id with the value v.
 | |
| // cgn identifies the context iff v is a local variable.
 | |
| //
 | |
| func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
 | |
| 	if cgn != nil {
 | |
| 		a.localval[v] = id
 | |
| 	} else {
 | |
| 		a.globalval[v] = id
 | |
| 	}
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
 | |
| 	}
 | |
| 
 | |
| 	// Due to context-sensitivity, we may encounter the same Value
 | |
| 	// in many contexts. We merge them to a canonical node, since
 | |
| 	// that's what all clients want.
 | |
| 
 | |
| 	// Record the (v, id) relation if the client has queried pts(v).
 | |
| 	if _, ok := a.config.Queries[v]; ok {
 | |
| 		t := v.Type()
 | |
| 		ptr, ok := a.result.Queries[v]
 | |
| 		if !ok {
 | |
| 			// First time?  Create the canonical query node.
 | |
| 			ptr = Pointer{a, a.addNodes(t, "query")}
 | |
| 			a.result.Queries[v] = ptr
 | |
| 		}
 | |
| 		a.result.Queries[v] = ptr
 | |
| 		a.copy(ptr.n, id, a.sizeof(t))
 | |
| 	}
 | |
| 
 | |
| 	// Record the (*v, id) relation if the client has queried pts(*v).
 | |
| 	if _, ok := a.config.IndirectQueries[v]; ok {
 | |
| 		t := v.Type()
 | |
| 		ptr, ok := a.result.IndirectQueries[v]
 | |
| 		if !ok {
 | |
| 			// First time? Create the canonical indirect query node.
 | |
| 			ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
 | |
| 			a.result.IndirectQueries[v] = ptr
 | |
| 		}
 | |
| 		a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
 | |
| 	}
 | |
| 
 | |
| 	for _, query := range a.config.extendedQueries[v] {
 | |
| 		t, nid := a.evalExtendedQuery(v.Type().Underlying(), id, query.ops)
 | |
| 
 | |
| 		if query.ptr.a == nil {
 | |
| 			query.ptr.a = a
 | |
| 			query.ptr.n = a.addNodes(t, "query.extended")
 | |
| 		}
 | |
| 		a.copy(query.ptr.n, nid, a.sizeof(t))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // endObject marks the end of a sequence of calls to addNodes denoting
 | |
| // a single object allocation.
 | |
| //
 | |
| // obj is the start node of the object, from a prior call to nextNode.
 | |
| // Its size, flags and optional data will be updated.
 | |
| //
 | |
| func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
 | |
| 	// Ensure object is non-empty by padding;
 | |
| 	// the pad will be the object node.
 | |
| 	size := uint32(a.nextNode() - obj)
 | |
| 	if size == 0 {
 | |
| 		a.addOneNode(tInvalid, "padding", nil)
 | |
| 	}
 | |
| 	objNode := a.nodes[obj]
 | |
| 	o := &object{
 | |
| 		size: size, // excludes padding
 | |
| 		cgn:  cgn,
 | |
| 		data: data,
 | |
| 	}
 | |
| 	objNode.obj = o
 | |
| 
 | |
| 	return o
 | |
| }
 | |
| 
 | |
| // makeFunctionObject creates and returns a new function object
 | |
| // (contour) for fn, and returns the id of its first node.  It also
 | |
| // enqueues fn for subsequent constraint generation.
 | |
| //
 | |
| // For a context-sensitive contour, callersite identifies the sole
 | |
| // callsite; for shared contours, caller is nil.
 | |
| //
 | |
| func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
 | |
| 	}
 | |
| 
 | |
| 	// obj is the function object (identity, params, results).
 | |
| 	obj := a.nextNode()
 | |
| 	cgn := a.makeCGNode(fn, obj, callersite)
 | |
| 	sig := fn.Signature
 | |
| 	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
 | |
| 	if recv := sig.Recv(); recv != nil {
 | |
| 		a.addNodes(recv.Type(), "func.recv")
 | |
| 	}
 | |
| 	a.addNodes(sig.Params(), "func.params")
 | |
| 	a.addNodes(sig.Results(), "func.results")
 | |
| 	a.endObject(obj, cgn, fn).flags |= otFunction
 | |
| 
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\t----\n")
 | |
| 	}
 | |
| 
 | |
| 	// Queue it up for constraint processing.
 | |
| 	a.genq = append(a.genq, cgn)
 | |
| 
 | |
| 	return obj
 | |
| }
 | |
| 
 | |
| // makeTagged creates a tagged object of type typ.
 | |
| func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
 | |
| 	obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
 | |
| 	a.addNodes(typ, "tagged.v")
 | |
| 	a.endObject(obj, cgn, data).flags |= otTagged
 | |
| 	return obj
 | |
| }
 | |
| 
 | |
| // makeRtype returns the canonical tagged object of type *rtype whose
 | |
| // payload points to the sole rtype object for T.
 | |
| //
 | |
| // TODO(adonovan): move to reflect.go; it's part of the solver really.
 | |
| //
 | |
| func (a *analysis) makeRtype(T types.Type) nodeid {
 | |
| 	if v := a.rtypes.At(T); v != nil {
 | |
| 		return v.(nodeid)
 | |
| 	}
 | |
| 
 | |
| 	// Create the object for the reflect.rtype itself, which is
 | |
| 	// ordinarily a large struct but here a single node will do.
 | |
| 	obj := a.nextNode()
 | |
| 	a.addOneNode(T, "reflect.rtype", nil)
 | |
| 	a.endObject(obj, nil, T)
 | |
| 
 | |
| 	id := a.makeTagged(a.reflectRtypePtr, nil, T)
 | |
| 	a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
 | |
| 	a.addressOf(a.reflectRtypePtr, id+1, obj)
 | |
| 
 | |
| 	a.rtypes.Set(T, id)
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // rtypeValue returns the type of the *reflect.rtype-tagged object obj.
 | |
| func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
 | |
| 	tDyn, t, _ := a.taggedValue(obj)
 | |
| 	if tDyn != a.reflectRtypePtr {
 | |
| 		panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
 | |
| 	}
 | |
| 	return a.nodes[t].typ
 | |
| }
 | |
| 
 | |
| // valueNode returns the id of the value node for v, creating it (and
 | |
| // the association) as needed.  It may return zero for uninteresting
 | |
| // values containing no pointers.
 | |
| //
 | |
| func (a *analysis) valueNode(v ssa.Value) nodeid {
 | |
| 	// Value nodes for locals are created en masse by genFunc.
 | |
| 	if id, ok := a.localval[v]; ok {
 | |
| 		return id
 | |
| 	}
 | |
| 
 | |
| 	// Value nodes for globals are created on demand.
 | |
| 	id, ok := a.globalval[v]
 | |
| 	if !ok {
 | |
| 		var comment string
 | |
| 		if a.log != nil {
 | |
| 			comment = v.String()
 | |
| 		}
 | |
| 		id = a.addNodes(v.Type(), comment)
 | |
| 		if obj := a.objectNode(nil, v); obj != 0 {
 | |
| 			a.addressOf(v.Type(), id, obj)
 | |
| 		}
 | |
| 		a.setValueNode(v, id, nil)
 | |
| 	}
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // valueOffsetNode ascertains the node for tuple/struct value v,
 | |
| // then returns the node for its subfield #index.
 | |
| //
 | |
| func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
 | |
| 	id := a.valueNode(v)
 | |
| 	if id == 0 {
 | |
| 		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
 | |
| 	}
 | |
| 	return id + nodeid(a.offsetOf(v.Type(), index))
 | |
| }
 | |
| 
 | |
| // isTaggedObject reports whether object obj is a tagged object.
 | |
| func (a *analysis) isTaggedObject(obj nodeid) bool {
 | |
| 	return a.nodes[obj].obj.flags&otTagged != 0
 | |
| }
 | |
| 
 | |
| // taggedValue returns the dynamic type tag, the (first node of the)
 | |
| // payload, and the indirect flag of the tagged object starting at id.
 | |
| // Panic ensues if !isTaggedObject(id).
 | |
| //
 | |
| func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
 | |
| 	n := a.nodes[obj]
 | |
| 	flags := n.obj.flags
 | |
| 	if flags&otTagged == 0 {
 | |
| 		panic(fmt.Sprintf("not a tagged object: n%d", obj))
 | |
| 	}
 | |
| 	return n.typ, obj + 1, flags&otIndirect != 0
 | |
| }
 | |
| 
 | |
| // funcParams returns the first node of the params (P) block of the
 | |
| // function whose object node (obj.flags&otFunction) is id.
 | |
| //
 | |
| func (a *analysis) funcParams(id nodeid) nodeid {
 | |
| 	n := a.nodes[id]
 | |
| 	if n.obj == nil || n.obj.flags&otFunction == 0 {
 | |
| 		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
 | |
| 	}
 | |
| 	return id + 1
 | |
| }
 | |
| 
 | |
| // funcResults returns the first node of the results (R) block of the
 | |
| // function whose object node (obj.flags&otFunction) is id.
 | |
| //
 | |
| func (a *analysis) funcResults(id nodeid) nodeid {
 | |
| 	n := a.nodes[id]
 | |
| 	if n.obj == nil || n.obj.flags&otFunction == 0 {
 | |
| 		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
 | |
| 	}
 | |
| 	sig := n.typ.(*types.Signature)
 | |
| 	id += 1 + nodeid(a.sizeof(sig.Params()))
 | |
| 	if sig.Recv() != nil {
 | |
| 		id += nodeid(a.sizeof(sig.Recv().Type()))
 | |
| 	}
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // ---------- Constraint creation ----------
 | |
| 
 | |
| // copy creates a constraint of the form dst = src.
 | |
| // sizeof is the width (in logical fields) of the copied type.
 | |
| //
 | |
| func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
 | |
| 	if src == dst || sizeof == 0 {
 | |
| 		return // trivial
 | |
| 	}
 | |
| 	if src == 0 || dst == 0 {
 | |
| 		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
 | |
| 	}
 | |
| 	for i := uint32(0); i < sizeof; i++ {
 | |
| 		a.addConstraint(©Constraint{dst, src})
 | |
| 		src++
 | |
| 		dst++
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // addressOf creates a constraint of the form id = &obj.
 | |
| // T is the type of the address.
 | |
| func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
 | |
| 	if id == 0 {
 | |
| 		panic("addressOf: zero id")
 | |
| 	}
 | |
| 	if obj == 0 {
 | |
| 		panic("addressOf: zero obj")
 | |
| 	}
 | |
| 	if a.shouldTrack(T) {
 | |
| 		a.addConstraint(&addrConstraint{id, obj})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // load creates a load constraint of the form dst = src[offset].
 | |
| // offset is the pointer offset in logical fields.
 | |
| // sizeof is the width (in logical fields) of the loaded type.
 | |
| //
 | |
| func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
 | |
| 	if dst == 0 {
 | |
| 		return // load of non-pointerlike value
 | |
| 	}
 | |
| 	if src == 0 && dst == 0 {
 | |
| 		return // non-pointerlike operation
 | |
| 	}
 | |
| 	if src == 0 || dst == 0 {
 | |
| 		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
 | |
| 	}
 | |
| 	for i := uint32(0); i < sizeof; i++ {
 | |
| 		a.addConstraint(&loadConstraint{offset, dst, src})
 | |
| 		offset++
 | |
| 		dst++
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // store creates a store constraint of the form dst[offset] = src.
 | |
| // offset is the pointer offset in logical fields.
 | |
| // sizeof is the width (in logical fields) of the stored type.
 | |
| //
 | |
| func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
 | |
| 	if src == 0 {
 | |
| 		return // store of non-pointerlike value
 | |
| 	}
 | |
| 	if src == 0 && dst == 0 {
 | |
| 		return // non-pointerlike operation
 | |
| 	}
 | |
| 	if src == 0 || dst == 0 {
 | |
| 		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
 | |
| 	}
 | |
| 	for i := uint32(0); i < sizeof; i++ {
 | |
| 		a.addConstraint(&storeConstraint{offset, dst, src})
 | |
| 		offset++
 | |
| 		src++
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
 | |
| // offset is the field offset in logical fields.
 | |
| // T is the type of the address.
 | |
| //
 | |
| func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
 | |
| 	if !a.shouldTrack(T) {
 | |
| 		return
 | |
| 	}
 | |
| 	if offset == 0 {
 | |
| 		// Simplify  dst = &src->f0
 | |
| 		//       to  dst = src
 | |
| 		// (NB: this optimisation is defeated by the identity
 | |
| 		// field prepended to struct and array objects.)
 | |
| 		a.copy(dst, src, 1)
 | |
| 	} else {
 | |
| 		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
 | |
| // typeFilter for an interface, untag for a concrete type.
 | |
| // The exact flag is specified as for untagConstraint.
 | |
| //
 | |
| func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
 | |
| 	if isInterface(T) {
 | |
| 		a.addConstraint(&typeFilterConstraint{T, dst, src})
 | |
| 	} else {
 | |
| 		a.addConstraint(&untagConstraint{T, dst, src, exact})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // addConstraint adds c to the constraint set.
 | |
| func (a *analysis) addConstraint(c constraint) {
 | |
| 	a.constraints = append(a.constraints, c)
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\t%s\n", c)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // copyElems generates load/store constraints for *dst = *src,
 | |
| // where src and dst are slices or *arrays.
 | |
| //
 | |
| func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
 | |
| 	tmp := a.addNodes(typ, "copy")
 | |
| 	sz := a.sizeof(typ)
 | |
| 	a.genLoad(cgn, tmp, src, 1, sz)
 | |
| 	a.genStore(cgn, dst, tmp, 1, sz)
 | |
| }
 | |
| 
 | |
| // ---------- Constraint generation ----------
 | |
| 
 | |
| // genConv generates constraints for the conversion operation conv.
 | |
| func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
 | |
| 	res := a.valueNode(conv)
 | |
| 	if res == 0 {
 | |
| 		return // result is non-pointerlike
 | |
| 	}
 | |
| 
 | |
| 	tSrc := conv.X.Type()
 | |
| 	tDst := conv.Type()
 | |
| 
 | |
| 	switch utSrc := tSrc.Underlying().(type) {
 | |
| 	case *types.Slice:
 | |
| 		// []byte/[]rune -> string?
 | |
| 		return
 | |
| 
 | |
| 	case *types.Pointer:
 | |
| 		// *T -> unsafe.Pointer?
 | |
| 		if tDst.Underlying() == tUnsafePtr {
 | |
| 			return // we don't model unsafe aliasing (unsound)
 | |
| 		}
 | |
| 
 | |
| 	case *types.Basic:
 | |
| 		switch tDst.Underlying().(type) {
 | |
| 		case *types.Pointer:
 | |
| 			// Treat unsafe.Pointer->*T conversions like
 | |
| 			// new(T) and create an unaliased object.
 | |
| 			if utSrc == tUnsafePtr {
 | |
| 				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
 | |
| 				a.endObject(obj, cgn, conv)
 | |
| 				a.addressOf(tDst, res, obj)
 | |
| 				return
 | |
| 			}
 | |
| 
 | |
| 		case *types.Slice:
 | |
| 			// string -> []byte/[]rune (or named aliases)?
 | |
| 			if utSrc.Info()&types.IsString != 0 {
 | |
| 				obj := a.addNodes(sliceToArray(tDst), "convert")
 | |
| 				a.endObject(obj, cgn, conv)
 | |
| 				a.addressOf(tDst, res, obj)
 | |
| 				return
 | |
| 			}
 | |
| 
 | |
| 		case *types.Basic:
 | |
| 			// All basic-to-basic type conversions are no-ops.
 | |
| 			// This includes uintptr<->unsafe.Pointer conversions,
 | |
| 			// which we (unsoundly) ignore.
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
 | |
| }
 | |
| 
 | |
| // genAppend generates constraints for a call to append.
 | |
| func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
 | |
| 	// Consider z = append(x, y).   y is optional.
 | |
| 	// This may allocate a new [1]T array; call its object w.
 | |
| 	// We get the following constraints:
 | |
| 	// 	z = x
 | |
| 	// 	z = &w
 | |
| 	//     *z = *y
 | |
| 
 | |
| 	x := instr.Call.Args[0]
 | |
| 
 | |
| 	z := instr
 | |
| 	a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x
 | |
| 
 | |
| 	if len(instr.Call.Args) == 1 {
 | |
| 		return // no allocation for z = append(x) or _ = append(x).
 | |
| 	}
 | |
| 
 | |
| 	// TODO(adonovan): test append([]byte, ...string) []byte.
 | |
| 
 | |
| 	y := instr.Call.Args[1]
 | |
| 	tArray := sliceToArray(instr.Call.Args[0].Type())
 | |
| 
 | |
| 	var w nodeid
 | |
| 	w = a.nextNode()
 | |
| 	a.addNodes(tArray, "append")
 | |
| 	a.endObject(w, cgn, instr)
 | |
| 
 | |
| 	a.copyElems(cgn, tArray.Elem(), z, y)        // *z = *y
 | |
| 	a.addressOf(instr.Type(), a.valueNode(z), w) //  z = &w
 | |
| }
 | |
| 
 | |
| // genBuiltinCall generates contraints for a call to a built-in.
 | |
| func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
 | |
| 	call := instr.Common()
 | |
| 	switch call.Value.(*ssa.Builtin).Name() {
 | |
| 	case "append":
 | |
| 		// Safe cast: append cannot appear in a go or defer statement.
 | |
| 		a.genAppend(instr.(*ssa.Call), cgn)
 | |
| 
 | |
| 	case "copy":
 | |
| 		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
 | |
| 		a.copyElems(cgn, tElem, call.Args[0], call.Args[1])
 | |
| 
 | |
| 	case "panic":
 | |
| 		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
 | |
| 
 | |
| 	case "recover":
 | |
| 		if v := instr.Value(); v != nil {
 | |
| 			a.copy(a.valueNode(v), a.panicNode, 1)
 | |
| 		}
 | |
| 
 | |
| 	case "print":
 | |
| 		// In the tests, the probe might be the sole reference
 | |
| 		// to its arg, so make sure we create nodes for it.
 | |
| 		if len(call.Args) > 0 {
 | |
| 			a.valueNode(call.Args[0])
 | |
| 		}
 | |
| 
 | |
| 	case "ssa:wrapnilchk":
 | |
| 		a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)
 | |
| 
 | |
| 	default:
 | |
| 		// No-ops: close len cap real imag complex print println delete.
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // shouldUseContext defines the context-sensitivity policy.  It
 | |
| // returns true if we should analyse all static calls to fn anew.
 | |
| //
 | |
| // Obviously this interface rather limits how much freedom we have to
 | |
| // choose a policy.  The current policy, rather arbitrarily, is true
 | |
| // for intrinsics and accessor methods (actually: short, single-block,
 | |
| // call-free functions).  This is just a starting point.
 | |
| //
 | |
| func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
 | |
| 	if a.findIntrinsic(fn) != nil {
 | |
| 		return true // treat intrinsics context-sensitively
 | |
| 	}
 | |
| 	if len(fn.Blocks) != 1 {
 | |
| 		return false // too expensive
 | |
| 	}
 | |
| 	blk := fn.Blocks[0]
 | |
| 	if len(blk.Instrs) > 10 {
 | |
| 		return false // too expensive
 | |
| 	}
 | |
| 	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
 | |
| 		return true // treat synthetic wrappers context-sensitively
 | |
| 	}
 | |
| 	for _, instr := range blk.Instrs {
 | |
| 		switch instr := instr.(type) {
 | |
| 		case ssa.CallInstruction:
 | |
| 			// Disallow function calls (except to built-ins)
 | |
| 			// because of the danger of unbounded recursion.
 | |
| 			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
 | |
| 				return false
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // genStaticCall generates constraints for a statically dispatched function call.
 | |
| func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
 | |
| 	fn := call.StaticCallee()
 | |
| 
 | |
| 	// Special cases for inlined intrinsics.
 | |
| 	switch fn {
 | |
| 	case a.runtimeSetFinalizer:
 | |
| 		// Inline SetFinalizer so the call appears direct.
 | |
| 		site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
 | |
| 		a.addConstraint(&runtimeSetFinalizerConstraint{
 | |
| 			targets: site.targets,
 | |
| 			x:       a.valueNode(call.Args[0]),
 | |
| 			f:       a.valueNode(call.Args[1]),
 | |
| 		})
 | |
| 		return
 | |
| 
 | |
| 	case a.reflectValueCall:
 | |
| 		// Inline (reflect.Value).Call so the call appears direct.
 | |
| 		dotdotdot := false
 | |
| 		ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
 | |
| 		if result != 0 {
 | |
| 			a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Ascertain the context (contour/cgnode) for a particular call.
 | |
| 	var obj nodeid
 | |
| 	if a.shouldUseContext(fn) {
 | |
| 		obj = a.makeFunctionObject(fn, site) // new contour
 | |
| 	} else {
 | |
| 		obj = a.objectNode(nil, fn) // shared contour
 | |
| 	}
 | |
| 	a.callEdge(caller, site, obj)
 | |
| 
 | |
| 	sig := call.Signature()
 | |
| 
 | |
| 	// Copy receiver, if any.
 | |
| 	params := a.funcParams(obj)
 | |
| 	args := call.Args
 | |
| 	if sig.Recv() != nil {
 | |
| 		sz := a.sizeof(sig.Recv().Type())
 | |
| 		a.copy(params, a.valueNode(args[0]), sz)
 | |
| 		params += nodeid(sz)
 | |
| 		args = args[1:]
 | |
| 	}
 | |
| 
 | |
| 	// Copy actual parameters into formal params block.
 | |
| 	// Must loop, since the actuals aren't contiguous.
 | |
| 	for i, arg := range args {
 | |
| 		sz := a.sizeof(sig.Params().At(i).Type())
 | |
| 		a.copy(params, a.valueNode(arg), sz)
 | |
| 		params += nodeid(sz)
 | |
| 	}
 | |
| 
 | |
| 	// Copy formal results block to actual result.
 | |
| 	if result != 0 {
 | |
| 		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genDynamicCall generates constraints for a dynamic function call.
 | |
| func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
 | |
| 	// pts(targets) will be the set of possible call targets.
 | |
| 	site.targets = a.valueNode(call.Value)
 | |
| 
 | |
| 	// We add dynamic closure rules that store the arguments into
 | |
| 	// the P-block and load the results from the R-block of each
 | |
| 	// function discovered in pts(targets).
 | |
| 
 | |
| 	sig := call.Signature()
 | |
| 	var offset uint32 = 1 // P/R block starts at offset 1
 | |
| 	for i, arg := range call.Args {
 | |
| 		sz := a.sizeof(sig.Params().At(i).Type())
 | |
| 		a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
 | |
| 		offset += sz
 | |
| 	}
 | |
| 	if result != 0 {
 | |
| 		a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genInvoke generates constraints for a dynamic method invocation.
 | |
| func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
 | |
| 	if call.Value.Type() == a.reflectType {
 | |
| 		a.genInvokeReflectType(caller, site, call, result)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	sig := call.Signature()
 | |
| 
 | |
| 	// Allocate a contiguous targets/params/results block for this call.
 | |
| 	block := a.nextNode()
 | |
| 	// pts(targets) will be the set of possible call targets
 | |
| 	site.targets = a.addOneNode(sig, "invoke.targets", nil)
 | |
| 	p := a.addNodes(sig.Params(), "invoke.params")
 | |
| 	r := a.addNodes(sig.Results(), "invoke.results")
 | |
| 
 | |
| 	// Copy the actual parameters into the call's params block.
 | |
| 	for i, n := 0, sig.Params().Len(); i < n; i++ {
 | |
| 		sz := a.sizeof(sig.Params().At(i).Type())
 | |
| 		a.copy(p, a.valueNode(call.Args[i]), sz)
 | |
| 		p += nodeid(sz)
 | |
| 	}
 | |
| 	// Copy the call's results block to the actual results.
 | |
| 	if result != 0 {
 | |
| 		a.copy(result, r, a.sizeof(sig.Results()))
 | |
| 	}
 | |
| 
 | |
| 	// We add a dynamic invoke constraint that will connect the
 | |
| 	// caller's and the callee's P/R blocks for each discovered
 | |
| 	// call target.
 | |
| 	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
 | |
| }
 | |
| 
 | |
| // genInvokeReflectType is a specialization of genInvoke where the
 | |
| // receiver type is a reflect.Type, under the assumption that there
 | |
| // can be at most one implementation of this interface, *reflect.rtype.
 | |
| //
 | |
| // (Though this may appear to be an instance of a pattern---method
 | |
| // calls on interfaces known to have exactly one implementation---in
 | |
| // practice it occurs rarely, so we special case for reflect.Type.)
 | |
| //
 | |
| // In effect we treat this:
 | |
| //    var rt reflect.Type = ...
 | |
| //    rt.F()
 | |
| // as this:
 | |
| //    rt.(*reflect.rtype).F()
 | |
| //
 | |
| func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
 | |
| 	// Unpack receiver into rtype
 | |
| 	rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
 | |
| 	recv := a.valueNode(call.Value)
 | |
| 	a.typeAssert(a.reflectRtypePtr, rtype, recv, true)
 | |
| 
 | |
| 	// Look up the concrete method.
 | |
| 	fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())
 | |
| 
 | |
| 	obj := a.makeFunctionObject(fn, site) // new contour for this call
 | |
| 	a.callEdge(caller, site, obj)
 | |
| 
 | |
| 	// From now on, it's essentially a static call, but little is
 | |
| 	// gained by factoring together the code for both cases.
 | |
| 
 | |
| 	sig := fn.Signature // concrete method
 | |
| 	targets := a.addOneNode(sig, "call.targets", nil)
 | |
| 	a.addressOf(sig, targets, obj) // (a singleton)
 | |
| 
 | |
| 	// Copy receiver.
 | |
| 	params := a.funcParams(obj)
 | |
| 	a.copy(params, rtype, 1)
 | |
| 	params++
 | |
| 
 | |
| 	// Copy actual parameters into formal P-block.
 | |
| 	// Must loop, since the actuals aren't contiguous.
 | |
| 	for i, arg := range call.Args {
 | |
| 		sz := a.sizeof(sig.Params().At(i).Type())
 | |
| 		a.copy(params, a.valueNode(arg), sz)
 | |
| 		params += nodeid(sz)
 | |
| 	}
 | |
| 
 | |
| 	// Copy formal R-block to actual R-block.
 | |
| 	if result != 0 {
 | |
| 		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genCall generates constraints for call instruction instr.
 | |
| func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
 | |
| 	call := instr.Common()
 | |
| 
 | |
| 	// Intrinsic implementations of built-in functions.
 | |
| 	if _, ok := call.Value.(*ssa.Builtin); ok {
 | |
| 		a.genBuiltinCall(instr, caller)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	var result nodeid
 | |
| 	if v := instr.Value(); v != nil {
 | |
| 		result = a.valueNode(v)
 | |
| 	}
 | |
| 
 | |
| 	site := &callsite{instr: instr}
 | |
| 	if call.StaticCallee() != nil {
 | |
| 		a.genStaticCall(caller, site, call, result)
 | |
| 	} else if call.IsInvoke() {
 | |
| 		a.genInvoke(caller, site, call, result)
 | |
| 	} else {
 | |
| 		a.genDynamicCall(caller, site, call, result)
 | |
| 	}
 | |
| 
 | |
| 	caller.sites = append(caller.sites, site)
 | |
| 
 | |
| 	if a.log != nil {
 | |
| 		// TODO(adonovan): debug: improve log message.
 | |
| 		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // objectNode returns the object to which v points, if known.
 | |
| // In other words, if the points-to set of v is a singleton, it
 | |
| // returns the sole label, zero otherwise.
 | |
| //
 | |
| // We exploit this information to make the generated constraints less
 | |
| // dynamic.  For example, a complex load constraint can be replaced by
 | |
| // a simple copy constraint when the sole destination is known a priori.
 | |
| //
 | |
| // Some SSA instructions always have singletons points-to sets:
 | |
| // 	Alloc, Function, Global, MakeChan, MakeClosure,  MakeInterface,  MakeMap,  MakeSlice.
 | |
| // Others may be singletons depending on their operands:
 | |
| // 	FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
 | |
| //
 | |
| // Idempotent.  Objects are created as needed, possibly via recursion
 | |
| // down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
 | |
| //
 | |
| func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
 | |
| 	switch v.(type) {
 | |
| 	case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
 | |
| 		// Global object.
 | |
| 		obj, ok := a.globalobj[v]
 | |
| 		if !ok {
 | |
| 			switch v := v.(type) {
 | |
| 			case *ssa.Global:
 | |
| 				obj = a.nextNode()
 | |
| 				a.addNodes(mustDeref(v.Type()), "global")
 | |
| 				a.endObject(obj, nil, v)
 | |
| 
 | |
| 			case *ssa.Function:
 | |
| 				obj = a.makeFunctionObject(v, nil)
 | |
| 
 | |
| 			case *ssa.Const:
 | |
| 				// not addressable
 | |
| 
 | |
| 			case *ssa.FreeVar:
 | |
| 				// not addressable
 | |
| 			}
 | |
| 
 | |
| 			if a.log != nil {
 | |
| 				fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
 | |
| 			}
 | |
| 			a.globalobj[v] = obj
 | |
| 		}
 | |
| 		return obj
 | |
| 	}
 | |
| 
 | |
| 	// Local object.
 | |
| 	obj, ok := a.localobj[v]
 | |
| 	if !ok {
 | |
| 		switch v := v.(type) {
 | |
| 		case *ssa.Alloc:
 | |
| 			obj = a.nextNode()
 | |
| 			a.addNodes(mustDeref(v.Type()), "alloc")
 | |
| 			a.endObject(obj, cgn, v)
 | |
| 
 | |
| 		case *ssa.MakeSlice:
 | |
| 			obj = a.nextNode()
 | |
| 			a.addNodes(sliceToArray(v.Type()), "makeslice")
 | |
| 			a.endObject(obj, cgn, v)
 | |
| 
 | |
| 		case *ssa.MakeChan:
 | |
| 			obj = a.nextNode()
 | |
| 			a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
 | |
| 			a.endObject(obj, cgn, v)
 | |
| 
 | |
| 		case *ssa.MakeMap:
 | |
| 			obj = a.nextNode()
 | |
| 			tmap := v.Type().Underlying().(*types.Map)
 | |
| 			a.addNodes(tmap.Key(), "makemap.key")
 | |
| 			elem := a.addNodes(tmap.Elem(), "makemap.value")
 | |
| 
 | |
| 			// To update the value field, MapUpdate
 | |
| 			// generates store-with-offset constraints which
 | |
| 			// the presolver can't model, so we must mark
 | |
| 			// those nodes indirect.
 | |
| 			for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ {
 | |
| 				a.mapValues = append(a.mapValues, id)
 | |
| 			}
 | |
| 			a.endObject(obj, cgn, v)
 | |
| 
 | |
| 		case *ssa.MakeInterface:
 | |
| 			tConc := v.X.Type()
 | |
| 			obj = a.makeTagged(tConc, cgn, v)
 | |
| 
 | |
| 			// Copy the value into it, if nontrivial.
 | |
| 			if x := a.valueNode(v.X); x != 0 {
 | |
| 				a.copy(obj+1, x, a.sizeof(tConc))
 | |
| 			}
 | |
| 
 | |
| 		case *ssa.FieldAddr:
 | |
| 			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
 | |
| 				obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
 | |
| 			}
 | |
| 
 | |
| 		case *ssa.IndexAddr:
 | |
| 			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
 | |
| 				obj = xobj + 1
 | |
| 			}
 | |
| 
 | |
| 		case *ssa.Slice:
 | |
| 			obj = a.objectNode(cgn, v.X)
 | |
| 
 | |
| 		case *ssa.Convert:
 | |
| 			// TODO(adonovan): opt: handle these cases too:
 | |
| 			// - unsafe.Pointer->*T conversion acts like Alloc
 | |
| 			// - string->[]byte/[]rune conversion acts like MakeSlice
 | |
| 		}
 | |
| 
 | |
| 		if a.log != nil {
 | |
| 			fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
 | |
| 		}
 | |
| 		a.localobj[v] = obj
 | |
| 	}
 | |
| 	return obj
 | |
| }
 | |
| 
 | |
| // genLoad generates constraints for result = *(ptr + val).
 | |
| func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
 | |
| 	if obj := a.objectNode(cgn, ptr); obj != 0 {
 | |
| 		// Pre-apply loadConstraint.solve().
 | |
| 		a.copy(result, obj+nodeid(offset), sizeof)
 | |
| 	} else {
 | |
| 		a.load(result, a.valueNode(ptr), offset, sizeof)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
 | |
| // or 'v=ptr[*]' (IndexAddr) instruction v.
 | |
| func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
 | |
| 	dst := a.valueNode(v)
 | |
| 	if obj := a.objectNode(cgn, v); obj != 0 {
 | |
| 		// Pre-apply offsetAddrConstraint.solve().
 | |
| 		a.addressOf(v.Type(), dst, obj)
 | |
| 	} else {
 | |
| 		a.offsetAddr(v.Type(), dst, ptr, offset)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genStore generates constraints for *(ptr + offset) = val.
 | |
| func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
 | |
| 	if obj := a.objectNode(cgn, ptr); obj != 0 {
 | |
| 		// Pre-apply storeConstraint.solve().
 | |
| 		a.copy(obj+nodeid(offset), val, sizeof)
 | |
| 	} else {
 | |
| 		a.store(a.valueNode(ptr), val, offset, sizeof)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // genInstr generates constraints for instruction instr in context cgn.
 | |
| func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
 | |
| 	if a.log != nil {
 | |
| 		var prefix string
 | |
| 		if val, ok := instr.(ssa.Value); ok {
 | |
| 			prefix = val.Name() + " = "
 | |
| 		}
 | |
| 		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
 | |
| 	}
 | |
| 
 | |
| 	switch instr := instr.(type) {
 | |
| 	case *ssa.DebugRef:
 | |
| 		// no-op.
 | |
| 
 | |
| 	case *ssa.UnOp:
 | |
| 		switch instr.Op {
 | |
| 		case token.ARROW: // <-x
 | |
| 			// We can ignore instr.CommaOk because the node we're
 | |
| 			// altering is always at zero offset relative to instr
 | |
| 			tElem := instr.X.Type().Underlying().(*types.Chan).Elem()
 | |
| 			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem))
 | |
| 
 | |
| 		case token.MUL: // *x
 | |
| 			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))
 | |
| 
 | |
| 		default:
 | |
| 			// NOT, SUB, XOR: no-op.
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.BinOp:
 | |
| 		// All no-ops.
 | |
| 
 | |
| 	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
 | |
| 		a.genCall(cgn, instr)
 | |
| 
 | |
| 	case *ssa.ChangeType:
 | |
| 		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
 | |
| 
 | |
| 	case *ssa.Convert:
 | |
| 		a.genConv(instr, cgn)
 | |
| 
 | |
| 	case *ssa.Extract:
 | |
| 		a.copy(a.valueNode(instr),
 | |
| 			a.valueOffsetNode(instr.Tuple, instr.Index),
 | |
| 			a.sizeof(instr.Type()))
 | |
| 
 | |
| 	case *ssa.FieldAddr:
 | |
| 		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
 | |
| 			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
 | |
| 
 | |
| 	case *ssa.IndexAddr:
 | |
| 		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)
 | |
| 
 | |
| 	case *ssa.Field:
 | |
| 		a.copy(a.valueNode(instr),
 | |
| 			a.valueOffsetNode(instr.X, instr.Field),
 | |
| 			a.sizeof(instr.Type()))
 | |
| 
 | |
| 	case *ssa.Index:
 | |
| 		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
 | |
| 
 | |
| 	case *ssa.Select:
 | |
| 		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
 | |
| 		for _, st := range instr.States {
 | |
| 			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
 | |
| 			switch st.Dir {
 | |
| 			case types.RecvOnly:
 | |
| 				a.genLoad(cgn, recv, st.Chan, 0, elemSize)
 | |
| 				recv += nodeid(elemSize)
 | |
| 
 | |
| 			case types.SendOnly:
 | |
| 				a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.Return:
 | |
| 		results := a.funcResults(cgn.obj)
 | |
| 		for _, r := range instr.Results {
 | |
| 			sz := a.sizeof(r.Type())
 | |
| 			a.copy(results, a.valueNode(r), sz)
 | |
| 			results += nodeid(sz)
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.Send:
 | |
| 		a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))
 | |
| 
 | |
| 	case *ssa.Store:
 | |
| 		a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))
 | |
| 
 | |
| 	case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
 | |
| 		v := instr.(ssa.Value)
 | |
| 		a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))
 | |
| 
 | |
| 	case *ssa.ChangeInterface:
 | |
| 		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
 | |
| 
 | |
| 	case *ssa.TypeAssert:
 | |
| 		a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)
 | |
| 
 | |
| 	case *ssa.Slice:
 | |
| 		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
 | |
| 
 | |
| 	case *ssa.If, *ssa.Jump:
 | |
| 		// no-op.
 | |
| 
 | |
| 	case *ssa.Phi:
 | |
| 		sz := a.sizeof(instr.Type())
 | |
| 		for _, e := range instr.Edges {
 | |
| 			a.copy(a.valueNode(instr), a.valueNode(e), sz)
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.MakeClosure:
 | |
| 		fn := instr.Fn.(*ssa.Function)
 | |
| 		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
 | |
| 		// Free variables are treated like global variables.
 | |
| 		for i, b := range instr.Bindings {
 | |
| 			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.RunDefers:
 | |
| 		// The analysis is flow insensitive, so we just "call"
 | |
| 		// defers as we encounter them.
 | |
| 
 | |
| 	case *ssa.Range:
 | |
| 		// Do nothing.  Next{Iter: *ssa.Range} handles this case.
 | |
| 
 | |
| 	case *ssa.Next:
 | |
| 		if !instr.IsString { // map
 | |
| 			// Assumes that Next is always directly applied to a Range result.
 | |
| 			theMap := instr.Iter.(*ssa.Range).X
 | |
| 			tMap := theMap.Type().Underlying().(*types.Map)
 | |
| 
 | |
| 			ksize := a.sizeof(tMap.Key())
 | |
| 			vsize := a.sizeof(tMap.Elem())
 | |
| 
 | |
| 			// The k/v components of the Next tuple may each be invalid.
 | |
| 			tTuple := instr.Type().(*types.Tuple)
 | |
| 
 | |
| 			// Load from the map's (k,v) into the tuple's (ok, k, v).
 | |
| 			osrc := uint32(0) // offset within map object
 | |
| 			odst := uint32(1) // offset within tuple (initially just after 'ok bool')
 | |
| 			sz := uint32(0)   // amount to copy
 | |
| 
 | |
| 			// Is key valid?
 | |
| 			if tTuple.At(1).Type() != tInvalid {
 | |
| 				sz += ksize
 | |
| 			} else {
 | |
| 				odst += ksize
 | |
| 				osrc += ksize
 | |
| 			}
 | |
| 
 | |
| 			// Is value valid?
 | |
| 			if tTuple.At(2).Type() != tInvalid {
 | |
| 				sz += vsize
 | |
| 			}
 | |
| 
 | |
| 			a.genLoad(cgn, a.valueNode(instr)+nodeid(odst), theMap, osrc, sz)
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.Lookup:
 | |
| 		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
 | |
| 			// CommaOk can be ignored: field 0 is a no-op.
 | |
| 			ksize := a.sizeof(tMap.Key())
 | |
| 			vsize := a.sizeof(tMap.Elem())
 | |
| 			a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
 | |
| 		}
 | |
| 
 | |
| 	case *ssa.MapUpdate:
 | |
| 		tmap := instr.Map.Type().Underlying().(*types.Map)
 | |
| 		ksize := a.sizeof(tmap.Key())
 | |
| 		vsize := a.sizeof(tmap.Elem())
 | |
| 		a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
 | |
| 		a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)
 | |
| 
 | |
| 	case *ssa.Panic:
 | |
| 		a.copy(a.panicNode, a.valueNode(instr.X), 1)
 | |
| 
 | |
| 	default:
 | |
| 		panic(fmt.Sprintf("unimplemented: %T", instr))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
 | |
| 	cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
 | |
| 	a.cgnodes = append(a.cgnodes, cgn)
 | |
| 	return cgn
 | |
| }
 | |
| 
 | |
| // genRootCalls generates the synthetic root of the callgraph and the
 | |
| // initial calls from it to the analysis scope, such as main, a test
 | |
| // or a library.
 | |
| //
 | |
| func (a *analysis) genRootCalls() *cgnode {
 | |
| 	r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
 | |
| 	root := a.makeCGNode(r, 0, nil)
 | |
| 
 | |
| 	// TODO(adonovan): make an ssa utility to construct an actual
 | |
| 	// root function so we don't need to special-case site-less
 | |
| 	// call edges.
 | |
| 
 | |
| 	// For each main package, call main.init(), main.main().
 | |
| 	for _, mainPkg := range a.config.Mains {
 | |
| 		main := mainPkg.Func("main")
 | |
| 		if main == nil {
 | |
| 			panic(fmt.Sprintf("%s has no main function", mainPkg))
 | |
| 		}
 | |
| 
 | |
| 		targets := a.addOneNode(main.Signature, "root.targets", nil)
 | |
| 		site := &callsite{targets: targets}
 | |
| 		root.sites = append(root.sites, site)
 | |
| 		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
 | |
| 			if a.log != nil {
 | |
| 				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
 | |
| 			}
 | |
| 			a.copy(targets, a.valueNode(fn), 1)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return root
 | |
| }
 | |
| 
 | |
| // genFunc generates constraints for function fn.
 | |
| func (a *analysis) genFunc(cgn *cgnode) {
 | |
| 	fn := cgn.fn
 | |
| 
 | |
| 	impl := a.findIntrinsic(fn)
 | |
| 
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour())
 | |
| 
 | |
| 		// Hack: don't display body if intrinsic.
 | |
| 		if impl != nil {
 | |
| 			fn2 := *cgn.fn // copy
 | |
| 			fn2.Locals = nil
 | |
| 			fn2.Blocks = nil
 | |
| 			fn2.WriteTo(a.log)
 | |
| 		} else {
 | |
| 			cgn.fn.WriteTo(a.log)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if impl != nil {
 | |
| 		impl(a, cgn)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if fn.Blocks == nil {
 | |
| 		// External function with no intrinsic treatment.
 | |
| 		// We'll warn about calls to such functions at the end.
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintln(a.log, "; Creating nodes for local values")
 | |
| 	}
 | |
| 
 | |
| 	a.localval = make(map[ssa.Value]nodeid)
 | |
| 	a.localobj = make(map[ssa.Value]nodeid)
 | |
| 
 | |
| 	// The value nodes for the params are in the func object block.
 | |
| 	params := a.funcParams(cgn.obj)
 | |
| 	for _, p := range fn.Params {
 | |
| 		a.setValueNode(p, params, cgn)
 | |
| 		params += nodeid(a.sizeof(p.Type()))
 | |
| 	}
 | |
| 
 | |
| 	// Free variables have global cardinality:
 | |
| 	// the outer function sets them with MakeClosure;
 | |
| 	// the inner function accesses them with FreeVar.
 | |
| 	//
 | |
| 	// TODO(adonovan): treat free vars context-sensitively.
 | |
| 
 | |
| 	// Create value nodes for all value instructions
 | |
| 	// since SSA may contain forward references.
 | |
| 	var space [10]*ssa.Value
 | |
| 	for _, b := range fn.Blocks {
 | |
| 		for _, instr := range b.Instrs {
 | |
| 			switch instr := instr.(type) {
 | |
| 			case *ssa.Range:
 | |
| 				// do nothing: it has a funky type,
 | |
| 				// and *ssa.Next does all the work.
 | |
| 
 | |
| 			case ssa.Value:
 | |
| 				var comment string
 | |
| 				if a.log != nil {
 | |
| 					comment = instr.Name()
 | |
| 				}
 | |
| 				id := a.addNodes(instr.Type(), comment)
 | |
| 				a.setValueNode(instr, id, cgn)
 | |
| 			}
 | |
| 
 | |
| 			// Record all address-taken functions (for presolver).
 | |
| 			rands := instr.Operands(space[:0])
 | |
| 			if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() {
 | |
| 				// Skip CallCommon.Value in "call" mode.
 | |
| 				// TODO(adonovan): fix: relies on unspecified ordering.  Specify it.
 | |
| 				rands = rands[1:]
 | |
| 			}
 | |
| 			for _, rand := range rands {
 | |
| 				if atf, ok := (*rand).(*ssa.Function); ok {
 | |
| 					a.atFuncs[atf] = true
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Generate constraints for instructions.
 | |
| 	for _, b := range fn.Blocks {
 | |
| 		for _, instr := range b.Instrs {
 | |
| 			a.genInstr(cgn, instr)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	a.localval = nil
 | |
| 	a.localobj = nil
 | |
| }
 | |
| 
 | |
| // genMethodsOf generates nodes and constraints for all methods of type T.
 | |
| func (a *analysis) genMethodsOf(T types.Type) {
 | |
| 	itf := isInterface(T)
 | |
| 
 | |
| 	// TODO(adonovan): can we skip this entirely if itf is true?
 | |
| 	// I think so, but the answer may depend on reflection.
 | |
| 	mset := a.prog.MethodSets.MethodSet(T)
 | |
| 	for i, n := 0, mset.Len(); i < n; i++ {
 | |
| 		m := a.prog.MethodValue(mset.At(i))
 | |
| 		a.valueNode(m)
 | |
| 
 | |
| 		if !itf {
 | |
| 			// Methods of concrete types are address-taken functions.
 | |
| 			a.atFuncs[m] = true
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // generate generates offline constraints for the entire program.
 | |
| func (a *analysis) generate() {
 | |
| 	start("Constraint generation")
 | |
| 	if a.log != nil {
 | |
| 		fmt.Fprintln(a.log, "==== Generating constraints")
 | |
| 	}
 | |
| 
 | |
| 	// Create a dummy node since we use the nodeid 0 for
 | |
| 	// non-pointerlike variables.
 | |
| 	a.addNodes(tInvalid, "(zero)")
 | |
| 
 | |
| 	// Create the global node for panic values.
 | |
| 	a.panicNode = a.addNodes(tEface, "panic")
 | |
| 
 | |
| 	// Create nodes and constraints for all methods of reflect.rtype.
 | |
| 	// (Shared contours are used by dynamic calls to reflect.Type
 | |
| 	// methods---typically just String().)
 | |
| 	if rtype := a.reflectRtypePtr; rtype != nil {
 | |
| 		a.genMethodsOf(rtype)
 | |
| 	}
 | |
| 
 | |
| 	root := a.genRootCalls()
 | |
| 
 | |
| 	if a.config.BuildCallGraph {
 | |
| 		a.result.CallGraph = callgraph.New(root.fn)
 | |
| 	}
 | |
| 
 | |
| 	// Create nodes and constraints for all methods of all types
 | |
| 	// that are dynamically accessible via reflection or interfaces.
 | |
| 	for _, T := range a.prog.RuntimeTypes() {
 | |
| 		a.genMethodsOf(T)
 | |
| 	}
 | |
| 
 | |
| 	// Generate constraints for functions as they become reachable
 | |
| 	// from the roots.  (No constraints are generated for functions
 | |
| 	// that are dead in this analysis scope.)
 | |
| 	for len(a.genq) > 0 {
 | |
| 		cgn := a.genq[0]
 | |
| 		a.genq = a.genq[1:]
 | |
| 		a.genFunc(cgn)
 | |
| 	}
 | |
| 
 | |
| 	// The runtime magically allocates os.Args; so should we.
 | |
| 	if os := a.prog.ImportedPackage("os"); os != nil {
 | |
| 		// In effect:  os.Args = new([1]string)[:]
 | |
| 		T := types.NewSlice(types.Typ[types.String])
 | |
| 		obj := a.addNodes(sliceToArray(T), "<command-line args>")
 | |
| 		a.endObject(obj, nil, "<command-line args>")
 | |
| 		a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
 | |
| 	}
 | |
| 
 | |
| 	// Discard generation state, to avoid confusion after node renumbering.
 | |
| 	a.panicNode = 0
 | |
| 	a.globalval = nil
 | |
| 	a.localval = nil
 | |
| 	a.localobj = nil
 | |
| 
 | |
| 	stop("Constraint generation")
 | |
| }
 |