forked from xuos/xiuos
				
			
		
			
				
	
	
		
			37 lines
		
	
	
		
			964 B
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			964 B
		
	
	
	
		
			Python
		
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import tensorflow as tf
 | |
| 
 | |
| print("TensorFlow version %s" % (tf.__version__))
 | |
| 
 | |
| def show(image):
 | |
|     for i in range(28):
 | |
|         for j in range(28):
 | |
|             if image[i][j] > 0.3:
 | |
|                 print('#', end = '')
 | |
|             else:
 | |
|                 print('.', end = '')
 | |
|         print()
 | |
| 
 | |
| digit_file_path = 'digit.h'
 | |
| digit_content = '''const float mnist_digit[] = {
 | |
|   %s
 | |
| };
 | |
| const int mnist_label = %d;
 | |
| '''
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     mnist = tf.keras.datasets.mnist
 | |
|     (_, _), (test_images, test_labels) = mnist.load_data()
 | |
|     index = 0
 | |
|     shape = 28
 | |
|     image = test_images[index].astype('float32')/255
 | |
|     label = test_labels[index]
 | |
|     print('label: %d' % label)
 | |
|     #show(image)
 | |
|     digit_data = (',\n  ').join([ (', ').join([ '%.2f' % image[row][col] for col in range(shape)]) for row in range(shape)])
 | |
|     digit_file = open(digit_file_path, 'w')
 | |
|     digit_file.write(digit_content % (digit_data, label))
 | |
|     digit_file.close()
 | |
| 
 |