forked from xuos/xiuos
				
			
		
			
				
	
	
		
			41 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			41 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import tensorflow as tf
 | |
| 
 | |
| print("TensorFlow version %s" % (tf.__version__))
 | |
| 
 | |
| MODEL_NAME_H5 = 'mnist.h5'
 | |
| MODEL_NAME_TFLITE = 'mnist.tflite'
 | |
| DEFAULT_QUAN_MODEL_NAME_TFLITE = 'mnist-default-quan.tflite'
 | |
| FULL_QUAN_MODEL_NAME_TFLITE = 'mnist-full-quan.tflite'
 | |
| 
 | |
| 
 | |
| def show(image):
 | |
|     for i in range(28):
 | |
|         for j in range(28):
 | |
|             if image[i][j][0] > 0.3:
 | |
|                 print('#', end = '')
 | |
|             else:
 | |
|                 print(' ', end = '')
 | |
|         print()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     mnist = tf.keras.datasets.mnist
 | |
|     (_, _), (test_images, test_labels) = mnist.load_data()
 | |
|     test_images = test_images.reshape(10000, 28, 28, 1)
 | |
|     index = 0
 | |
|     input_image = test_images[index].astype('float32')/255
 | |
|     target_label = test_labels[index]
 | |
| 
 | |
|     interpreter = tf.lite.Interpreter(model_path = DEFAULT_QUAN_MODEL_NAME_TFLITE)
 | |
|     interpreter.allocate_tensors()
 | |
|     input_details = interpreter.get_input_details()[0]
 | |
|     output_details = interpreter.get_output_details()[0]
 | |
|     interpreter.set_tensor(input_details['index'], [input_image])
 | |
|     interpreter.invoke()
 | |
|     output = interpreter.get_tensor(output_details['index'])[0]
 | |
| 
 | |
|     show(input_image)
 | |
|     print('target label: %d, predict label: %d' % (target_label, output.argmax()))
 |