xiuos/APP_Framework/lib/JerryScript/jerryscript/jerry-math/tanh.c

118 lines
2.8 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_tanh.c 1.3 95/01/18
*/
#include "jerry-math-internal.h"
/* tanh(x)
* Return the Hyperbolic Tangent of x
*
* Method:
* x -x
* e - e
* 0. tanh(x) is defined to be -----------
* x -x
* e + e
*
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
* 2. 0 <= x <= 2**-55 : tanh(x) := x * (one + x)
*
* -t
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
* t + 2
*
* 2
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t = expm1(2x)
* t + 2
*
* 22.0 < x <= INF : tanh(x) := 1.
*
* Special cases:
* tanh(NaN) is NaN;
* only tanh(0) = 0 is exact for finite x.
*/
#define one 1.0
#define two 2.0
#define tiny 1.0e-300
double
tanh (double x)
{
double t, z;
int jx, ix;
/* High word of |x|. */
jx = __HI (x);
ix = jx & 0x7fffffff;
/* x is INF or NaN */
if (ix >= 0x7ff00000)
{
if (jx >= 0)
{
/* tanh(+-inf) = +-1 */
return one / x + one;
}
else
{
/* tanh(NaN) = NaN */
return one / x - one;
}
}
/* |x| < 22 */
if (ix < 0x40360000)
{
/* |x| < 2**-55 */
if (ix < 0x3c800000)
{
/* tanh(small) = small */
return x * (one + x);
}
if (ix >= 0x3ff00000)
{
/* |x| >= 1 */
t = expm1 (two * fabs (x));
z = one - two / (t + two);
}
else
{
t = expm1 (-two * fabs (x));
z = -t / (t + two);
}
}
else
{
/* |x| > 22, return +-1 */
z = one - tiny; /* raised inexact flag */
}
return (jx >= 0) ? z : -z;
} /* tanh */
#undef one
#undef two
#undef tiny