forked from xuos/xiuos
				
			
		
			
				
	
	
		
			1189 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1189 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * This file is part of the MicroPython project, http://micropython.org/
 | |
|  *
 | |
|  * The MIT License (MIT)
 | |
|  *
 | |
|  * Copyright (c) 2013-2017 Damien P. George
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <unistd.h> // for ssize_t
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "py/lexer.h"
 | |
| #include "py/parse.h"
 | |
| #include "py/parsenum.h"
 | |
| #include "py/runtime.h"
 | |
| #include "py/objint.h"
 | |
| #include "py/objstr.h"
 | |
| #include "py/builtin.h"
 | |
| 
 | |
| #if MICROPY_ENABLE_COMPILER
 | |
| 
 | |
| #define RULE_ACT_ARG_MASK       (0x0f)
 | |
| #define RULE_ACT_KIND_MASK      (0x30)
 | |
| #define RULE_ACT_ALLOW_IDENT    (0x40)
 | |
| #define RULE_ACT_ADD_BLANK      (0x80)
 | |
| #define RULE_ACT_OR             (0x10)
 | |
| #define RULE_ACT_AND            (0x20)
 | |
| #define RULE_ACT_LIST           (0x30)
 | |
| 
 | |
| #define RULE_ARG_KIND_MASK      (0xf000)
 | |
| #define RULE_ARG_ARG_MASK       (0x0fff)
 | |
| #define RULE_ARG_TOK            (0x1000)
 | |
| #define RULE_ARG_RULE           (0x2000)
 | |
| #define RULE_ARG_OPT_RULE       (0x3000)
 | |
| 
 | |
| // *FORMAT-OFF*
 | |
| 
 | |
| enum {
 | |
| // define rules with a compile function
 | |
| #define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
|     RULE_const_object, // special node for a constant, generic Python object
 | |
| 
 | |
| // define rules without a compile function
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) RULE_##rule,
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| };
 | |
| 
 | |
| // Define an array of actions corresponding to each rule
 | |
| STATIC const uint8_t rule_act_table[] = {
 | |
| #define or(n)                   (RULE_ACT_OR | n)
 | |
| #define and(n)                  (RULE_ACT_AND | n)
 | |
| #define and_ident(n)            (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
 | |
| #define and_blank(n)            (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
 | |
| #define one_or_more             (RULE_ACT_LIST | 2)
 | |
| #define list                    (RULE_ACT_LIST | 1)
 | |
| #define list_with_end           (RULE_ACT_LIST | 3)
 | |
| 
 | |
| #define DEF_RULE(rule, comp, kind, ...) kind,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| 
 | |
|     0, // RULE_const_object
 | |
| 
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) kind,
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| 
 | |
| #undef or
 | |
| #undef and
 | |
| #undef and_ident
 | |
| #undef and_blank
 | |
| #undef one_or_more
 | |
| #undef list
 | |
| #undef list_with_end
 | |
| };
 | |
| 
 | |
| // Define the argument data for each rule, as a combined array
 | |
| STATIC const uint16_t rule_arg_combined_table[] = {
 | |
| #define tok(t)                  (RULE_ARG_TOK | MP_TOKEN_##t)
 | |
| #define rule(r)                 (RULE_ARG_RULE | RULE_##r)
 | |
| #define opt_rule(r)             (RULE_ARG_OPT_RULE | RULE_##r)
 | |
| 
 | |
| #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| 
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...)  __VA_ARGS__,
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| 
 | |
| #undef tok
 | |
| #undef rule
 | |
| #undef opt_rule
 | |
| };
 | |
| 
 | |
| // Macro to create a list of N identifiers where N is the number of variable arguments to the macro
 | |
| #define RULE_EXPAND(x) x
 | |
| #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule))
 | |
| #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__))
 | |
| #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__
 | |
| #define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r,
 | |
| 
 | |
| // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table
 | |
| enum {
 | |
| #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| };
 | |
| 
 | |
| // Macro to compute the start of a rule in rule_arg_combined_table
 | |
| #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule))
 | |
| #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__))
 | |
| #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14
 | |
| #define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r,
 | |
| 
 | |
| // Use the above enum values to create a table of offsets for each rule's arg
 | |
| // data, which indexes rule_arg_combined_table.  The offsets require 9 bits of
 | |
| // storage but only the lower 8 bits are stored here.  The 9th bit is computed
 | |
| // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant.
 | |
| STATIC const uint8_t rule_arg_offset_table[] = {
 | |
| #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
|     0, // RULE_const_object
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| };
 | |
| 
 | |
| // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table
 | |
| static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 =
 | |
| #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| 0;
 | |
| 
 | |
| #if MICROPY_DEBUG_PARSE_RULE_NAME
 | |
| // Define an array of rule names corresponding to each rule
 | |
| STATIC const char *const rule_name_table[] = {
 | |
| #define DEF_RULE(rule, comp, kind, ...) #rule,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
|     "", // RULE_const_object
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) #rule,
 | |
| #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // *FORMAT-ON*
 | |
| 
 | |
| typedef struct _rule_stack_t {
 | |
|     size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number
 | |
|     size_t rule_id : 8; // this must be large enough to fit largest rule number
 | |
|     size_t arg_i; // this dictates the maximum nodes in a "list" of things
 | |
| } rule_stack_t;
 | |
| 
 | |
| typedef struct _mp_parse_chunk_t {
 | |
|     size_t alloc;
 | |
|     union {
 | |
|         size_t used;
 | |
|         struct _mp_parse_chunk_t *next;
 | |
|     } union_;
 | |
|     byte data[];
 | |
| } mp_parse_chunk_t;
 | |
| 
 | |
| typedef struct _parser_t {
 | |
|     size_t rule_stack_alloc;
 | |
|     size_t rule_stack_top;
 | |
|     rule_stack_t *rule_stack;
 | |
| 
 | |
|     size_t result_stack_alloc;
 | |
|     size_t result_stack_top;
 | |
|     mp_parse_node_t *result_stack;
 | |
| 
 | |
|     mp_lexer_t *lexer;
 | |
| 
 | |
|     mp_parse_tree_t tree;
 | |
|     mp_parse_chunk_t *cur_chunk;
 | |
| 
 | |
|     #if MICROPY_COMP_CONST
 | |
|     mp_map_t consts;
 | |
|     #endif
 | |
| } parser_t;
 | |
| 
 | |
| STATIC const uint16_t *get_rule_arg(uint8_t r_id) {
 | |
|     size_t off = rule_arg_offset_table[r_id];
 | |
|     if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) {
 | |
|         off |= 0x100;
 | |
|     }
 | |
|     return &rule_arg_combined_table[off];
 | |
| }
 | |
| 
 | |
| STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
 | |
|     // use a custom memory allocator to store parse nodes sequentially in large chunks
 | |
| 
 | |
|     mp_parse_chunk_t *chunk = parser->cur_chunk;
 | |
| 
 | |
|     if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
 | |
|         // not enough room at end of previously allocated chunk so try to grow
 | |
|         mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk,
 | |
|             sizeof(mp_parse_chunk_t) + chunk->alloc,
 | |
|             sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
 | |
|         if (new_data == NULL) {
 | |
|             // could not grow existing memory; shrink it to fit previous
 | |
|             (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
 | |
|                 sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
 | |
|             chunk->alloc = chunk->union_.used;
 | |
|             chunk->union_.next = parser->tree.chunk;
 | |
|             parser->tree.chunk = chunk;
 | |
|             chunk = NULL;
 | |
|         } else {
 | |
|             // could grow existing memory
 | |
|             chunk->alloc += num_bytes;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (chunk == NULL) {
 | |
|         // no previous chunk, allocate a new chunk
 | |
|         size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
 | |
|         if (alloc < num_bytes) {
 | |
|             alloc = num_bytes;
 | |
|         }
 | |
|         chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
 | |
|         chunk->alloc = alloc;
 | |
|         chunk->union_.used = 0;
 | |
|         parser->cur_chunk = chunk;
 | |
|     }
 | |
| 
 | |
|     byte *ret = chunk->data + chunk->union_.used;
 | |
|     chunk->union_.used += num_bytes;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) {
 | |
|     if (parser->rule_stack_top >= parser->rule_stack_alloc) {
 | |
|         rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
 | |
|         parser->rule_stack = rs;
 | |
|         parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
 | |
|     }
 | |
|     rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
 | |
|     rs->src_line = src_line;
 | |
|     rs->rule_id = rule_id;
 | |
|     rs->arg_i = arg_i;
 | |
| }
 | |
| 
 | |
| STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
 | |
|     assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
 | |
|     size_t rule_id = arg & RULE_ARG_ARG_MASK;
 | |
|     push_rule(parser, parser->lexer->tok_line, rule_id, 0);
 | |
| }
 | |
| 
 | |
| STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) {
 | |
|     parser->rule_stack_top -= 1;
 | |
|     uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id;
 | |
|     *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
 | |
|     *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
 | |
|     return rule_id;
 | |
| }
 | |
| 
 | |
| bool mp_parse_node_is_const_false(mp_parse_node_t pn) {
 | |
|     return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE)
 | |
|            || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0);
 | |
| }
 | |
| 
 | |
| bool mp_parse_node_is_const_true(mp_parse_node_t pn) {
 | |
|     return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE)
 | |
|            || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0);
 | |
| }
 | |
| 
 | |
| bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
 | |
|     if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
 | |
|         *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
 | |
|         return true;
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
 | |
|         // nodes are 32-bit pointers, but need to extract 64-bit object
 | |
|         *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
 | |
|         #else
 | |
|         *o = (mp_obj_t)pns->nodes[0];
 | |
|         #endif
 | |
|         return mp_obj_is_int(*o);
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
 | |
|     if (MP_PARSE_NODE_IS_NULL(*pn)) {
 | |
|         *nodes = NULL;
 | |
|         return 0;
 | |
|     } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
 | |
|         *nodes = pn;
 | |
|         return 1;
 | |
|     } else {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn);
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
 | |
|             *nodes = pn;
 | |
|             return 1;
 | |
|         } else {
 | |
|             *nodes = pns->nodes;
 | |
|             return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if MICROPY_DEBUG_PRINTERS
 | |
| void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) {
 | |
|     if (MP_PARSE_NODE_IS_STRUCT(pn)) {
 | |
|         mp_printf(print, "[% 4d] ", (int)((mp_parse_node_struct_t *)pn)->source_line);
 | |
|     } else {
 | |
|         mp_printf(print, "       ");
 | |
|     }
 | |
|     for (size_t i = 0; i < indent; i++) {
 | |
|         mp_printf(print, " ");
 | |
|     }
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         mp_printf(print, "NULL\n");
 | |
|     } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
 | |
|         mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
 | |
|         mp_printf(print, "int(" INT_FMT ")\n", arg);
 | |
|     } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
 | |
|         uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
 | |
|         switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
 | |
|             case MP_PARSE_NODE_ID:
 | |
|                 mp_printf(print, "id(%s)\n", qstr_str(arg));
 | |
|                 break;
 | |
|             case MP_PARSE_NODE_STRING:
 | |
|                 mp_printf(print, "str(%s)\n", qstr_str(arg));
 | |
|                 break;
 | |
|             case MP_PARSE_NODE_BYTES:
 | |
|                 mp_printf(print, "bytes(%s)\n", qstr_str(arg));
 | |
|                 break;
 | |
|             default:
 | |
|                 assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
 | |
|                 mp_printf(print, "tok(%u)\n", (uint)arg);
 | |
|                 break;
 | |
|         }
 | |
|     } else {
 | |
|         // node must be a mp_parse_node_struct_t
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
 | |
|             #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
 | |
|             mp_printf(print, "literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
 | |
|             #else
 | |
|             mp_printf(print, "literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
 | |
|             #endif
 | |
|         } else {
 | |
|             size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|             #if MICROPY_DEBUG_PARSE_RULE_NAME
 | |
|             mp_printf(print, "%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
 | |
|             #else
 | |
|             mp_printf(print, "rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
 | |
|             #endif
 | |
|             for (size_t i = 0; i < n; i++) {
 | |
|                 mp_parse_node_print(print, pns->nodes[i], indent + 2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif // MICROPY_DEBUG_PRINTERS
 | |
| 
 | |
| /*
 | |
| STATIC void result_stack_show(const mp_print_t *print, parser_t *parser) {
 | |
|     mp_printf(print, "result stack, most recent first\n");
 | |
|     for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
 | |
|         mp_parse_node_print(print, parser->result_stack[i], 0);
 | |
|     }
 | |
| }
 | |
| */
 | |
| 
 | |
| STATIC mp_parse_node_t pop_result(parser_t *parser) {
 | |
|     assert(parser->result_stack_top > 0);
 | |
|     return parser->result_stack[--parser->result_stack_top];
 | |
| }
 | |
| 
 | |
| STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
 | |
|     assert(parser->result_stack_top > pos);
 | |
|     return parser->result_stack[parser->result_stack_top - 1 - pos];
 | |
| }
 | |
| 
 | |
| STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
 | |
|     if (parser->result_stack_top >= parser->result_stack_alloc) {
 | |
|         mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
 | |
|         parser->result_stack = stack;
 | |
|         parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
 | |
|     }
 | |
|     parser->result_stack[parser->result_stack_top++] = pn;
 | |
| }
 | |
| 
 | |
| STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
 | |
|     mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
 | |
|     pn->source_line = src_line;
 | |
|     #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
 | |
|     // nodes are 32-bit pointers, but need to store 64-bit object
 | |
|     pn->kind_num_nodes = RULE_const_object | (2 << 8);
 | |
|     pn->nodes[0] = (uint64_t)obj;
 | |
|     pn->nodes[1] = (uint64_t)obj >> 32;
 | |
|     #else
 | |
|     pn->kind_num_nodes = RULE_const_object | (1 << 8);
 | |
|     pn->nodes[0] = (uintptr_t)obj;
 | |
|     #endif
 | |
|     return (mp_parse_node_t)pn;
 | |
| }
 | |
| 
 | |
| STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) {
 | |
|     (void)parser;
 | |
|     mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val);
 | |
|     #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
 | |
|     // A parse node is only 32-bits and the small-int value must fit in 31-bits
 | |
|     if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) {
 | |
|         return make_node_const_object(parser, 0, o_val);
 | |
|     }
 | |
|     #endif
 | |
|     return mp_parse_node_new_small_int(val);
 | |
| }
 | |
| 
 | |
| STATIC void push_result_token(parser_t *parser, uint8_t rule_id) {
 | |
|     mp_parse_node_t pn;
 | |
|     mp_lexer_t *lex = parser->lexer;
 | |
|     if (lex->tok_kind == MP_TOKEN_NAME) {
 | |
|         qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
 | |
|         #if MICROPY_COMP_CONST
 | |
|         // if name is a standalone identifier, look it up in the table of dynamic constants
 | |
|         mp_map_elem_t *elem;
 | |
|         if (rule_id == RULE_atom
 | |
|             && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) {
 | |
|             if (mp_obj_is_small_int(elem->value)) {
 | |
|                 pn = mp_parse_node_new_small_int_checked(parser, elem->value);
 | |
|             } else {
 | |
|                 pn = make_node_const_object(parser, lex->tok_line, elem->value);
 | |
|             }
 | |
|         } else {
 | |
|             pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
 | |
|         }
 | |
|         #else
 | |
|         (void)rule_id;
 | |
|         pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
 | |
|         #endif
 | |
|     } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
 | |
|         mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
 | |
|         if (mp_obj_is_small_int(o)) {
 | |
|             pn = mp_parse_node_new_small_int_checked(parser, o);
 | |
|         } else {
 | |
|             pn = make_node_const_object(parser, lex->tok_line, o);
 | |
|         }
 | |
|     } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
 | |
|         mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
 | |
|         pn = make_node_const_object(parser, lex->tok_line, o);
 | |
|     } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
 | |
|         // Don't automatically intern all strings/bytes.  doc strings (which are usually large)
 | |
|         // will be discarded by the compiler, and so we shouldn't intern them.
 | |
|         qstr qst = MP_QSTRnull;
 | |
|         if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
 | |
|             // intern short strings
 | |
|             qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
 | |
|         } else {
 | |
|             // check if this string is already interned
 | |
|             qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
 | |
|         }
 | |
|         if (qst != MP_QSTRnull) {
 | |
|             // qstr exists, make a leaf node
 | |
|             pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
 | |
|         } else {
 | |
|             // not interned, make a node holding a pointer to the string/bytes object
 | |
|             mp_obj_t o = mp_obj_new_str_copy(
 | |
|                 lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes,
 | |
|                 (const byte *)lex->vstr.buf, lex->vstr.len);
 | |
|             pn = make_node_const_object(parser, lex->tok_line, o);
 | |
|         }
 | |
|     } else {
 | |
|         pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
 | |
|     }
 | |
|     push_result_node(parser, pn);
 | |
| }
 | |
| 
 | |
| #if MICROPY_COMP_MODULE_CONST
 | |
| STATIC const mp_rom_map_elem_t mp_constants_table[] = {
 | |
|     #if MICROPY_PY_UERRNO
 | |
|     { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) },
 | |
|     #endif
 | |
|     #if MICROPY_PY_UCTYPES
 | |
|     { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
 | |
|     #endif
 | |
|     // Extra constants as defined by a port
 | |
|     MICROPY_PORT_CONSTANTS
 | |
| };
 | |
| STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
 | |
| #endif
 | |
| 
 | |
| STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args);
 | |
| 
 | |
| #if MICROPY_COMP_CONST_FOLDING
 | |
| STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) {
 | |
|     if (rule_id == RULE_or_test
 | |
|         || rule_id == RULE_and_test) {
 | |
|         // folding for binary logical ops: or and
 | |
|         size_t copy_to = *num_args;
 | |
|         for (size_t i = copy_to; i > 0;) {
 | |
|             mp_parse_node_t pn = peek_result(parser, --i);
 | |
|             parser->result_stack[parser->result_stack_top - copy_to] = pn;
 | |
|             if (i == 0) {
 | |
|                 // always need to keep the last value
 | |
|                 break;
 | |
|             }
 | |
|             if (rule_id == RULE_or_test) {
 | |
|                 if (mp_parse_node_is_const_true(pn)) {
 | |
|                     //
 | |
|                     break;
 | |
|                 } else if (!mp_parse_node_is_const_false(pn)) {
 | |
|                     copy_to -= 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 // RULE_and_test
 | |
|                 if (mp_parse_node_is_const_false(pn)) {
 | |
|                     break;
 | |
|                 } else if (!mp_parse_node_is_const_true(pn)) {
 | |
|                     copy_to -= 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         copy_to -= 1; // copy_to now contains number of args to pop
 | |
| 
 | |
|         // pop and discard all the short-circuited expressions
 | |
|         for (size_t i = 0; i < copy_to; ++i) {
 | |
|             pop_result(parser);
 | |
|         }
 | |
|         *num_args -= copy_to;
 | |
| 
 | |
|         // we did a complete folding if there's only 1 arg left
 | |
|         return *num_args == 1;
 | |
| 
 | |
|     } else if (rule_id == RULE_not_test_2) {
 | |
|         // folding for unary logical op: not
 | |
|         mp_parse_node_t pn = peek_result(parser, 0);
 | |
|         if (mp_parse_node_is_const_false(pn)) {
 | |
|             pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE);
 | |
|         } else if (mp_parse_node_is_const_true(pn)) {
 | |
|             pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE);
 | |
|         } else {
 | |
|             return false;
 | |
|         }
 | |
|         pop_result(parser);
 | |
|         push_result_node(parser, pn);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) {
 | |
|     // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
 | |
|     // it does not do partial folding, eg 1 + 2 + x -> 3 + x
 | |
| 
 | |
|     mp_obj_t arg0;
 | |
|     if (rule_id == RULE_expr
 | |
|         || rule_id == RULE_xor_expr
 | |
|         || rule_id == RULE_and_expr
 | |
|         || rule_id == RULE_power) {
 | |
|         // folding for binary ops: | ^ & **
 | |
|         mp_parse_node_t pn = peek_result(parser, num_args - 1);
 | |
|         if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
 | |
|             return false;
 | |
|         }
 | |
|         mp_binary_op_t op;
 | |
|         if (rule_id == RULE_expr) {
 | |
|             op = MP_BINARY_OP_OR;
 | |
|         } else if (rule_id == RULE_xor_expr) {
 | |
|             op = MP_BINARY_OP_XOR;
 | |
|         } else if (rule_id == RULE_and_expr) {
 | |
|             op = MP_BINARY_OP_AND;
 | |
|         } else {
 | |
|             op = MP_BINARY_OP_POWER;
 | |
|         }
 | |
|         for (ssize_t i = num_args - 2; i >= 0; --i) {
 | |
|             pn = peek_result(parser, i);
 | |
|             mp_obj_t arg1;
 | |
|             if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
 | |
|                 return false;
 | |
|             }
 | |
|             if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) {
 | |
|                 // ** can't have negative rhs
 | |
|                 return false;
 | |
|             }
 | |
|             arg0 = mp_binary_op(op, arg0, arg1);
 | |
|         }
 | |
|     } else if (rule_id == RULE_shift_expr
 | |
|                || rule_id == RULE_arith_expr
 | |
|                || rule_id == RULE_term) {
 | |
|         // folding for binary ops: << >> + - * @ / % //
 | |
|         mp_parse_node_t pn = peek_result(parser, num_args - 1);
 | |
|         if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
 | |
|             return false;
 | |
|         }
 | |
|         for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
 | |
|             pn = peek_result(parser, i - 1);
 | |
|             mp_obj_t arg1;
 | |
|             if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
 | |
|                 return false;
 | |
|             }
 | |
|             mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
 | |
|             if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) {
 | |
|                 // Can't fold @ or /
 | |
|                 return false;
 | |
|             }
 | |
|             mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS);
 | |
|             int rhs_sign = mp_obj_int_sign(arg1);
 | |
|             if (op <= MP_BINARY_OP_RSHIFT) {
 | |
|                 // << and >> can't have negative rhs
 | |
|                 if (rhs_sign < 0) {
 | |
|                     return false;
 | |
|                 }
 | |
|             } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
 | |
|                 // % and // can't have zero rhs
 | |
|                 if (rhs_sign == 0) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|             arg0 = mp_binary_op(op, arg0, arg1);
 | |
|         }
 | |
|     } else if (rule_id == RULE_factor_2) {
 | |
|         // folding for unary ops: + - ~
 | |
|         mp_parse_node_t pn = peek_result(parser, 0);
 | |
|         if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
 | |
|             return false;
 | |
|         }
 | |
|         mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
 | |
|         mp_unary_op_t op;
 | |
|         if (tok == MP_TOKEN_OP_TILDE) {
 | |
|             op = MP_UNARY_OP_INVERT;
 | |
|         } else {
 | |
|             assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be
 | |
|             op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS);
 | |
|         }
 | |
|         arg0 = mp_unary_op(op, arg0);
 | |
| 
 | |
|     #if MICROPY_COMP_CONST
 | |
|     } else if (rule_id == RULE_expr_stmt) {
 | |
|         mp_parse_node_t pn1 = peek_result(parser, 0);
 | |
|         if (!MP_PARSE_NODE_IS_NULL(pn1)
 | |
|             && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
 | |
|                  || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
 | |
|             // this node is of the form <x> = <y>
 | |
|             mp_parse_node_t pn0 = peek_result(parser, 1);
 | |
|             if (MP_PARSE_NODE_IS_ID(pn0)
 | |
|                 && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
 | |
|                 && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0])
 | |
|                 && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const
 | |
|                 && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren)
 | |
|                 ) {
 | |
|                 // code to assign dynamic constants: id = const(value)
 | |
| 
 | |
|                 // get the id
 | |
|                 qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
 | |
| 
 | |
|                 // get the value
 | |
|                 mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0];
 | |
|                 mp_obj_t value;
 | |
|                 if (!mp_parse_node_get_int_maybe(pn_value, &value)) {
 | |
|                     mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
 | |
|                         MP_ERROR_TEXT("constant must be an integer"));
 | |
|                     mp_obj_exception_add_traceback(exc, parser->lexer->source_name,
 | |
|                         ((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull);
 | |
|                     nlr_raise(exc);
 | |
|                 }
 | |
| 
 | |
|                 // store the value in the table of dynamic constants
 | |
|                 mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
 | |
|                 assert(elem->value == MP_OBJ_NULL);
 | |
|                 elem->value = value;
 | |
| 
 | |
|                 // If the constant starts with an underscore then treat it as a private
 | |
|                 // variable and don't emit any code to store the value to the id.
 | |
|                 if (qstr_str(id)[0] == '_') {
 | |
|                     pop_result(parser); // pop const(value)
 | |
|                     pop_result(parser); // pop id
 | |
|                     push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass"
 | |
|                     return true;
 | |
|                 }
 | |
| 
 | |
|                 // replace const(value) with value
 | |
|                 pop_result(parser);
 | |
|                 push_result_node(parser, pn_value);
 | |
| 
 | |
|                 // finished folding this assignment, but we still want it to be part of the tree
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         return false;
 | |
|     #endif
 | |
| 
 | |
|     #if MICROPY_COMP_MODULE_CONST
 | |
|     } else if (rule_id == RULE_atom_expr_normal) {
 | |
|         mp_parse_node_t pn0 = peek_result(parser, 1);
 | |
|         mp_parse_node_t pn1 = peek_result(parser, 0);
 | |
|         if (!(MP_PARSE_NODE_IS_ID(pn0)
 | |
|               && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
 | |
|             return false;
 | |
|         }
 | |
|         // id1.id2
 | |
|         // look it up in constant table, see if it can be replaced with an integer
 | |
|         mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1;
 | |
|         assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
 | |
|         qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
 | |
|         qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
 | |
|         mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
 | |
|         if (elem == NULL) {
 | |
|             return false;
 | |
|         }
 | |
|         mp_obj_t dest[2];
 | |
|         mp_load_method_maybe(elem->value, q_attr, dest);
 | |
|         if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) {
 | |
|             return false;
 | |
|         }
 | |
|         arg0 = dest[0];
 | |
|     #endif
 | |
| 
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // success folding this rule
 | |
| 
 | |
|     for (size_t i = num_args; i > 0; i--) {
 | |
|         pop_result(parser);
 | |
|     }
 | |
|     if (mp_obj_is_small_int(arg0)) {
 | |
|         push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0));
 | |
|     } else {
 | |
|         // TODO reuse memory for parse node struct?
 | |
|         push_result_node(parser, make_node_const_object(parser, 0, arg0));
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
 | |
|     // optimise away parenthesis around an expression if possible
 | |
|     if (rule_id == RULE_atom_paren) {
 | |
|         // there should be just 1 arg for this rule
 | |
|         mp_parse_node_t pn = peek_result(parser, 0);
 | |
|         if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|             // need to keep parenthesis for ()
 | |
|         } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
 | |
|             // need to keep parenthesis for (a, b, ...)
 | |
|         } else {
 | |
|             // parenthesis around a single expression, so it's just the expression
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #if MICROPY_COMP_CONST_FOLDING
 | |
|     if (fold_logical_constants(parser, rule_id, &num_args)) {
 | |
|         // we folded this rule so return straight away
 | |
|         return;
 | |
|     }
 | |
|     if (fold_constants(parser, rule_id, num_args)) {
 | |
|         // we folded this rule so return straight away
 | |
|         return;
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
 | |
|     pn->source_line = src_line;
 | |
|     pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
 | |
|     for (size_t i = num_args; i > 0; i--) {
 | |
|         pn->nodes[i - 1] = pop_result(parser);
 | |
|     }
 | |
|     push_result_node(parser, (mp_parse_node_t)pn);
 | |
| }
 | |
| 
 | |
| mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
 | |
| 
 | |
|     // initialise parser and allocate memory for its stacks
 | |
| 
 | |
|     parser_t parser;
 | |
| 
 | |
|     parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
 | |
|     parser.rule_stack_top = 0;
 | |
|     parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc);
 | |
| 
 | |
|     parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
 | |
|     parser.result_stack_top = 0;
 | |
|     parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc);
 | |
| 
 | |
|     parser.lexer = lex;
 | |
| 
 | |
|     parser.tree.chunk = NULL;
 | |
|     parser.cur_chunk = NULL;
 | |
| 
 | |
|     #if MICROPY_COMP_CONST
 | |
|     mp_map_init(&parser.consts, 0);
 | |
|     #endif
 | |
| 
 | |
|     // work out the top-level rule to use, and push it on the stack
 | |
|     size_t top_level_rule;
 | |
|     switch (input_kind) {
 | |
|         case MP_PARSE_SINGLE_INPUT:
 | |
|             top_level_rule = RULE_single_input;
 | |
|             break;
 | |
|         case MP_PARSE_EVAL_INPUT:
 | |
|             top_level_rule = RULE_eval_input;
 | |
|             break;
 | |
|         default:
 | |
|             top_level_rule = RULE_file_input;
 | |
|     }
 | |
|     push_rule(&parser, lex->tok_line, top_level_rule, 0);
 | |
| 
 | |
|     // parse!
 | |
| 
 | |
|     bool backtrack = false;
 | |
| 
 | |
|     for (;;) {
 | |
|     next_rule:
 | |
|         if (parser.rule_stack_top == 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // Pop the next rule to process it
 | |
|         size_t i; // state for the current rule
 | |
|         size_t rule_src_line; // source line for the first token matched by the current rule
 | |
|         uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line);
 | |
|         uint8_t rule_act = rule_act_table[rule_id];
 | |
|         const uint16_t *rule_arg = get_rule_arg(rule_id);
 | |
|         size_t n = rule_act & RULE_ACT_ARG_MASK;
 | |
| 
 | |
|         #if 0
 | |
|         // debugging
 | |
|         printf("depth=" UINT_FMT " ", parser.rule_stack_top);
 | |
|         for (int j = 0; j < parser.rule_stack_top; ++j) {
 | |
|             printf(" ");
 | |
|         }
 | |
|         printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack);
 | |
|         #endif
 | |
| 
 | |
|         switch (rule_act & RULE_ACT_KIND_MASK) {
 | |
|             case RULE_ACT_OR:
 | |
|                 if (i > 0 && !backtrack) {
 | |
|                     goto next_rule;
 | |
|                 } else {
 | |
|                     backtrack = false;
 | |
|                 }
 | |
|                 for (; i < n; ++i) {
 | |
|                     uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK;
 | |
|                     if (kind == RULE_ARG_TOK) {
 | |
|                         if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) {
 | |
|                             push_result_token(&parser, rule_id);
 | |
|                             mp_lexer_to_next(lex);
 | |
|                             goto next_rule;
 | |
|                         }
 | |
|                     } else {
 | |
|                         assert(kind == RULE_ARG_RULE);
 | |
|                         if (i + 1 < n) {
 | |
|                             push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule
 | |
|                         }
 | |
|                         push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule
 | |
|                         goto next_rule;
 | |
|                     }
 | |
|                 }
 | |
|                 backtrack = true;
 | |
|                 break;
 | |
| 
 | |
|             case RULE_ACT_AND: {
 | |
| 
 | |
|                 // failed, backtrack if we can, else syntax error
 | |
|                 if (backtrack) {
 | |
|                     assert(i > 0);
 | |
|                     if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
 | |
|                         // an optional rule that failed, so continue with next arg
 | |
|                         push_result_node(&parser, MP_PARSE_NODE_NULL);
 | |
|                         backtrack = false;
 | |
|                     } else {
 | |
|                         // a mandatory rule that failed, so propagate backtrack
 | |
|                         if (i > 1) {
 | |
|                             // already eaten tokens so can't backtrack
 | |
|                             goto syntax_error;
 | |
|                         } else {
 | |
|                             goto next_rule;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // progress through the rule
 | |
|                 for (; i < n; ++i) {
 | |
|                     if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
 | |
|                         // need to match a token
 | |
|                         mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK;
 | |
|                         if (lex->tok_kind == tok_kind) {
 | |
|                             // matched token
 | |
|                             if (tok_kind == MP_TOKEN_NAME) {
 | |
|                                 push_result_token(&parser, rule_id);
 | |
|                             }
 | |
|                             mp_lexer_to_next(lex);
 | |
|                         } else {
 | |
|                             // failed to match token
 | |
|                             if (i > 0) {
 | |
|                                 // already eaten tokens so can't backtrack
 | |
|                                 goto syntax_error;
 | |
|                             } else {
 | |
|                                 // this rule failed, so backtrack
 | |
|                                 backtrack = true;
 | |
|                                 goto next_rule;
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule
 | |
|                         push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule
 | |
|                         goto next_rule;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 assert(i == n);
 | |
| 
 | |
|                 // matched the rule, so now build the corresponding parse_node
 | |
| 
 | |
|                 #if !MICROPY_ENABLE_DOC_STRING
 | |
|                 // this code discards lonely statements, such as doc strings
 | |
|                 if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
 | |
|                     mp_parse_node_t p = peek_result(&parser, 1);
 | |
|                     if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p))
 | |
|                         || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) {
 | |
|                         pop_result(&parser); // MP_PARSE_NODE_NULL
 | |
|                         pop_result(&parser); // const expression (leaf or RULE_const_object)
 | |
|                         // Pushing the "pass" rule here will overwrite any RULE_const_object
 | |
|                         // entry that was on the result stack, allowing the GC to reclaim
 | |
|                         // the memory from the const object when needed.
 | |
|                         push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 #endif
 | |
| 
 | |
|                 // count number of arguments for the parse node
 | |
|                 i = 0;
 | |
|                 size_t num_not_nil = 0;
 | |
|                 for (size_t x = n; x > 0;) {
 | |
|                     --x;
 | |
|                     if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
 | |
|                         mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK;
 | |
|                         if (tok_kind == MP_TOKEN_NAME) {
 | |
|                             // only tokens which were names are pushed to stack
 | |
|                             i += 1;
 | |
|                             num_not_nil += 1;
 | |
|                         }
 | |
|                     } else {
 | |
|                         // rules are always pushed
 | |
|                         if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) {
 | |
|                             num_not_nil += 1;
 | |
|                         }
 | |
|                         i += 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) {
 | |
|                     // this rule has only 1 argument and should not be emitted
 | |
|                     mp_parse_node_t pn = MP_PARSE_NODE_NULL;
 | |
|                     for (size_t x = 0; x < i; ++x) {
 | |
|                         mp_parse_node_t pn2 = pop_result(&parser);
 | |
|                         if (pn2 != MP_PARSE_NODE_NULL) {
 | |
|                             pn = pn2;
 | |
|                         }
 | |
|                     }
 | |
|                     push_result_node(&parser, pn);
 | |
|                 } else {
 | |
|                     // this rule must be emitted
 | |
| 
 | |
|                     if (rule_act & RULE_ACT_ADD_BLANK) {
 | |
|                         // and add an extra blank node at the end (used by the compiler to store data)
 | |
|                         push_result_node(&parser, MP_PARSE_NODE_NULL);
 | |
|                         i += 1;
 | |
|                     }
 | |
| 
 | |
|                     push_result_rule(&parser, rule_src_line, rule_id, i);
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             default: {
 | |
|                 assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST);
 | |
| 
 | |
|                 // n=2 is: item item*
 | |
|                 // n=1 is: item (sep item)*
 | |
|                 // n=3 is: item (sep item)* [sep]
 | |
|                 bool had_trailing_sep;
 | |
|                 if (backtrack) {
 | |
|                 list_backtrack:
 | |
|                     had_trailing_sep = false;
 | |
|                     if (n == 2) {
 | |
|                         if (i == 1) {
 | |
|                             // fail on item, first time round; propagate backtrack
 | |
|                             goto next_rule;
 | |
|                         } else {
 | |
|                             // fail on item, in later rounds; finish with this rule
 | |
|                             backtrack = false;
 | |
|                         }
 | |
|                     } else {
 | |
|                         if (i == 1) {
 | |
|                             // fail on item, first time round; propagate backtrack
 | |
|                             goto next_rule;
 | |
|                         } else if ((i & 1) == 1) {
 | |
|                             // fail on item, in later rounds; have eaten tokens so can't backtrack
 | |
|                             if (n == 3) {
 | |
|                                 // list allows trailing separator; finish parsing list
 | |
|                                 had_trailing_sep = true;
 | |
|                                 backtrack = false;
 | |
|                             } else {
 | |
|                                 // list doesn't allowing trailing separator; fail
 | |
|                                 goto syntax_error;
 | |
|                             }
 | |
|                         } else {
 | |
|                             // fail on separator; finish parsing list
 | |
|                             backtrack = false;
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (;;) {
 | |
|                         size_t arg = rule_arg[i & 1 & n];
 | |
|                         if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
 | |
|                             if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
 | |
|                                 if (i & 1 & n) {
 | |
|                                     // separators which are tokens are not pushed to result stack
 | |
|                                 } else {
 | |
|                                     push_result_token(&parser, rule_id);
 | |
|                                 }
 | |
|                                 mp_lexer_to_next(lex);
 | |
|                                 // got element of list, so continue parsing list
 | |
|                                 i += 1;
 | |
|                             } else {
 | |
|                                 // couldn't get element of list
 | |
|                                 i += 1;
 | |
|                                 backtrack = true;
 | |
|                                 goto list_backtrack;
 | |
|                             }
 | |
|                         } else {
 | |
|                             assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE);
 | |
|                             push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule
 | |
|                             push_rule_from_arg(&parser, arg); // push child of list-rule
 | |
|                             goto next_rule;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 assert(i >= 1);
 | |
| 
 | |
|                 // compute number of elements in list, result in i
 | |
|                 i -= 1;
 | |
|                 if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
 | |
|                     // don't count separators when they are tokens
 | |
|                     i = (i + 1) / 2;
 | |
|                 }
 | |
| 
 | |
|                 if (i == 1) {
 | |
|                     // list matched single item
 | |
|                     if (had_trailing_sep) {
 | |
|                         // if there was a trailing separator, make a list of a single item
 | |
|                         push_result_rule(&parser, rule_src_line, rule_id, i);
 | |
|                     } else {
 | |
|                         // just leave single item on stack (ie don't wrap in a list)
 | |
|                     }
 | |
|                 } else {
 | |
|                     push_result_rule(&parser, rule_src_line, rule_id, i);
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #if MICROPY_COMP_CONST
 | |
|     mp_map_deinit(&parser.consts);
 | |
|     #endif
 | |
| 
 | |
|     // truncate final chunk and link into chain of chunks
 | |
|     if (parser.cur_chunk != NULL) {
 | |
|         (void)m_renew_maybe(byte, parser.cur_chunk,
 | |
|             sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
 | |
|             sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used,
 | |
|             false);
 | |
|         parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
 | |
|         parser.cur_chunk->union_.next = parser.tree.chunk;
 | |
|         parser.tree.chunk = parser.cur_chunk;
 | |
|     }
 | |
| 
 | |
|     if (
 | |
|         lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
 | |
|         || parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
 | |
|         ) {
 | |
|     syntax_error:;
 | |
|         mp_obj_t exc;
 | |
|         if (lex->tok_kind == MP_TOKEN_INDENT) {
 | |
|             exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
 | |
|                 MP_ERROR_TEXT("unexpected indent"));
 | |
|         } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
 | |
|             exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
 | |
|                 MP_ERROR_TEXT("unindent doesn't match any outer indent level"));
 | |
|         } else {
 | |
|             exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
 | |
|                 MP_ERROR_TEXT("invalid syntax"));
 | |
|         }
 | |
|         // add traceback to give info about file name and location
 | |
|         // we don't have a 'block' name, so just pass the NULL qstr to indicate this
 | |
|         mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull);
 | |
|         nlr_raise(exc);
 | |
|     }
 | |
| 
 | |
|     // get the root parse node that we created
 | |
|     assert(parser.result_stack_top == 1);
 | |
|     parser.tree.root = parser.result_stack[0];
 | |
| 
 | |
|     // free the memory that we don't need anymore
 | |
|     m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
 | |
|     m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
 | |
| 
 | |
|     // we also free the lexer on behalf of the caller
 | |
|     mp_lexer_free(lex);
 | |
| 
 | |
|     return parser.tree;
 | |
| }
 | |
| 
 | |
| void mp_parse_tree_clear(mp_parse_tree_t *tree) {
 | |
|     mp_parse_chunk_t *chunk = tree->chunk;
 | |
|     while (chunk != NULL) {
 | |
|         mp_parse_chunk_t *next = chunk->union_.next;
 | |
|         m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
 | |
|         chunk = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // MICROPY_ENABLE_COMPILER
 |