forked from xuos/xiuos
				
			
		
			
				
	
	
		
			3667 lines
		
	
	
		
			146 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3667 lines
		
	
	
		
			146 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * This file is part of the MicroPython project, http://micropython.org/
 | |
|  *
 | |
|  * The MIT License (MIT)
 | |
|  *
 | |
|  * Copyright (c) 2013-2020 Damien P. George
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "py/scope.h"
 | |
| #include "py/emit.h"
 | |
| #include "py/compile.h"
 | |
| #include "py/runtime.h"
 | |
| #include "py/asmbase.h"
 | |
| #include "py/persistentcode.h"
 | |
| 
 | |
| #if MICROPY_ENABLE_COMPILER
 | |
| 
 | |
| // TODO need to mangle __attr names
 | |
| 
 | |
| #define INVALID_LABEL (0xffff)
 | |
| 
 | |
| typedef enum {
 | |
| // define rules with a compile function
 | |
| #define DEF_RULE(rule, comp, kind, ...) PN_##rule,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
|     #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
|     PN_const_object, // special node for a constant, generic Python object
 | |
| // define rules without a compile function
 | |
| #define DEF_RULE(rule, comp, kind, ...)
 | |
| #define DEF_RULE_NC(rule, kind, ...) PN_##rule,
 | |
|     #include "py/grammar.h"
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
| } pn_kind_t;
 | |
| 
 | |
| #define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
 | |
| 
 | |
| #if NEED_METHOD_TABLE
 | |
| 
 | |
| // we need a method table to do the lookup for the emitter functions
 | |
| #define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
 | |
| #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
 | |
| #define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
 | |
| #define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
 | |
| 
 | |
| #else
 | |
| 
 | |
| // if we only have the bytecode emitter enabled then we can do a direct call to the functions
 | |
| #define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
 | |
| #define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
 | |
| #define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
 | |
| #define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
 | |
| 
 | |
| #define NATIVE_EMITTER(f) emit_native_table[mp_dynamic_compiler.native_arch]->emit_##f
 | |
| #define NATIVE_EMITTER_TABLE emit_native_table[mp_dynamic_compiler.native_arch]
 | |
| 
 | |
| STATIC const emit_method_table_t *emit_native_table[] = {
 | |
|     NULL,
 | |
|     &emit_native_x86_method_table,
 | |
|     &emit_native_x64_method_table,
 | |
|     &emit_native_arm_method_table,
 | |
|     &emit_native_thumb_method_table,
 | |
|     &emit_native_thumb_method_table,
 | |
|     &emit_native_thumb_method_table,
 | |
|     &emit_native_thumb_method_table,
 | |
|     &emit_native_thumb_method_table,
 | |
|     &emit_native_xtensa_method_table,
 | |
|     &emit_native_xtensawin_method_table,
 | |
| };
 | |
| 
 | |
| #elif MICROPY_EMIT_NATIVE
 | |
| // define a macro to access external native emitter
 | |
| #if MICROPY_EMIT_X64
 | |
| #define NATIVE_EMITTER(f) emit_native_x64_##f
 | |
| #elif MICROPY_EMIT_X86
 | |
| #define NATIVE_EMITTER(f) emit_native_x86_##f
 | |
| #elif MICROPY_EMIT_THUMB
 | |
| #define NATIVE_EMITTER(f) emit_native_thumb_##f
 | |
| #elif MICROPY_EMIT_ARM
 | |
| #define NATIVE_EMITTER(f) emit_native_arm_##f
 | |
| #elif MICROPY_EMIT_XTENSA
 | |
| #define NATIVE_EMITTER(f) emit_native_xtensa_##f
 | |
| #elif MICROPY_EMIT_XTENSAWIN
 | |
| #define NATIVE_EMITTER(f) emit_native_xtensawin_##f
 | |
| #else
 | |
| #error "unknown native emitter"
 | |
| #endif
 | |
| #define NATIVE_EMITTER_TABLE &NATIVE_EMITTER(method_table)
 | |
| #endif
 | |
| 
 | |
| #if MICROPY_EMIT_INLINE_ASM && MICROPY_DYNAMIC_COMPILER
 | |
| 
 | |
| #define ASM_EMITTER(f) emit_asm_table[mp_dynamic_compiler.native_arch]->asm_##f
 | |
| #define ASM_EMITTER_TABLE emit_asm_table[mp_dynamic_compiler.native_arch]
 | |
| 
 | |
| STATIC const emit_inline_asm_method_table_t *emit_asm_table[] = {
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_thumb_method_table,
 | |
|     &emit_inline_xtensa_method_table,
 | |
|     NULL,
 | |
| };
 | |
| 
 | |
| #elif MICROPY_EMIT_INLINE_ASM
 | |
| // define macros for inline assembler
 | |
| #if MICROPY_EMIT_INLINE_THUMB
 | |
| #define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
 | |
| #define ASM_EMITTER(f) emit_inline_thumb_##f
 | |
| #elif MICROPY_EMIT_INLINE_XTENSA
 | |
| #define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
 | |
| #define ASM_EMITTER(f) emit_inline_xtensa_##f
 | |
| #else
 | |
| #error "unknown asm emitter"
 | |
| #endif
 | |
| #define ASM_EMITTER_TABLE &ASM_EMITTER(method_table)
 | |
| #endif
 | |
| 
 | |
| #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
 | |
| #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
 | |
| 
 | |
| // elements in this struct are ordered to make it compact
 | |
| typedef struct _compiler_t {
 | |
|     qstr source_file;
 | |
| 
 | |
|     uint8_t is_repl;
 | |
|     uint8_t pass; // holds enum type pass_kind_t
 | |
|     uint8_t have_star;
 | |
| 
 | |
|     // try to keep compiler clean from nlr
 | |
|     mp_obj_t compile_error; // set to an exception object if there's an error
 | |
|     size_t compile_error_line; // set to best guess of line of error
 | |
| 
 | |
|     uint next_label;
 | |
| 
 | |
|     uint16_t num_dict_params;
 | |
|     uint16_t num_default_params;
 | |
| 
 | |
|     uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
 | |
|     uint16_t continue_label;
 | |
|     uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
 | |
|     uint16_t break_continue_except_level;
 | |
| 
 | |
|     scope_t *scope_head;
 | |
|     scope_t *scope_cur;
 | |
| 
 | |
|     emit_t *emit;                                   // current emitter
 | |
|     #if NEED_METHOD_TABLE
 | |
|     const emit_method_table_t *emit_method_table;   // current emit method table
 | |
|     #endif
 | |
| 
 | |
|     #if MICROPY_EMIT_INLINE_ASM
 | |
|     emit_inline_asm_t *emit_inline_asm;                                   // current emitter for inline asm
 | |
|     const emit_inline_asm_method_table_t *emit_inline_asm_method_table;   // current emit method table for inline asm
 | |
|     #endif
 | |
| } compiler_t;
 | |
| 
 | |
| STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     // if the line of the error is unknown then try to update it from the pn
 | |
|     if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
 | |
|         comp->compile_error_line = ((mp_parse_node_struct_t *)pn)->source_line;
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, mp_rom_error_text_t msg) {
 | |
|     // only register the error if there has been no other error
 | |
|     if (comp->compile_error == MP_OBJ_NULL) {
 | |
|         comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
 | |
|         compile_error_set_line(comp, pn);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
 | |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
 | |
| STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map);
 | |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);
 | |
| 
 | |
| STATIC uint comp_next_label(compiler_t *comp) {
 | |
|     return comp->next_label++;
 | |
| }
 | |
| 
 | |
| #if MICROPY_EMIT_NATIVE
 | |
| STATIC void reserve_labels_for_native(compiler_t *comp, int n) {
 | |
|     if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
 | |
|         comp->next_label += n;
 | |
|     }
 | |
| }
 | |
| #else
 | |
| #define reserve_labels_for_native(comp, n)
 | |
| #endif
 | |
| 
 | |
| STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) {
 | |
|     EMIT_ARG(setup_block, label, kind);
 | |
|     comp->cur_except_level += 1;
 | |
|     if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
 | |
|         comp->scope_cur->exc_stack_size = comp->cur_except_level;
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_decrease_except_level(compiler_t *comp) {
 | |
|     assert(comp->cur_except_level > 0);
 | |
|     comp->cur_except_level -= 1;
 | |
|     EMIT(end_finally);
 | |
|     reserve_labels_for_native(comp, 1);
 | |
| }
 | |
| 
 | |
| STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
 | |
|     scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
 | |
|     scope->parent = comp->scope_cur;
 | |
|     scope->next = NULL;
 | |
|     if (comp->scope_head == NULL) {
 | |
|         comp->scope_head = scope;
 | |
|     } else {
 | |
|         scope_t *s = comp->scope_head;
 | |
|         while (s->next != NULL) {
 | |
|             s = s->next;
 | |
|         }
 | |
|         s->next = scope;
 | |
|     }
 | |
|     return scope;
 | |
| }
 | |
| 
 | |
| typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
 | |
| 
 | |
| STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|         for (int i = 0; i < num_nodes; i++) {
 | |
|             f(comp, pns->nodes[i]);
 | |
|         }
 | |
|     } else if (!MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         f(comp, pn);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|     for (int i = 0; i < num_nodes; i++) {
 | |
|         compile_node(comp, pns->nodes[i]);
 | |
|         if (comp->compile_error != MP_OBJ_NULL) {
 | |
|             // add line info for the error in case it didn't have a line number
 | |
|             compile_error_set_line(comp, pns->nodes[i]);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_load_id(compiler_t *comp, qstr qst) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         mp_emit_common_get_id_for_load(comp->scope_cur, qst);
 | |
|     } else {
 | |
|         #if NEED_METHOD_TABLE
 | |
|         mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
 | |
|         #else
 | |
|         mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
 | |
|         #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_store_id(compiler_t *comp, qstr qst) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
 | |
|     } else {
 | |
|         #if NEED_METHOD_TABLE
 | |
|         mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
 | |
|         #else
 | |
|         mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
 | |
|         #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
 | |
|     } else {
 | |
|         #if NEED_METHOD_TABLE
 | |
|         mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
 | |
|         #else
 | |
|         mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
 | |
|         #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
 | |
|     int total = 0;
 | |
|     if (!MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         compile_node(comp, pn);
 | |
|         total += 1;
 | |
|     }
 | |
|     if (pns_list != NULL) {
 | |
|         int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             compile_node(comp, pns_list->nodes[i]);
 | |
|         }
 | |
|         total += n;
 | |
|     }
 | |
|     EMIT_ARG(build, total, MP_EMIT_BUILD_TUPLE);
 | |
| }
 | |
| 
 | |
| STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // a simple tuple expression
 | |
|     c_tuple(comp, MP_PARSE_NODE_NULL, pns);
 | |
| }
 | |
| 
 | |
| STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
 | |
|     if (mp_parse_node_is_const_false(pn)) {
 | |
|         if (jump_if == false) {
 | |
|             EMIT_ARG(jump, label);
 | |
|         }
 | |
|         return;
 | |
|     } else if (mp_parse_node_is_const_true(pn)) {
 | |
|         if (jump_if == true) {
 | |
|             EMIT_ARG(jump, label);
 | |
|         }
 | |
|         return;
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
 | |
|             if (jump_if == false) {
 | |
|             and_or_logic1:;
 | |
|                 uint label2 = comp_next_label(comp);
 | |
|                 for (int i = 0; i < n - 1; i++) {
 | |
|                     c_if_cond(comp, pns->nodes[i], !jump_if, label2);
 | |
|                 }
 | |
|                 c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
 | |
|                 EMIT_ARG(label_assign, label2);
 | |
|             } else {
 | |
|             and_or_logic2:
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     c_if_cond(comp, pns->nodes[i], jump_if, label);
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
 | |
|             if (jump_if == false) {
 | |
|                 goto and_or_logic2;
 | |
|             } else {
 | |
|                 goto and_or_logic1;
 | |
|             }
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
 | |
|             c_if_cond(comp, pns->nodes[0], !jump_if, label);
 | |
|             return;
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
 | |
|             // cond is something in parenthesis
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|                 // empty tuple, acts as false for the condition
 | |
|                 if (jump_if == false) {
 | |
|                     EMIT_ARG(jump, label);
 | |
|                 }
 | |
|             } else {
 | |
|                 assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
 | |
|                 // non-empty tuple, acts as true for the condition
 | |
|                 if (jump_if == true) {
 | |
|                     EMIT_ARG(jump, label);
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // nothing special, fall back to default compiling for node and jump
 | |
|     compile_node(comp, pn);
 | |
|     EMIT_ARG(pop_jump_if, jump_if, label);
 | |
| }
 | |
| 
 | |
| typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
 | |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
 | |
| 
 | |
| STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
 | |
|     if (assign_kind != ASSIGN_AUG_STORE) {
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|     }
 | |
| 
 | |
|     if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
 | |
|         mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
 | |
|             int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
 | |
|             if (assign_kind != ASSIGN_AUG_STORE) {
 | |
|                 for (int i = 0; i < n - 1; i++) {
 | |
|                     compile_node(comp, pns1->nodes[i]);
 | |
|                 }
 | |
|             }
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
 | |
|             pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
 | |
|         }
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
 | |
|             if (assign_kind == ASSIGN_AUG_STORE) {
 | |
|                 EMIT(rot_three);
 | |
|                 EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
 | |
|             } else {
 | |
|                 compile_node(comp, pns1->nodes[0]);
 | |
|                 if (assign_kind == ASSIGN_AUG_LOAD) {
 | |
|                     EMIT(dup_top_two);
 | |
|                     EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
 | |
|                 } else {
 | |
|                     EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
 | |
|             assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
 | |
|             if (assign_kind == ASSIGN_AUG_LOAD) {
 | |
|                 EMIT(dup_top);
 | |
|                 EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD);
 | |
|             } else {
 | |
|                 if (assign_kind == ASSIGN_AUG_STORE) {
 | |
|                     EMIT(rot_two);
 | |
|                 }
 | |
|                 EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't assign to expression"));
 | |
| }
 | |
| 
 | |
| // we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail)
 | |
| STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) {
 | |
|     uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1;
 | |
| 
 | |
|     // look for star expression
 | |
|     uint have_star_index = -1;
 | |
|     if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) {
 | |
|         EMIT_ARG(unpack_ex, 0, num_tail);
 | |
|         have_star_index = 0;
 | |
|     }
 | |
|     for (uint i = 0; i < num_tail; i++) {
 | |
|         if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
 | |
|             if (have_star_index == (uint)-1) {
 | |
|                 EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
 | |
|                 have_star_index = num_head + i;
 | |
|             } else {
 | |
|                 compile_syntax_error(comp, nodes_tail[i], MP_ERROR_TEXT("multiple *x in assignment"));
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (have_star_index == (uint)-1) {
 | |
|         EMIT_ARG(unpack_sequence, num_head + num_tail);
 | |
|     }
 | |
|     if (num_head != 0) {
 | |
|         if (0 == have_star_index) {
 | |
|             c_assign(comp, ((mp_parse_node_struct_t *)node_head)->nodes[0], ASSIGN_STORE);
 | |
|         } else {
 | |
|             c_assign(comp, node_head, ASSIGN_STORE);
 | |
|         }
 | |
|     }
 | |
|     for (uint i = 0; i < num_tail; i++) {
 | |
|         if (num_head + i == have_star_index) {
 | |
|             c_assign(comp, ((mp_parse_node_struct_t *)nodes_tail[i])->nodes[0], ASSIGN_STORE);
 | |
|         } else {
 | |
|             c_assign(comp, nodes_tail[i], ASSIGN_STORE);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // assigns top of stack to pn
 | |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
 | |
|     assert(!MP_PARSE_NODE_IS_NULL(pn));
 | |
|     if (MP_PARSE_NODE_IS_LEAF(pn)) {
 | |
|         if (MP_PARSE_NODE_IS_ID(pn)) {
 | |
|             qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
 | |
|             switch (assign_kind) {
 | |
|                 case ASSIGN_STORE:
 | |
|                 case ASSIGN_AUG_STORE:
 | |
|                     compile_store_id(comp, arg);
 | |
|                     break;
 | |
|                 case ASSIGN_AUG_LOAD:
 | |
|                 default:
 | |
|                     compile_load_id(comp, arg);
 | |
|                     break;
 | |
|             }
 | |
|         } else {
 | |
|             goto cannot_assign;
 | |
|         }
 | |
|     } else {
 | |
|         // pn must be a struct
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
 | |
|             case PN_atom_expr_normal:
 | |
|                 // lhs is an index or attribute
 | |
|                 c_assign_atom_expr(comp, pns, assign_kind);
 | |
|                 break;
 | |
| 
 | |
|             case PN_testlist_star_expr:
 | |
|             case PN_exprlist:
 | |
|                 // lhs is a tuple
 | |
|                 if (assign_kind != ASSIGN_STORE) {
 | |
|                     goto cannot_assign;
 | |
|                 }
 | |
|                 c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
 | |
|                 break;
 | |
| 
 | |
|             case PN_atom_paren:
 | |
|                 // lhs is something in parenthesis
 | |
|                 if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|                     // empty tuple
 | |
|                     goto cannot_assign;
 | |
|                 } else {
 | |
|                     assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
 | |
|                     if (assign_kind != ASSIGN_STORE) {
 | |
|                         goto cannot_assign;
 | |
|                     }
 | |
|                     pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|                     goto testlist_comp;
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|             case PN_atom_bracket:
 | |
|                 // lhs is something in brackets
 | |
|                 if (assign_kind != ASSIGN_STORE) {
 | |
|                     goto cannot_assign;
 | |
|                 }
 | |
|                 if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|                     // empty list, assignment allowed
 | |
|                     c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL);
 | |
|                 } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
 | |
|                     pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|                     goto testlist_comp;
 | |
|                 } else {
 | |
|                     // brackets around 1 item
 | |
|                     c_assign_tuple(comp, pns->nodes[0], 0, NULL);
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|             default:
 | |
|                 goto cannot_assign;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|     testlist_comp:
 | |
|         // lhs is a sequence
 | |
|         if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
 | |
|             mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
 | |
|                 // sequence of one item, with trailing comma
 | |
|                 assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
 | |
|                 c_assign_tuple(comp, pns->nodes[0], 0, NULL);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
 | |
|                 // sequence of many items
 | |
|                 uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
 | |
|                 c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
 | |
|                 goto cannot_assign;
 | |
|             } else {
 | |
|                 // sequence with 2 items
 | |
|                 goto sequence_with_2_items;
 | |
|             }
 | |
|         } else {
 | |
|             // sequence with 2 items
 | |
|         sequence_with_2_items:
 | |
|             c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| cannot_assign:
 | |
|     compile_syntax_error(comp, pn, MP_ERROR_TEXT("can't assign to expression"));
 | |
| }
 | |
| 
 | |
| // stuff for lambda and comprehensions and generators:
 | |
| //  if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
 | |
| //  if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
 | |
| //  if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
 | |
| STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
 | |
|     assert(n_pos_defaults >= 0);
 | |
|     assert(n_kw_defaults >= 0);
 | |
| 
 | |
|     // set flags
 | |
|     if (n_kw_defaults > 0) {
 | |
|         this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
 | |
|     }
 | |
|     this_scope->num_def_pos_args = n_pos_defaults;
 | |
| 
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     // When creating a function/closure it will take a reference to the current globals
 | |
|     comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS;
 | |
|     #endif
 | |
| 
 | |
|     // make closed over variables, if any
 | |
|     // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
 | |
|     int nfree = 0;
 | |
|     if (comp->scope_cur->kind != SCOPE_MODULE) {
 | |
|         for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
 | |
|             id_info_t *id = &comp->scope_cur->id_info[i];
 | |
|             if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
 | |
|                 for (int j = 0; j < this_scope->id_info_len; j++) {
 | |
|                     id_info_t *id2 = &this_scope->id_info[j];
 | |
|                     if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
 | |
|                         // in MicroPython we load closures using LOAD_FAST
 | |
|                         EMIT_LOAD_FAST(id->qst, id->local_num);
 | |
|                         nfree += 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // make the function/closure
 | |
|     if (nfree == 0) {
 | |
|         EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
 | |
|     } else {
 | |
|         EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     // For efficiency of the code below we extract the parse-node kind here
 | |
|     int pn_kind;
 | |
|     if (MP_PARSE_NODE_IS_ID(pn)) {
 | |
|         pn_kind = -1;
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(pn));
 | |
|         pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn);
 | |
|     }
 | |
| 
 | |
|     if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
 | |
|         comp->have_star = true;
 | |
|         /* don't need to distinguish bare from named star
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
 | |
|         if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|             // bare star
 | |
|         } else {
 | |
|             // named star
 | |
|         }
 | |
|         */
 | |
| 
 | |
|     } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
 | |
|         // named double star
 | |
|         // TODO do we need to do anything with this?
 | |
| 
 | |
|     } else {
 | |
|         mp_parse_node_t pn_id;
 | |
|         mp_parse_node_t pn_equal;
 | |
|         if (pn_kind == -1) {
 | |
|             // this parameter is just an id
 | |
| 
 | |
|             pn_id = pn;
 | |
|             pn_equal = MP_PARSE_NODE_NULL;
 | |
| 
 | |
|         } else if (pn_kind == PN_typedargslist_name) {
 | |
|             // this parameter has a colon and/or equal specifier
 | |
| 
 | |
|             mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|             pn_id = pns->nodes[0];
 | |
|             // pn_colon = pns->nodes[1]; // unused
 | |
|             pn_equal = pns->nodes[2];
 | |
| 
 | |
|         } else {
 | |
|             assert(pn_kind == PN_varargslist_name); // should be
 | |
|             // this parameter has an equal specifier
 | |
| 
 | |
|             mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|             pn_id = pns->nodes[0];
 | |
|             pn_equal = pns->nodes[1];
 | |
|         }
 | |
| 
 | |
|         if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
 | |
|             // this parameter does not have a default value
 | |
| 
 | |
|             // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
 | |
|             if (!comp->have_star && comp->num_default_params != 0) {
 | |
|                 compile_syntax_error(comp, pn, MP_ERROR_TEXT("non-default argument follows default argument"));
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             // this parameter has a default value
 | |
|             // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
 | |
| 
 | |
|             if (comp->have_star) {
 | |
|                 comp->num_dict_params += 1;
 | |
|                 // in MicroPython we put the default dict parameters into a dictionary using the bytecode
 | |
|                 if (comp->num_dict_params == 1) {
 | |
|                     // in MicroPython we put the default positional parameters into a tuple using the bytecode
 | |
|                     // we need to do this here before we start building the map for the default keywords
 | |
|                     if (comp->num_default_params > 0) {
 | |
|                         EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
 | |
|                     } else {
 | |
|                         EMIT(load_null); // sentinel indicating empty default positional args
 | |
|                     }
 | |
|                     // first default dict param, so make the map
 | |
|                     EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
 | |
|                 }
 | |
| 
 | |
|                 // compile value then key, then store it to the dict
 | |
|                 compile_node(comp, pn_equal);
 | |
|                 EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
 | |
|                 EMIT(store_map);
 | |
|             } else {
 | |
|                 comp->num_default_params += 1;
 | |
|                 compile_node(comp, pn_equal);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
 | |
|     // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
 | |
|     // expression for default arguments, which may contain a lambda.  The lambda will
 | |
|     // call here in a nested way, so we must save and restore the relevant state.
 | |
|     bool orig_have_star = comp->have_star;
 | |
|     uint16_t orig_num_dict_params = comp->num_dict_params;
 | |
|     uint16_t orig_num_default_params = comp->num_default_params;
 | |
| 
 | |
|     // compile default parameters
 | |
|     comp->have_star = false;
 | |
|     comp->num_dict_params = 0;
 | |
|     comp->num_default_params = 0;
 | |
|     apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
 | |
| 
 | |
|     if (comp->compile_error != MP_OBJ_NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // in MicroPython we put the default positional parameters into a tuple using the bytecode
 | |
|     // the default keywords args may have already made the tuple; if not, do it now
 | |
|     if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
 | |
|         EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
 | |
|         EMIT(load_null); // sentinel indicating empty default keyword args
 | |
|     }
 | |
| 
 | |
|     // make the function
 | |
|     close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
 | |
| 
 | |
|     // restore state
 | |
|     comp->have_star = orig_have_star;
 | |
|     comp->num_dict_params = orig_num_dict_params;
 | |
|     comp->num_default_params = orig_num_default_params;
 | |
| }
 | |
| 
 | |
| // leaves function object on stack
 | |
| // returns function name
 | |
| STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         // create a new scope for this function
 | |
|         scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
 | |
|         // store the function scope so the compiling function can use it at each pass
 | |
|         pns->nodes[4] = (mp_parse_node_t)s;
 | |
|     }
 | |
| 
 | |
|     // get the scope for this function
 | |
|     scope_t *fscope = (scope_t *)pns->nodes[4];
 | |
| 
 | |
|     // compile the function definition
 | |
|     compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
 | |
| 
 | |
|     // return its name (the 'f' in "def f(...):")
 | |
|     return fscope->simple_name;
 | |
| }
 | |
| 
 | |
| // leaves class object on stack
 | |
| // returns class name
 | |
| STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         // create a new scope for this class
 | |
|         scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
 | |
|         // store the class scope so the compiling function can use it at each pass
 | |
|         pns->nodes[3] = (mp_parse_node_t)s;
 | |
|     }
 | |
| 
 | |
|     EMIT(load_build_class);
 | |
| 
 | |
|     // scope for this class
 | |
|     scope_t *cscope = (scope_t *)pns->nodes[3];
 | |
| 
 | |
|     // compile the class
 | |
|     close_over_variables_etc(comp, cscope, 0, 0);
 | |
| 
 | |
|     // get its name
 | |
|     EMIT_ARG(load_const_str, cscope->simple_name);
 | |
| 
 | |
|     // nodes[1] has parent classes, if any
 | |
|     // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
 | |
|     mp_parse_node_t parents = pns->nodes[1];
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
 | |
|         parents = MP_PARSE_NODE_NULL;
 | |
|     }
 | |
|     compile_trailer_paren_helper(comp, parents, false, 2);
 | |
| 
 | |
|     // return its name (the 'C' in class C(...):")
 | |
|     return cscope->simple_name;
 | |
| }
 | |
| 
 | |
| // returns true if it was a built-in decorator (even if the built-in had an error)
 | |
| STATIC bool compile_built_in_decorator(compiler_t *comp, size_t name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
 | |
|     if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (name_len != 2) {
 | |
|         compile_syntax_error(comp, name_nodes[0], MP_ERROR_TEXT("invalid micropython decorator"));
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
 | |
|     if (attr == MP_QSTR_bytecode) {
 | |
|         *emit_options = MP_EMIT_OPT_BYTECODE;
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     } else if (attr == MP_QSTR_native) {
 | |
|         *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
 | |
|     } else if (attr == MP_QSTR_viper) {
 | |
|         *emit_options = MP_EMIT_OPT_VIPER;
 | |
|     #endif
 | |
|         #if MICROPY_EMIT_INLINE_ASM
 | |
|     #if MICROPY_DYNAMIC_COMPILER
 | |
|     } else if (attr == MP_QSTR_asm_thumb) {
 | |
|         *emit_options = MP_EMIT_OPT_ASM;
 | |
|     } else if (attr == MP_QSTR_asm_xtensa) {
 | |
|         *emit_options = MP_EMIT_OPT_ASM;
 | |
|     #else
 | |
|     } else if (attr == ASM_DECORATOR_QSTR) {
 | |
|         *emit_options = MP_EMIT_OPT_ASM;
 | |
|     #endif
 | |
|         #endif
 | |
|     } else {
 | |
|         compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid micropython decorator"));
 | |
|     }
 | |
| 
 | |
|     #if MICROPY_DYNAMIC_COMPILER
 | |
|     if (*emit_options == MP_EMIT_OPT_NATIVE_PYTHON || *emit_options == MP_EMIT_OPT_VIPER) {
 | |
|         if (emit_native_table[mp_dynamic_compiler.native_arch] == NULL) {
 | |
|             compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
 | |
|         }
 | |
|     } else if (*emit_options == MP_EMIT_OPT_ASM) {
 | |
|         if (emit_asm_table[mp_dynamic_compiler.native_arch] == NULL) {
 | |
|             compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
 | |
|         }
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // get the list of decorators
 | |
|     mp_parse_node_t *nodes;
 | |
|     size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
 | |
| 
 | |
|     // inherit emit options for this function/class definition
 | |
|     uint emit_options = comp->scope_cur->emit_options;
 | |
| 
 | |
|     // compile each decorator
 | |
|     size_t num_built_in_decorators = 0;
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
 | |
|         mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t *)nodes[i];
 | |
| 
 | |
|         // nodes[0] contains the decorator function, which is a dotted name
 | |
|         mp_parse_node_t *name_nodes;
 | |
|         size_t name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
 | |
| 
 | |
|         // check for built-in decorators
 | |
|         if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
 | |
|             // this was a built-in
 | |
|             num_built_in_decorators += 1;
 | |
| 
 | |
|         } else {
 | |
|             // not a built-in, compile normally
 | |
| 
 | |
|             // compile the decorator function
 | |
|             compile_node(comp, name_nodes[0]);
 | |
|             for (size_t j = 1; j < name_len; j++) {
 | |
|                 assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
 | |
|                 EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD);
 | |
|             }
 | |
| 
 | |
|             // nodes[1] contains arguments to the decorator function, if any
 | |
|             if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
 | |
|                 // call the decorator function with the arguments in nodes[1]
 | |
|                 compile_node(comp, pns_decorator->nodes[1]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compile the body (funcdef, async funcdef or classdef) and get its name
 | |
|     mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|     qstr body_name = 0;
 | |
|     if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
 | |
|         body_name = compile_funcdef_helper(comp, pns_body, emit_options);
 | |
|     #if MICROPY_PY_ASYNC_AWAIT
 | |
|     } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
 | |
|         mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns_body->nodes[0];
 | |
|         body_name = compile_funcdef_helper(comp, pns0, emit_options);
 | |
|         scope_t *fscope = (scope_t *)pns0->nodes[4];
 | |
|         fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
 | |
|     #endif
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
 | |
|         body_name = compile_classdef_helper(comp, pns_body, emit_options);
 | |
|     }
 | |
| 
 | |
|     // call each decorator
 | |
|     for (size_t i = 0; i < n - num_built_in_decorators; i++) {
 | |
|         EMIT_ARG(call_function, 1, 0, 0);
 | |
|     }
 | |
| 
 | |
|     // store func/class object into name
 | |
|     compile_store_id(comp, body_name);
 | |
| }
 | |
| 
 | |
| STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
 | |
|     // store function object into function name
 | |
|     compile_store_id(comp, fname);
 | |
| }
 | |
| 
 | |
| STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     if (MP_PARSE_NODE_IS_ID(pn)) {
 | |
|         compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
| 
 | |
|         compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
 | |
| 
 | |
|         if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
 | |
|             mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
 | |
|                 int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
 | |
|                 for (int i = 0; i < n - 1; i++) {
 | |
|                     compile_node(comp, pns1->nodes[i]);
 | |
|                 }
 | |
|                 assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
 | |
|                 pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
 | |
|             }
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
 | |
|                 compile_node(comp, pns1->nodes[0]);
 | |
|                 EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
 | |
|                 assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
 | |
|                 EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE);
 | |
|             } else {
 | |
|                 goto cannot_delete;
 | |
|             }
 | |
|         } else {
 | |
|             goto cannot_delete;
 | |
|         }
 | |
| 
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
 | |
|         pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
 | |
|         if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|             goto cannot_delete;
 | |
|         } else {
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
 | |
|             mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|             // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
 | |
| 
 | |
|             if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
 | |
|                 mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|                 if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
 | |
|                     // sequence of one item, with trailing comma
 | |
|                     assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
 | |
|                     c_del_stmt(comp, pns->nodes[0]);
 | |
|                 } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
 | |
|                     // sequence of many items
 | |
|                     int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
 | |
|                     c_del_stmt(comp, pns->nodes[0]);
 | |
|                     for (int i = 0; i < n; i++) {
 | |
|                         c_del_stmt(comp, pns1->nodes[i]);
 | |
|                     }
 | |
|                 } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
 | |
|                     goto cannot_delete;
 | |
|                 } else {
 | |
|                     // sequence with 2 items
 | |
|                     goto sequence_with_2_items;
 | |
|                 }
 | |
|             } else {
 | |
|                 // sequence with 2 items
 | |
|             sequence_with_2_items:
 | |
|                 c_del_stmt(comp, pns->nodes[0]);
 | |
|                 c_del_stmt(comp, pns->nodes[1]);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         // some arbitrary statement that we can't delete (eg del 1)
 | |
|         goto cannot_delete;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| cannot_delete:
 | |
|     compile_syntax_error(comp, (mp_parse_node_t)pn, MP_ERROR_TEXT("can't delete expression"));
 | |
| }
 | |
| 
 | |
| STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
 | |
| }
 | |
| 
 | |
| STATIC void compile_break_cont_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     uint16_t label;
 | |
|     if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_break_stmt) {
 | |
|         label = comp->break_label;
 | |
|     } else {
 | |
|         label = comp->continue_label;
 | |
|     }
 | |
|     if (label == INVALID_LABEL) {
 | |
|         compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'break'/'continue' outside loop"));
 | |
|     }
 | |
|     assert(comp->cur_except_level >= comp->break_continue_except_level);
 | |
|     EMIT_ARG(unwind_jump, label, comp->cur_except_level - comp->break_continue_except_level);
 | |
| }
 | |
| 
 | |
| STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     #if MICROPY_CPYTHON_COMPAT
 | |
|     if (comp->scope_cur->kind != SCOPE_FUNCTION) {
 | |
|         compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'return' outside function"));
 | |
|         return;
 | |
|     }
 | |
|     #endif
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|         // no argument to 'return', so return None
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|     } else if (MICROPY_COMP_RETURN_IF_EXPR
 | |
|                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
 | |
|         // special case when returning an if-expression; to match CPython optimisation
 | |
|         mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|         mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns_test_if_expr->nodes[1];
 | |
| 
 | |
|         uint l_fail = comp_next_label(comp);
 | |
|         c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
 | |
|         compile_node(comp, pns_test_if_expr->nodes[0]); // success value
 | |
|         EMIT(return_value);
 | |
|         EMIT_ARG(label_assign, l_fail);
 | |
|         compile_node(comp, pns_test_if_else->nodes[1]); // failure value
 | |
|     } else {
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|     }
 | |
|     EMIT(return_value);
 | |
| }
 | |
| 
 | |
| STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
|     EMIT(pop_top);
 | |
| }
 | |
| 
 | |
| STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|         // raise
 | |
|         EMIT_ARG(raise_varargs, 0);
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
 | |
|         // raise x from y
 | |
|         pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|         compile_node(comp, pns->nodes[1]);
 | |
|         EMIT_ARG(raise_varargs, 2);
 | |
|     } else {
 | |
|         // raise x
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|         EMIT_ARG(raise_varargs, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // q_base holds the base of the name
 | |
| // eg   a -> q_base=a
 | |
| //      a.b.c -> q_base=a
 | |
| STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
 | |
|     bool is_as = false;
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         // a name of the form x as y; unwrap it
 | |
|         *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
 | |
|         pn = pns->nodes[0];
 | |
|         is_as = true;
 | |
|     }
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         // empty name (eg, from . import x)
 | |
|         *q_base = MP_QSTR_;
 | |
|         EMIT_ARG(import, MP_QSTR_, MP_EMIT_IMPORT_NAME); // import the empty string
 | |
|     } else if (MP_PARSE_NODE_IS_ID(pn)) {
 | |
|         // just a simple name
 | |
|         qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
 | |
|         if (!is_as) {
 | |
|             *q_base = q_full;
 | |
|         }
 | |
|         EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         {
 | |
|             // a name of the form a.b.c
 | |
|             if (!is_as) {
 | |
|                 *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|             }
 | |
|             int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|             int len = n - 1;
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
 | |
|             }
 | |
|             char *q_ptr = mp_local_alloc(len);
 | |
|             char *str_dest = q_ptr;
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 if (i > 0) {
 | |
|                     *str_dest++ = '.';
 | |
|                 }
 | |
|                 size_t str_src_len;
 | |
|                 const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
 | |
|                 memcpy(str_dest, str_src, str_src_len);
 | |
|                 str_dest += str_src_len;
 | |
|             }
 | |
|             qstr q_full = qstr_from_strn(q_ptr, len);
 | |
|             mp_local_free(q_ptr);
 | |
|             EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
 | |
|             if (is_as) {
 | |
|                 for (int i = 1; i < n; i++) {
 | |
|                     EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), MP_EMIT_ATTR_LOAD);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     EMIT_ARG(load_const_small_int, 0); // level 0 import
 | |
|     EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
 | |
|     qstr q_base;
 | |
|     do_import_name(comp, pn, &q_base);
 | |
|     compile_store_id(comp, q_base);
 | |
| }
 | |
| 
 | |
| STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
 | |
| }
 | |
| 
 | |
| STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     mp_parse_node_t pn_import_source = pns->nodes[0];
 | |
| 
 | |
|     // extract the preceding .'s (if any) for a relative import, to compute the import level
 | |
|     uint import_level = 0;
 | |
|     do {
 | |
|         mp_parse_node_t pn_rel;
 | |
|         if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
 | |
|             // This covers relative imports with dots only like "from .. import"
 | |
|             pn_rel = pn_import_source;
 | |
|             pn_import_source = MP_PARSE_NODE_NULL;
 | |
|         } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
 | |
|             // This covers relative imports starting with dot(s) like "from .foo import"
 | |
|             mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t *)pn_import_source;
 | |
|             pn_rel = pns_2b->nodes[0];
 | |
|             pn_import_source = pns_2b->nodes[1];
 | |
|             assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
 | |
|         } else {
 | |
|             // Not a relative import
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // get the list of . and/or ...'s
 | |
|         mp_parse_node_t *nodes;
 | |
|         size_t n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);
 | |
| 
 | |
|         // count the total number of .'s
 | |
|         for (size_t i = 0; i < n; i++) {
 | |
|             if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
 | |
|                 import_level++;
 | |
|             } else {
 | |
|                 // should be an MP_TOKEN_ELLIPSIS
 | |
|                 import_level += 3;
 | |
|             }
 | |
|         }
 | |
|     } while (0);
 | |
| 
 | |
|     if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
 | |
|         #if MICROPY_CPYTHON_COMPAT
 | |
|         if (comp->scope_cur->kind != SCOPE_MODULE) {
 | |
|             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("import * not at module level"));
 | |
|             return;
 | |
|         }
 | |
|         #endif
 | |
| 
 | |
|         EMIT_ARG(load_const_small_int, import_level);
 | |
| 
 | |
|         // build the "fromlist" tuple
 | |
|         EMIT_ARG(load_const_str, MP_QSTR__star_);
 | |
|         EMIT_ARG(build, 1, MP_EMIT_BUILD_TUPLE);
 | |
| 
 | |
|         // do the import
 | |
|         qstr dummy_q;
 | |
|         do_import_name(comp, pn_import_source, &dummy_q);
 | |
|         EMIT_ARG(import, MP_QSTRnull, MP_EMIT_IMPORT_STAR);
 | |
| 
 | |
|     } else {
 | |
|         EMIT_ARG(load_const_small_int, import_level);
 | |
| 
 | |
|         // build the "fromlist" tuple
 | |
|         mp_parse_node_t *pn_nodes;
 | |
|         size_t n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
 | |
|         for (size_t i = 0; i < n; i++) {
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
 | |
|             mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
 | |
|             qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
 | |
|             EMIT_ARG(load_const_str, id2);
 | |
|         }
 | |
|         EMIT_ARG(build, n, MP_EMIT_BUILD_TUPLE);
 | |
| 
 | |
|         // do the import
 | |
|         qstr dummy_q;
 | |
|         do_import_name(comp, pn_import_source, &dummy_q);
 | |
|         for (size_t i = 0; i < n; i++) {
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
 | |
|             mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
 | |
|             qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
 | |
|             EMIT_ARG(import, id2, MP_EMIT_IMPORT_FROM);
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
 | |
|                 compile_store_id(comp, id2);
 | |
|             } else {
 | |
|                 compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
 | |
|             }
 | |
|         }
 | |
|         EMIT(pop_top);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
 | |
|     if (id_info->kind != ID_INFO_KIND_UNDECIDED && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
 | |
|         compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as global"));
 | |
|         return;
 | |
|     }
 | |
|     id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
 | |
| 
 | |
|     // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
 | |
|     id_info = scope_find_global(comp->scope_cur, id_info->qst);
 | |
|     if (id_info != NULL) {
 | |
|         id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
 | |
|     if (id_info->kind == ID_INFO_KIND_UNDECIDED) {
 | |
|         id_info->kind = ID_INFO_KIND_GLOBAL_IMPLICIT;
 | |
|         scope_check_to_close_over(comp->scope_cur, id_info);
 | |
|         if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
 | |
|             compile_syntax_error(comp, pn, MP_ERROR_TEXT("no binding for nonlocal found"));
 | |
|         }
 | |
|     } else if (id_info->kind != ID_INFO_KIND_FREE) {
 | |
|         compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as nonlocal"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         bool is_global = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_global_stmt;
 | |
| 
 | |
|         if (!is_global && comp->scope_cur->kind == SCOPE_MODULE) {
 | |
|             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't declare nonlocal in outer code"));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         mp_parse_node_t *nodes;
 | |
|         size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
 | |
|         for (size_t i = 0; i < n; i++) {
 | |
|             qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]);
 | |
|             id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, ID_INFO_KIND_UNDECIDED);
 | |
|             if (is_global) {
 | |
|                 compile_declare_global(comp, (mp_parse_node_t)pns, id_info);
 | |
|             } else {
 | |
|                 compile_declare_nonlocal(comp, (mp_parse_node_t)pns, id_info);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // with optimisations enabled we don't compile assertions
 | |
|     if (MP_STATE_VM(mp_optimise_value) != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     uint l_end = comp_next_label(comp);
 | |
|     c_if_cond(comp, pns->nodes[0], true, l_end);
 | |
|     EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
 | |
|     if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
 | |
|         // assertion message
 | |
|         compile_node(comp, pns->nodes[1]);
 | |
|         EMIT_ARG(call_function, 1, 0, 0);
 | |
|     }
 | |
|     EMIT_ARG(raise_varargs, 1);
 | |
|     EMIT_ARG(label_assign, l_end);
 | |
| }
 | |
| 
 | |
| STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     uint l_end = comp_next_label(comp);
 | |
| 
 | |
|     // optimisation: don't emit anything when "if False"
 | |
|     if (!mp_parse_node_is_const_false(pns->nodes[0])) {
 | |
|         uint l_fail = comp_next_label(comp);
 | |
|         c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
 | |
| 
 | |
|         compile_node(comp, pns->nodes[1]); // if block
 | |
| 
 | |
|         // optimisation: skip everything else when "if True"
 | |
|         if (mp_parse_node_is_const_true(pns->nodes[0])) {
 | |
|             goto done;
 | |
|         }
 | |
| 
 | |
|         if (
 | |
|             // optimisation: don't jump over non-existent elif/else blocks
 | |
|             !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
 | |
|             // optimisation: don't jump if last instruction was return
 | |
|             && !EMIT(last_emit_was_return_value)
 | |
|             ) {
 | |
|             // jump over elif/else blocks
 | |
|             EMIT_ARG(jump, l_end);
 | |
|         }
 | |
| 
 | |
|         EMIT_ARG(label_assign, l_fail);
 | |
|     }
 | |
| 
 | |
|     // compile elif blocks (if any)
 | |
|     mp_parse_node_t *pn_elif;
 | |
|     size_t n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
 | |
|     for (size_t i = 0; i < n_elif; i++) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
 | |
|         mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t *)pn_elif[i];
 | |
| 
 | |
|         // optimisation: don't emit anything when "if False"
 | |
|         if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
 | |
|             uint l_fail = comp_next_label(comp);
 | |
|             c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
 | |
| 
 | |
|             compile_node(comp, pns_elif->nodes[1]); // elif block
 | |
| 
 | |
|             // optimisation: skip everything else when "elif True"
 | |
|             if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
 | |
|                 goto done;
 | |
|             }
 | |
| 
 | |
|             // optimisation: don't jump if last instruction was return
 | |
|             if (!EMIT(last_emit_was_return_value)) {
 | |
|                 EMIT_ARG(jump, l_end);
 | |
|             }
 | |
|             EMIT_ARG(label_assign, l_fail);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compile else block
 | |
|     compile_node(comp, pns->nodes[3]); // can be null
 | |
| 
 | |
| done:
 | |
|     EMIT_ARG(label_assign, l_end);
 | |
| }
 | |
| 
 | |
| #define START_BREAK_CONTINUE_BLOCK \
 | |
|     uint16_t old_break_label = comp->break_label; \
 | |
|     uint16_t old_continue_label = comp->continue_label; \
 | |
|     uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
 | |
|     uint break_label = comp_next_label(comp); \
 | |
|     uint continue_label = comp_next_label(comp); \
 | |
|     comp->break_label = break_label; \
 | |
|     comp->continue_label = continue_label; \
 | |
|     comp->break_continue_except_level = comp->cur_except_level;
 | |
| 
 | |
| #define END_BREAK_CONTINUE_BLOCK \
 | |
|     comp->break_label = old_break_label; \
 | |
|     comp->continue_label = old_continue_label; \
 | |
|     comp->break_continue_except_level = old_break_continue_except_level;
 | |
| 
 | |
| STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     START_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
 | |
|         uint top_label = comp_next_label(comp);
 | |
|         if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
 | |
|             EMIT_ARG(jump, continue_label);
 | |
|         }
 | |
|         EMIT_ARG(label_assign, top_label);
 | |
|         compile_node(comp, pns->nodes[1]); // body
 | |
|         EMIT_ARG(label_assign, continue_label);
 | |
|         c_if_cond(comp, pns->nodes[0], true, top_label); // condition
 | |
|     }
 | |
| 
 | |
|     // break/continue apply to outer loop (if any) in the else block
 | |
|     END_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     compile_node(comp, pns->nodes[2]); // else
 | |
| 
 | |
|     EMIT_ARG(label_assign, break_label);
 | |
| }
 | |
| 
 | |
| // This function compiles an optimised for-loop of the form:
 | |
| //      for <var> in range(<start>, <end>, <step>):
 | |
| //          <body>
 | |
| //      else:
 | |
| //          <else>
 | |
| // <var> must be an identifier and <step> must be a small-int.
 | |
| //
 | |
| // Semantics of for-loop require:
 | |
| //  - final failing value should not be stored in the loop variable
 | |
| //  - if the loop never runs, the loop variable should never be assigned
 | |
| //  - assignments to <var>, <end> or <step> in the body do not alter the loop
 | |
| //    (<step> is a constant for us, so no need to worry about it changing)
 | |
| //
 | |
| // If <end> is a small-int, then the stack during the for-loop contains just
 | |
| // the current value of <var>.  Otherwise, the stack contains <end> then the
 | |
| // current value of <var>.
 | |
| STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
 | |
|     START_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     uint top_label = comp_next_label(comp);
 | |
|     uint entry_label = comp_next_label(comp);
 | |
| 
 | |
|     // put the end value on the stack if it's not a small-int constant
 | |
|     bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
 | |
|     if (end_on_stack) {
 | |
|         compile_node(comp, pn_end);
 | |
|     }
 | |
| 
 | |
|     // compile: start
 | |
|     compile_node(comp, pn_start);
 | |
| 
 | |
|     EMIT_ARG(jump, entry_label);
 | |
|     EMIT_ARG(label_assign, top_label);
 | |
| 
 | |
|     // duplicate next value and store it to var
 | |
|     EMIT(dup_top);
 | |
|     c_assign(comp, pn_var, ASSIGN_STORE);
 | |
| 
 | |
|     // compile body
 | |
|     compile_node(comp, pn_body);
 | |
| 
 | |
|     EMIT_ARG(label_assign, continue_label);
 | |
| 
 | |
|     // compile: var + step
 | |
|     compile_node(comp, pn_step);
 | |
|     EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
 | |
| 
 | |
|     EMIT_ARG(label_assign, entry_label);
 | |
| 
 | |
|     // compile: if var <cond> end: goto top
 | |
|     if (end_on_stack) {
 | |
|         EMIT(dup_top_two);
 | |
|         EMIT(rot_two);
 | |
|     } else {
 | |
|         EMIT(dup_top);
 | |
|         compile_node(comp, pn_end);
 | |
|     }
 | |
|     assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
 | |
|     if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
 | |
|         EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
 | |
|     } else {
 | |
|         EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
 | |
|     }
 | |
|     EMIT_ARG(pop_jump_if, true, top_label);
 | |
| 
 | |
|     // break/continue apply to outer loop (if any) in the else block
 | |
|     END_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     // Compile the else block.  We must pop the iterator variables before
 | |
|     // executing the else code because it may contain break/continue statements.
 | |
|     uint end_label = 0;
 | |
|     if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
 | |
|         // discard final value of "var", and possible "end" value
 | |
|         EMIT(pop_top);
 | |
|         if (end_on_stack) {
 | |
|             EMIT(pop_top);
 | |
|         }
 | |
|         compile_node(comp, pn_else);
 | |
|         end_label = comp_next_label(comp);
 | |
|         EMIT_ARG(jump, end_label);
 | |
|         EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
 | |
|     }
 | |
| 
 | |
|     EMIT_ARG(label_assign, break_label);
 | |
| 
 | |
|     // discard final value of var that failed the loop condition
 | |
|     EMIT(pop_top);
 | |
| 
 | |
|     // discard <end> value if it's on the stack
 | |
|     if (end_on_stack) {
 | |
|         EMIT(pop_top);
 | |
|     }
 | |
| 
 | |
|     if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
 | |
|         EMIT_ARG(label_assign, end_label);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
 | |
|     // this is actually slower, but uses no heap memory
 | |
|     // for viper it will be much, much faster
 | |
|     if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
 | |
|         mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|         if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
 | |
|             && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
 | |
|             && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pns_it->nodes[1]) == PN_trailer_paren) {
 | |
|             mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t *)pns_it->nodes[1])->nodes[0];
 | |
|             mp_parse_node_t *args;
 | |
|             size_t n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
 | |
|             mp_parse_node_t pn_range_start;
 | |
|             mp_parse_node_t pn_range_end;
 | |
|             mp_parse_node_t pn_range_step;
 | |
|             bool optimize = false;
 | |
|             if (1 <= n_args && n_args <= 3) {
 | |
|                 optimize = true;
 | |
|                 if (n_args == 1) {
 | |
|                     pn_range_start = mp_parse_node_new_small_int(0);
 | |
|                     pn_range_end = args[0];
 | |
|                     pn_range_step = mp_parse_node_new_small_int(1);
 | |
|                 } else if (n_args == 2) {
 | |
|                     pn_range_start = args[0];
 | |
|                     pn_range_end = args[1];
 | |
|                     pn_range_step = mp_parse_node_new_small_int(1);
 | |
|                 } else {
 | |
|                     pn_range_start = args[0];
 | |
|                     pn_range_end = args[1];
 | |
|                     pn_range_step = args[2];
 | |
|                     // the step must be a non-zero constant integer to do the optimisation
 | |
|                     if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
 | |
|                         || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
 | |
|                         optimize = false;
 | |
|                     }
 | |
|                 }
 | |
|                 // arguments must be able to be compiled as standard expressions
 | |
|                 if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
 | |
|                     int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_start);
 | |
|                     if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
 | |
|                         optimize = false;
 | |
|                     }
 | |
|                 }
 | |
|                 if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
 | |
|                     int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_end);
 | |
|                     if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
 | |
|                         optimize = false;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (optimize) {
 | |
|                 compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     START_BREAK_CONTINUE_BLOCK
 | |
|     comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
 | |
| 
 | |
|     uint pop_label = comp_next_label(comp);
 | |
| 
 | |
|     compile_node(comp, pns->nodes[1]); // iterator
 | |
|     EMIT_ARG(get_iter, true);
 | |
|     EMIT_ARG(label_assign, continue_label);
 | |
|     EMIT_ARG(for_iter, pop_label);
 | |
|     c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
 | |
|     compile_node(comp, pns->nodes[2]); // body
 | |
|     if (!EMIT(last_emit_was_return_value)) {
 | |
|         EMIT_ARG(jump, continue_label);
 | |
|     }
 | |
|     EMIT_ARG(label_assign, pop_label);
 | |
|     EMIT(for_iter_end);
 | |
| 
 | |
|     // break/continue apply to outer loop (if any) in the else block
 | |
|     END_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     compile_node(comp, pns->nodes[3]); // else (may be empty)
 | |
| 
 | |
|     EMIT_ARG(label_assign, break_label);
 | |
| }
 | |
| 
 | |
| STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
 | |
|     // setup code
 | |
|     uint l1 = comp_next_label(comp);
 | |
|     uint success_label = comp_next_label(comp);
 | |
| 
 | |
|     compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT);
 | |
| 
 | |
|     compile_node(comp, pn_body); // body
 | |
|     EMIT_ARG(pop_except_jump, success_label, false); // jump over exception handler
 | |
| 
 | |
|     EMIT_ARG(label_assign, l1); // start of exception handler
 | |
|     EMIT(start_except_handler);
 | |
| 
 | |
|     // at this point the top of the stack contains the exception instance that was raised
 | |
| 
 | |
|     uint l2 = comp_next_label(comp);
 | |
| 
 | |
|     for (int i = 0; i < n_except; i++) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
 | |
|         mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t *)pn_excepts[i];
 | |
| 
 | |
|         qstr qstr_exception_local = 0;
 | |
|         uint end_finally_label = comp_next_label(comp);
 | |
|         #if MICROPY_PY_SYS_SETTRACE
 | |
|         EMIT_ARG(set_source_line, pns_except->source_line);
 | |
|         #endif
 | |
| 
 | |
|         if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
 | |
|             // this is a catch all exception handler
 | |
|             if (i + 1 != n_except) {
 | |
|                 compile_syntax_error(comp, pn_excepts[i], MP_ERROR_TEXT("default 'except' must be last"));
 | |
|                 compile_decrease_except_level(comp);
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             // this exception handler requires a match to a certain type of exception
 | |
|             mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
 | |
|             if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
 | |
|                 mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pns_exception_expr;
 | |
|                 if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
 | |
|                     // handler binds the exception to a local
 | |
|                     pns_exception_expr = pns3->nodes[0];
 | |
|                     qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
 | |
|                 }
 | |
|             }
 | |
|             EMIT(dup_top);
 | |
|             compile_node(comp, pns_exception_expr);
 | |
|             EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
 | |
|             EMIT_ARG(pop_jump_if, false, end_finally_label);
 | |
|         }
 | |
| 
 | |
|         // either discard or store the exception instance
 | |
|         if (qstr_exception_local == 0) {
 | |
|             EMIT(pop_top);
 | |
|         } else {
 | |
|             compile_store_id(comp, qstr_exception_local);
 | |
|         }
 | |
| 
 | |
|         // If the exception is bound to a variable <e> then the <body> of the
 | |
|         // exception handler is wrapped in a try-finally so that the name <e> can
 | |
|         // be deleted (per Python semantics) even if the <body> has an exception.
 | |
|         // In such a case the generated code for the exception handler is:
 | |
|         //      try:
 | |
|         //          <body>
 | |
|         //      finally:
 | |
|         //          <e> = None
 | |
|         //          del <e>
 | |
|         uint l3 = 0;
 | |
|         if (qstr_exception_local != 0) {
 | |
|             l3 = comp_next_label(comp);
 | |
|             compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY);
 | |
|         }
 | |
|         compile_node(comp, pns_except->nodes[1]); // the <body>
 | |
|         if (qstr_exception_local != 0) {
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|             EMIT_ARG(label_assign, l3);
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|             compile_store_id(comp, qstr_exception_local);
 | |
|             compile_delete_id(comp, qstr_exception_local);
 | |
|             compile_decrease_except_level(comp);
 | |
|         }
 | |
| 
 | |
|         EMIT_ARG(pop_except_jump, l2, true);
 | |
|         EMIT_ARG(label_assign, end_finally_label);
 | |
|         EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
 | |
|     }
 | |
| 
 | |
|     compile_decrease_except_level(comp);
 | |
|     EMIT(end_except_handler);
 | |
| 
 | |
|     EMIT_ARG(label_assign, success_label);
 | |
|     compile_node(comp, pn_else); // else block, can be null
 | |
|     EMIT_ARG(label_assign, l2);
 | |
| }
 | |
| 
 | |
| STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
 | |
|     uint l_finally_block = comp_next_label(comp);
 | |
| 
 | |
|     compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
 | |
| 
 | |
|     if (n_except == 0) {
 | |
|         assert(MP_PARSE_NODE_IS_NULL(pn_else));
 | |
|         EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
 | |
|         compile_node(comp, pn_body);
 | |
|         EMIT_ARG(adjust_stack_size, -3);
 | |
|     } else {
 | |
|         compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
 | |
|     }
 | |
|     EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|     EMIT_ARG(label_assign, l_finally_block);
 | |
|     compile_node(comp, pn_finally);
 | |
| 
 | |
|     compile_decrease_except_level(comp);
 | |
| }
 | |
| 
 | |
| STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
 | |
|     {
 | |
|         mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
 | |
|             // just try-finally
 | |
|             compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
 | |
|             // try-except and possibly else and/or finally
 | |
|             mp_parse_node_t *pn_excepts;
 | |
|             size_t n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
 | |
|                 // no finally
 | |
|                 compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
 | |
|             } else {
 | |
|                 // have finally
 | |
|                 compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t *)pns2->nodes[2])->nodes[0]);
 | |
|             }
 | |
|         } else {
 | |
|             // just try-except
 | |
|             mp_parse_node_t *pn_excepts;
 | |
|             size_t n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
 | |
|             compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
 | |
|     if (n == 0) {
 | |
|         // no more pre-bits, compile the body of the with
 | |
|         compile_node(comp, body);
 | |
|     } else {
 | |
|         uint l_end = comp_next_label(comp);
 | |
|         if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
 | |
|             // this pre-bit is of the form "a as b"
 | |
|             mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
 | |
|             compile_node(comp, pns->nodes[0]);
 | |
|             compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
 | |
|             c_assign(comp, pns->nodes[1], ASSIGN_STORE);
 | |
|         } else {
 | |
|             // this pre-bit is just an expression
 | |
|             compile_node(comp, nodes[0]);
 | |
|             compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
 | |
|             EMIT(pop_top);
 | |
|         }
 | |
|         // compile additional pre-bits and the body
 | |
|         compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
 | |
|         // finish this with block
 | |
|         EMIT_ARG(with_cleanup, l_end);
 | |
|         reserve_labels_for_native(comp, 3); // used by native's with_cleanup
 | |
|         compile_decrease_except_level(comp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
 | |
|     mp_parse_node_t *nodes;
 | |
|     size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
 | |
|     assert(n > 0);
 | |
| 
 | |
|     // compile in a nested fashion
 | |
|     compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
 | |
| }
 | |
| 
 | |
| STATIC void compile_yield_from(compiler_t *comp) {
 | |
|     EMIT_ARG(get_iter, false);
 | |
|     EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|     EMIT_ARG(yield, MP_EMIT_YIELD_FROM);
 | |
|     reserve_labels_for_native(comp, 3);
 | |
| }
 | |
| 
 | |
| #if MICROPY_PY_ASYNC_AWAIT
 | |
| STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
 | |
|     EMIT_ARG(load_method, method, false);
 | |
|     EMIT_ARG(call_method, 0, 0, 0);
 | |
|     compile_yield_from(comp);
 | |
| }
 | |
| 
 | |
| STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
 | |
| 
 | |
|     qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
 | |
|     uint while_else_label = comp_next_label(comp);
 | |
|     uint try_exception_label = comp_next_label(comp);
 | |
|     uint try_else_label = comp_next_label(comp);
 | |
|     uint try_finally_label = comp_next_label(comp);
 | |
| 
 | |
|     compile_node(comp, pns->nodes[1]); // iterator
 | |
|     EMIT_ARG(load_method, MP_QSTR___aiter__, false);
 | |
|     EMIT_ARG(call_method, 0, 0, 0);
 | |
|     compile_store_id(comp, context);
 | |
| 
 | |
|     START_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     EMIT_ARG(label_assign, continue_label);
 | |
| 
 | |
|     compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT);
 | |
| 
 | |
|     compile_load_id(comp, context);
 | |
|     compile_await_object_method(comp, MP_QSTR___anext__);
 | |
|     c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
 | |
|     EMIT_ARG(pop_except_jump, try_else_label, false);
 | |
| 
 | |
|     EMIT_ARG(label_assign, try_exception_label);
 | |
|     EMIT(start_except_handler);
 | |
|     EMIT(dup_top);
 | |
|     EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
 | |
|     EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
 | |
|     EMIT_ARG(pop_jump_if, false, try_finally_label);
 | |
|     EMIT(pop_top); // pop exception instance
 | |
|     EMIT_ARG(pop_except_jump, while_else_label, true);
 | |
| 
 | |
|     EMIT_ARG(label_assign, try_finally_label);
 | |
|     EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
 | |
|     compile_decrease_except_level(comp);
 | |
|     EMIT(end_except_handler);
 | |
| 
 | |
|     EMIT_ARG(label_assign, try_else_label);
 | |
|     compile_node(comp, pns->nodes[2]); // body
 | |
| 
 | |
|     EMIT_ARG(jump, continue_label);
 | |
|     // break/continue apply to outer loop (if any) in the else block
 | |
|     END_BREAK_CONTINUE_BLOCK
 | |
| 
 | |
|     EMIT_ARG(label_assign, while_else_label);
 | |
|     compile_node(comp, pns->nodes[3]); // else
 | |
| 
 | |
|     EMIT_ARG(label_assign, break_label);
 | |
| }
 | |
| 
 | |
| STATIC void compile_async_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
 | |
|     if (n == 0) {
 | |
|         // no more pre-bits, compile the body of the with
 | |
|         compile_node(comp, body);
 | |
|     } else {
 | |
|         uint l_finally_block = comp_next_label(comp);
 | |
|         uint l_aexit_no_exc = comp_next_label(comp);
 | |
|         uint l_ret_unwind_jump = comp_next_label(comp);
 | |
|         uint l_end = comp_next_label(comp);
 | |
| 
 | |
|         if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
 | |
|             // this pre-bit is of the form "a as b"
 | |
|             mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
 | |
|             compile_node(comp, pns->nodes[0]);
 | |
|             EMIT(dup_top);
 | |
|             compile_await_object_method(comp, MP_QSTR___aenter__);
 | |
|             c_assign(comp, pns->nodes[1], ASSIGN_STORE);
 | |
|         } else {
 | |
|             // this pre-bit is just an expression
 | |
|             compile_node(comp, nodes[0]);
 | |
|             EMIT(dup_top);
 | |
|             compile_await_object_method(comp, MP_QSTR___aenter__);
 | |
|             EMIT(pop_top);
 | |
|         }
 | |
| 
 | |
|         // To keep the Python stack size down, and because we can't access values on
 | |
|         // this stack further down than 3 elements (via rot_three), we don't preload
 | |
|         // __aexit__ (as per normal with) but rather wait until we need it below.
 | |
| 
 | |
|         // Start the try-finally statement
 | |
|         compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
 | |
| 
 | |
|         // Compile any additional pre-bits of the "async with", and also the body
 | |
|         EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
 | |
|         compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
 | |
|         EMIT_ARG(adjust_stack_size, -3);
 | |
| 
 | |
|         // We have now finished the "try" block and fall through to the "finally"
 | |
| 
 | |
|         // At this point, after the with body has executed, we have 3 cases:
 | |
|         // 1. no exception, we just fall through to this point; stack: (..., ctx_mgr)
 | |
|         // 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc)
 | |
|         // 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT)
 | |
| 
 | |
|         // Handle case 1: call __aexit__
 | |
|         // Stack: (..., ctx_mgr)
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception
 | |
|         EMIT(rot_two);
 | |
|         EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__
 | |
| 
 | |
|         // Start of "finally" block
 | |
|         // At this point we have case 2 or 3, we detect which one by the TOS being an exception or not
 | |
|         EMIT_ARG(label_assign, l_finally_block);
 | |
| 
 | |
|         // Detect if TOS an exception or not
 | |
|         EMIT(dup_top);
 | |
|         EMIT_LOAD_GLOBAL(MP_QSTR_BaseException);
 | |
|         EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
 | |
|         EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3
 | |
| 
 | |
|         // Handle case 2: call __aexit__ and either swallow or re-raise the exception
 | |
|         // Stack: (..., ctx_mgr, exc)
 | |
|         EMIT(dup_top);
 | |
|         EMIT(rot_three);
 | |
|         EMIT(rot_two);
 | |
|         EMIT_ARG(load_method, MP_QSTR___aexit__, false);
 | |
|         EMIT(rot_three);
 | |
|         EMIT(rot_three);
 | |
|         EMIT(dup_top);
 | |
|         #if MICROPY_CPYTHON_COMPAT
 | |
|         EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc)
 | |
|         #else
 | |
|         compile_load_id(comp, MP_QSTR_type);
 | |
|         EMIT(rot_two);
 | |
|         EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
 | |
|         #endif
 | |
|         EMIT(rot_two);
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
 | |
|         // Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None)
 | |
|         EMIT_ARG(call_method, 3, 0, 0);
 | |
|         compile_yield_from(comp);
 | |
|         EMIT_ARG(pop_jump_if, false, l_end);
 | |
|         EMIT(pop_top); // pop exception
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception
 | |
|         EMIT_ARG(jump, l_end);
 | |
|         EMIT_ARG(adjust_stack_size, 2);
 | |
| 
 | |
|         // Handle case 3: call __aexit__
 | |
|         // Stack: (..., ctx_mgr, X, INT)
 | |
|         EMIT_ARG(label_assign, l_ret_unwind_jump);
 | |
|         EMIT(rot_three);
 | |
|         EMIT(rot_three);
 | |
|         EMIT_ARG(label_assign, l_aexit_no_exc);
 | |
|         EMIT_ARG(load_method, MP_QSTR___aexit__, false);
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         EMIT(dup_top);
 | |
|         EMIT(dup_top);
 | |
|         EMIT_ARG(call_method, 3, 0, 0);
 | |
|         compile_yield_from(comp);
 | |
|         EMIT(pop_top);
 | |
|         EMIT_ARG(adjust_stack_size, -1);
 | |
| 
 | |
|         // End of "finally" block
 | |
|         // Stack can have one of three configurations:
 | |
|         // a. (..., None) - from either case 1, or case 2 with swallowed exception
 | |
|         // b. (..., exc) - from case 2 with re-raised exception
 | |
|         // c. (..., X, INT) - from case 3
 | |
|         EMIT_ARG(label_assign, l_end);
 | |
|         compile_decrease_except_level(comp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
 | |
|     mp_parse_node_t *nodes;
 | |
|     size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
 | |
|     assert(n > 0);
 | |
| 
 | |
|     // compile in a nested fashion
 | |
|     compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
 | |
| }
 | |
| 
 | |
| STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
 | |
|     mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|     if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
 | |
|         // async def
 | |
|         compile_funcdef(comp, pns0);
 | |
|         scope_t *fscope = (scope_t *)pns0->nodes[4];
 | |
|         fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
 | |
|     } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
 | |
|         // async for
 | |
|         compile_async_for_stmt(comp, pns0);
 | |
|     } else {
 | |
|         // async with
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
 | |
|         compile_async_with_stmt(comp, pns0);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     mp_parse_node_t pn_rhs = pns->nodes[1];
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn_rhs)) {
 | |
|         if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
 | |
|             // for REPL, evaluate then print the expression
 | |
|             compile_load_id(comp, MP_QSTR___repl_print__);
 | |
|             compile_node(comp, pns->nodes[0]);
 | |
|             EMIT_ARG(call_function, 1, 0, 0);
 | |
|             EMIT(pop_top);
 | |
| 
 | |
|         } else {
 | |
|             // for non-REPL, evaluate then discard the expression
 | |
|             if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
 | |
|                 || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
 | |
|                 // do nothing with a lonely constant
 | |
|             } else {
 | |
|                 compile_node(comp, pns->nodes[0]); // just an expression
 | |
|                 EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
 | |
|             }
 | |
|         }
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT(pn_rhs)) {
 | |
|         mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn_rhs;
 | |
|         int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
 | |
|         if (kind == PN_annassign) {
 | |
|             // the annotation is in pns1->nodes[0] and is ignored
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns1->nodes[1])) {
 | |
|                 // an annotation of the form "x: y"
 | |
|                 // inside a function this declares "x" as a local
 | |
|                 if (comp->scope_cur->kind == SCOPE_FUNCTION) {
 | |
|                     if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
 | |
|                         qstr lhs = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|                         scope_find_or_add_id(comp->scope_cur, lhs, ID_INFO_KIND_LOCAL);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 // an assigned annotation of the form "x: y = z"
 | |
|                 pn_rhs = pns1->nodes[1];
 | |
|                 goto plain_assign;
 | |
|             }
 | |
|         } else if (kind == PN_expr_stmt_augassign) {
 | |
|             c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
 | |
|             compile_node(comp, pns1->nodes[1]); // rhs
 | |
|             assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
 | |
|             mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
 | |
|             mp_binary_op_t op = MP_BINARY_OP_INPLACE_OR + (tok - MP_TOKEN_DEL_PIPE_EQUAL);
 | |
|             EMIT_ARG(binary_op, op);
 | |
|             c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
 | |
|         } else if (kind == PN_expr_stmt_assign_list) {
 | |
|             int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
 | |
|             compile_node(comp, pns1->nodes[rhs]); // rhs
 | |
|             // following CPython, we store left-most first
 | |
|             if (rhs > 0) {
 | |
|                 EMIT(dup_top);
 | |
|             }
 | |
|             c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
 | |
|             for (int i = 0; i < rhs; i++) {
 | |
|                 if (i + 1 < rhs) {
 | |
|                     EMIT(dup_top);
 | |
|                 }
 | |
|                 c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
 | |
|             }
 | |
|         } else {
 | |
|         plain_assign:
 | |
|             #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
 | |
|             if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_rhs, PN_testlist_star_expr)
 | |
|                 && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) {
 | |
|                 mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|                 pns1 = (mp_parse_node_struct_t *)pn_rhs;
 | |
|                 uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0);
 | |
|                 // Can only optimise a tuple-to-tuple assignment when all of the following hold:
 | |
|                 //  - equal number of items in LHS and RHS tuples
 | |
|                 //  - 2 or 3 items in the tuples
 | |
|                 //  - there are no star expressions in the LHS tuple
 | |
|                 if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1)
 | |
|                     && (n_pns0 == 2
 | |
|                         #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
 | |
|                         || n_pns0 == 3
 | |
|                         #endif
 | |
|                         )
 | |
|                     && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
 | |
|                     && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
 | |
|                     #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
 | |
|                     && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr))
 | |
|                     #endif
 | |
|                     ) {
 | |
|                     // Optimisation for a, b = c, d or a, b, c = d, e, f
 | |
|                     compile_node(comp, pns1->nodes[0]); // rhs
 | |
|                     compile_node(comp, pns1->nodes[1]); // rhs
 | |
|                     #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
 | |
|                     if (n_pns0 == 3) {
 | |
|                         compile_node(comp, pns1->nodes[2]); // rhs
 | |
|                         EMIT(rot_three);
 | |
|                     }
 | |
|                     #endif
 | |
|                     EMIT(rot_two);
 | |
|                     c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
 | |
|                     c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
 | |
|                     #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
 | |
|                     if (n_pns0 == 3) {
 | |
|                         c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
 | |
|                     }
 | |
|                     #endif
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             #endif
 | |
| 
 | |
|             compile_node(comp, pn_rhs); // rhs
 | |
|             c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
 | |
|         }
 | |
|     } else {
 | |
|         goto plain_assign;
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
 | |
|     mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
| 
 | |
|     uint l_fail = comp_next_label(comp);
 | |
|     uint l_end = comp_next_label(comp);
 | |
|     c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
 | |
|     compile_node(comp, pns->nodes[0]); // success value
 | |
|     EMIT_ARG(jump, l_end);
 | |
|     EMIT_ARG(label_assign, l_fail);
 | |
|     EMIT_ARG(adjust_stack_size, -1); // adjust stack size
 | |
|     compile_node(comp, pns_test_if_else->nodes[1]); // failure value
 | |
|     EMIT_ARG(label_assign, l_end);
 | |
| }
 | |
| 
 | |
| STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         // create a new scope for this lambda
 | |
|         scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
 | |
|         // store the lambda scope so the compiling function (this one) can use it at each pass
 | |
|         pns->nodes[2] = (mp_parse_node_t)s;
 | |
|     }
 | |
| 
 | |
|     // get the scope for this lambda
 | |
|     scope_t *this_scope = (scope_t *)pns->nodes[2];
 | |
| 
 | |
|     // compile the lambda definition
 | |
|     compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
 | |
| }
 | |
| 
 | |
| #if MICROPY_PY_ASSIGN_EXPR
 | |
| STATIC void compile_namedexpr_helper(compiler_t *comp, mp_parse_node_t pn_name, mp_parse_node_t pn_expr) {
 | |
|     if (!MP_PARSE_NODE_IS_ID(pn_name)) {
 | |
|         compile_syntax_error(comp, (mp_parse_node_t)pn_name, MP_ERROR_TEXT("can't assign to expression"));
 | |
|     }
 | |
|     compile_node(comp, pn_expr);
 | |
|     EMIT(dup_top);
 | |
|     scope_t *old_scope = comp->scope_cur;
 | |
|     if (SCOPE_IS_COMP_LIKE(comp->scope_cur->kind)) {
 | |
|         // Use parent's scope for assigned value so it can "escape"
 | |
|         comp->scope_cur = comp->scope_cur->parent;
 | |
|     }
 | |
|     compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pn_name));
 | |
|     comp->scope_cur = old_scope;
 | |
| }
 | |
| 
 | |
| STATIC void compile_namedexpr(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_namedexpr_helper(comp, pns->nodes[0], pns->nodes[1]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     bool cond = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test;
 | |
|     uint l_end = comp_next_label(comp);
 | |
|     int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|     for (int i = 0; i < n; i += 1) {
 | |
|         compile_node(comp, pns->nodes[i]);
 | |
|         if (i + 1 < n) {
 | |
|             EMIT_ARG(jump_if_or_pop, cond, l_end);
 | |
|         }
 | |
|     }
 | |
|     EMIT_ARG(label_assign, l_end);
 | |
| }
 | |
| 
 | |
| STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
|     EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
 | |
| }
 | |
| 
 | |
| STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
|     bool multi = (num_nodes > 3);
 | |
|     uint l_fail = 0;
 | |
|     if (multi) {
 | |
|         l_fail = comp_next_label(comp);
 | |
|     }
 | |
|     for (int i = 1; i + 1 < num_nodes; i += 2) {
 | |
|         compile_node(comp, pns->nodes[i + 1]);
 | |
|         if (i + 2 < num_nodes) {
 | |
|             EMIT(dup_top);
 | |
|             EMIT(rot_three);
 | |
|         }
 | |
|         if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
 | |
|             mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
 | |
|             mp_binary_op_t op;
 | |
|             if (tok == MP_TOKEN_KW_IN) {
 | |
|                 op = MP_BINARY_OP_IN;
 | |
|             } else {
 | |
|                 op = MP_BINARY_OP_LESS + (tok - MP_TOKEN_OP_LESS);
 | |
|             }
 | |
|             EMIT_ARG(binary_op, op);
 | |
|         } else {
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
 | |
|             mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[i];
 | |
|             int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
 | |
|             if (kind == PN_comp_op_not_in) {
 | |
|                 EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
 | |
|             } else {
 | |
|                 assert(kind == PN_comp_op_is); // should be
 | |
|                 if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
 | |
|                     EMIT_ARG(binary_op, MP_BINARY_OP_IS);
 | |
|                 } else {
 | |
|                     EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (i + 2 < num_nodes) {
 | |
|             EMIT_ARG(jump_if_or_pop, false, l_fail);
 | |
|         }
 | |
|     }
 | |
|     if (multi) {
 | |
|         uint l_end = comp_next_label(comp);
 | |
|         EMIT_ARG(jump, l_end);
 | |
|         EMIT_ARG(label_assign, l_fail);
 | |
|         EMIT_ARG(adjust_stack_size, 1);
 | |
|         EMIT(rot_two);
 | |
|         EMIT(pop_top);
 | |
|         EMIT_ARG(label_assign, l_end);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("*x must be assignment target"));
 | |
| }
 | |
| 
 | |
| STATIC void compile_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_xor_expr - PN_expr == MP_BINARY_OP_XOR);
 | |
|     MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_and_expr - PN_expr == MP_BINARY_OP_AND);
 | |
|     mp_binary_op_t binary_op = MP_BINARY_OP_OR + MP_PARSE_NODE_STRUCT_KIND(pns) - PN_expr;
 | |
|     int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
|     for (int i = 1; i < num_nodes; ++i) {
 | |
|         compile_node(comp, pns->nodes[i]);
 | |
|         EMIT_ARG(binary_op, binary_op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
|     for (int i = 1; i + 1 < num_nodes; i += 2) {
 | |
|         compile_node(comp, pns->nodes[i + 1]);
 | |
|         mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
 | |
|         mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS);
 | |
|         EMIT_ARG(binary_op, op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_node(comp, pns->nodes[1]);
 | |
|     mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|     mp_unary_op_t op;
 | |
|     if (tok == MP_TOKEN_OP_TILDE) {
 | |
|         op = MP_UNARY_OP_INVERT;
 | |
|     } else {
 | |
|         assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS);
 | |
|         op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS);
 | |
|     }
 | |
|     EMIT_ARG(unary_op, op);
 | |
| }
 | |
| 
 | |
| STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // compile the subject of the expression
 | |
|     compile_node(comp, pns->nodes[0]);
 | |
| 
 | |
|     // compile_atom_expr_await may call us with a NULL node
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
 | |
|     size_t num_trail = 1;
 | |
|     mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t **)&pns->nodes[1];
 | |
|     if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
 | |
|         num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
 | |
|         pns_trail = (mp_parse_node_struct_t **)&pns_trail[0]->nodes[0];
 | |
|     }
 | |
| 
 | |
|     // the current index into the array of trailers
 | |
|     size_t i = 0;
 | |
| 
 | |
|     // handle special super() call
 | |
|     if (comp->scope_cur->kind == SCOPE_FUNCTION
 | |
|         && MP_PARSE_NODE_IS_ID(pns->nodes[0])
 | |
|         && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
 | |
|         && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
 | |
|         && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
 | |
|         // at this point we have matched "super()" within a function
 | |
| 
 | |
|         // load the class for super to search for a parent
 | |
|         compile_load_id(comp, MP_QSTR___class__);
 | |
| 
 | |
|         // look for first argument to function (assumes it's "self")
 | |
|         bool found = false;
 | |
|         id_info_t *id = &comp->scope_cur->id_info[0];
 | |
|         for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
 | |
|             if (id->flags & ID_FLAG_IS_PARAM) {
 | |
|                 // first argument found; load it
 | |
|                 compile_load_id(comp, id->qst);
 | |
|                 found = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (!found) {
 | |
|             compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
 | |
|                 MP_ERROR_TEXT("super() can't find self")); // really a TypeError
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (num_trail >= 3
 | |
|             && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
 | |
|             && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
 | |
|             // optimisation for method calls super().f(...), to eliminate heap allocation
 | |
|             mp_parse_node_struct_t *pns_period = pns_trail[1];
 | |
|             mp_parse_node_struct_t *pns_paren = pns_trail[2];
 | |
|             EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
 | |
|             compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
 | |
|             i = 3;
 | |
|         } else {
 | |
|             // a super() call
 | |
|             EMIT_ARG(call_function, 2, 0, 0);
 | |
|             i = 1;
 | |
|         }
 | |
| 
 | |
|         #if MICROPY_COMP_CONST_LITERAL && MICROPY_PY_COLLECTIONS_ORDEREDDICT
 | |
|         // handle special OrderedDict constructor
 | |
|     } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])
 | |
|                && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_OrderedDict
 | |
|                && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
 | |
|                && MP_PARSE_NODE_IS_STRUCT_KIND(pns_trail[0]->nodes[0], PN_atom_brace)) {
 | |
|         // at this point we have matched "OrderedDict({...})"
 | |
| 
 | |
|         EMIT_ARG(call_function, 0, 0, 0);
 | |
|         mp_parse_node_struct_t *pns_dict = (mp_parse_node_struct_t *)pns_trail[0]->nodes[0];
 | |
|         compile_atom_brace_helper(comp, pns_dict, false);
 | |
|         i = 1;
 | |
|         #endif
 | |
|     }
 | |
| 
 | |
|     // compile the remaining trailers
 | |
|     for (; i < num_trail; i++) {
 | |
|         if (i + 1 < num_trail
 | |
|             && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
 | |
|             && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
 | |
|             // optimisation for method calls a.f(...), following PyPy
 | |
|             mp_parse_node_struct_t *pns_period = pns_trail[i];
 | |
|             mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
 | |
|             EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
 | |
|             compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
 | |
|             i += 1;
 | |
|         } else {
 | |
|             // node is one of: trailer_paren, trailer_bracket, trailer_period
 | |
|             compile_node(comp, (mp_parse_node_t)pns_trail[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
 | |
|     EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
 | |
| }
 | |
| 
 | |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
 | |
|     // function to call is on top of stack
 | |
| 
 | |
|     // get the list of arguments
 | |
|     mp_parse_node_t *args;
 | |
|     size_t n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);
 | |
| 
 | |
|     // compile the arguments
 | |
|     // Rather than calling compile_node on the list, we go through the list of args
 | |
|     // explicitly here so that we can count the number of arguments and give sensible
 | |
|     // error messages.
 | |
|     int n_positional = n_positional_extra;
 | |
|     uint n_keyword = 0;
 | |
|     uint star_flags = 0;
 | |
|     mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
 | |
|     for (size_t i = 0; i < n_args; i++) {
 | |
|         if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
 | |
|             mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t *)args[i];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
 | |
|                 if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
 | |
|                     compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple *x"));
 | |
|                     return;
 | |
|                 }
 | |
|                 star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
 | |
|                 star_args_node = pns_arg;
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
 | |
|                 if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
 | |
|                     compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple **x"));
 | |
|                     return;
 | |
|                 }
 | |
|                 star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
 | |
|                 dblstar_args_node = pns_arg;
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
 | |
|                 #if MICROPY_PY_ASSIGN_EXPR
 | |
|                 if (MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_argument_3)) {
 | |
|                     compile_namedexpr_helper(comp, pns_arg->nodes[0], ((mp_parse_node_struct_t *)pns_arg->nodes[1])->nodes[0]);
 | |
|                     n_positional++;
 | |
|                 } else
 | |
|                 #endif
 | |
|                 if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
 | |
|                     if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
 | |
|                         compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("LHS of keyword arg must be an id"));
 | |
|                         return;
 | |
|                     }
 | |
|                     EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
 | |
|                     compile_node(comp, pns_arg->nodes[1]);
 | |
|                     n_keyword += 1;
 | |
|                 } else {
 | |
|                     compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
 | |
|                     n_positional++;
 | |
|                 }
 | |
|             } else {
 | |
|                 goto normal_argument;
 | |
|             }
 | |
|         } else {
 | |
|         normal_argument:
 | |
|             if (star_flags) {
 | |
|                 compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after */**"));
 | |
|                 return;
 | |
|             }
 | |
|             if (n_keyword > 0) {
 | |
|                 compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after keyword arg"));
 | |
|                 return;
 | |
|             }
 | |
|             compile_node(comp, args[i]);
 | |
|             n_positional++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compile the star/double-star arguments if we had them
 | |
|     // if we had one but not the other then we load "null" as a place holder
 | |
|     if (star_flags != 0) {
 | |
|         if (star_args_node == NULL) {
 | |
|             EMIT(load_null);
 | |
|         } else {
 | |
|             compile_node(comp, star_args_node->nodes[0]);
 | |
|         }
 | |
|         if (dblstar_args_node == NULL) {
 | |
|             EMIT(load_null);
 | |
|         } else {
 | |
|             compile_node(comp, dblstar_args_node->nodes[0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // emit the function/method call
 | |
|     if (is_method_call) {
 | |
|         EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
 | |
|     } else {
 | |
|         EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
 | |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
 | |
|     assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
 | |
|     assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
 | |
|     mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
| 
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         // create a new scope for this comprehension
 | |
|         scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
 | |
|         // store the comprehension scope so the compiling function (this one) can use it at each pass
 | |
|         pns_comp_for->nodes[3] = (mp_parse_node_t)s;
 | |
|     }
 | |
| 
 | |
|     // get the scope for this comprehension
 | |
|     scope_t *this_scope = (scope_t *)pns_comp_for->nodes[3];
 | |
| 
 | |
|     // compile the comprehension
 | |
|     close_over_variables_etc(comp, this_scope, 0, 0);
 | |
| 
 | |
|     compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
 | |
|     if (kind == SCOPE_GEN_EXPR) {
 | |
|         EMIT_ARG(get_iter, false);
 | |
|     }
 | |
|     EMIT_ARG(call_function, 1, 0, 0);
 | |
| }
 | |
| 
 | |
| STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|         // an empty tuple
 | |
|         c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
 | |
|         pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|         assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
 | |
|         if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
 | |
|             mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
 | |
|                 // tuple of one item, with trailing comma
 | |
|                 assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
 | |
|                 c_tuple(comp, pns->nodes[0], NULL);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
 | |
|                 // tuple of many items
 | |
|                 c_tuple(comp, pns->nodes[0], pns2);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
 | |
|                 // generator expression
 | |
|                 compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
 | |
|             } else {
 | |
|                 // tuple with 2 items
 | |
|                 goto tuple_with_2_items;
 | |
|             }
 | |
|         } else {
 | |
|             // tuple with 2 items
 | |
|         tuple_with_2_items:
 | |
|             c_tuple(comp, MP_PARSE_NODE_NULL, pns);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|         // empty list
 | |
|         EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
 | |
|         mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|         if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
 | |
|             mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pns2->nodes[1];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
 | |
|                 // list of one item, with trailing comma
 | |
|                 assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
 | |
|                 compile_node(comp, pns2->nodes[0]);
 | |
|                 EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
 | |
|                 // list of many items
 | |
|                 compile_node(comp, pns2->nodes[0]);
 | |
|                 compile_generic_all_nodes(comp, pns3);
 | |
|                 EMIT_ARG(build, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3), MP_EMIT_BUILD_LIST);
 | |
|             } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
 | |
|                 // list comprehension
 | |
|                 compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
 | |
|             } else {
 | |
|                 // list with 2 items
 | |
|                 goto list_with_2_items;
 | |
|             }
 | |
|         } else {
 | |
|             // list with 2 items
 | |
|         list_with_2_items:
 | |
|             compile_node(comp, pns2->nodes[0]);
 | |
|             compile_node(comp, pns2->nodes[1]);
 | |
|             EMIT_ARG(build, 2, MP_EMIT_BUILD_LIST);
 | |
|         }
 | |
|     } else {
 | |
|         // list with 1 item
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|         EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map) {
 | |
|     mp_parse_node_t pn = pns->nodes[0];
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         // empty dict
 | |
|         if (create_map) {
 | |
|             EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
 | |
|         }
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
 | |
|         pns = (mp_parse_node_struct_t *)pn;
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
 | |
|             // dict with one element
 | |
|             if (create_map) {
 | |
|                 EMIT_ARG(build, 1, MP_EMIT_BUILD_MAP);
 | |
|             }
 | |
|             compile_node(comp, pn);
 | |
|             EMIT(store_map);
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
 | |
|             mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|             if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
 | |
|                 // dict/set with multiple elements
 | |
| 
 | |
|                 // get tail elements (2nd, 3rd, ...)
 | |
|                 mp_parse_node_t *nodes;
 | |
|                 size_t n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
 | |
| 
 | |
|                 // first element sets whether it's a dict or set
 | |
|                 bool is_dict;
 | |
|                 if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
 | |
|                     // a dictionary
 | |
|                     if (create_map) {
 | |
|                         EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_MAP);
 | |
|                     }
 | |
|                     compile_node(comp, pns->nodes[0]);
 | |
|                     EMIT(store_map);
 | |
|                     is_dict = true;
 | |
|                 } else {
 | |
|                     // a set
 | |
|                     compile_node(comp, pns->nodes[0]); // 1st value of set
 | |
|                     is_dict = false;
 | |
|                 }
 | |
| 
 | |
|                 // process rest of elements
 | |
|                 for (size_t i = 0; i < n; i++) {
 | |
|                     mp_parse_node_t pn_i = nodes[i];
 | |
|                     bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
 | |
|                     compile_node(comp, pn_i);
 | |
|                     if (is_dict) {
 | |
|                         if (!is_key_value) {
 | |
|                             #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
 | |
|                             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
 | |
|                             #else
 | |
|                             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting key:value for dict"));
 | |
|                             #endif
 | |
|                             return;
 | |
|                         }
 | |
|                         EMIT(store_map);
 | |
|                     } else {
 | |
|                         if (is_key_value) {
 | |
|                             #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
 | |
|                             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
 | |
|                             #else
 | |
|                             compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting just a value for set"));
 | |
|                             #endif
 | |
|                             return;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 #if MICROPY_PY_BUILTINS_SET
 | |
|                 // if it's a set, build it
 | |
|                 if (!is_dict) {
 | |
|                     EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_SET);
 | |
|                 }
 | |
|                 #endif
 | |
|             } else {
 | |
|                 assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
 | |
|                 // dict/set comprehension
 | |
|                 if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
 | |
|                     // a dictionary comprehension
 | |
|                     compile_comprehension(comp, pns, SCOPE_DICT_COMP);
 | |
|                 } else {
 | |
|                     // a set comprehension
 | |
|                     compile_comprehension(comp, pns, SCOPE_SET_COMP);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             // set with one element
 | |
|             goto set_with_one_element;
 | |
|         }
 | |
|     } else {
 | |
|         // set with one element
 | |
|     set_with_one_element:
 | |
|         #if MICROPY_PY_BUILTINS_SET
 | |
|         compile_node(comp, pn);
 | |
|         EMIT_ARG(build, 1, MP_EMIT_BUILD_SET);
 | |
|         #else
 | |
|         assert(0);
 | |
|         #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_atom_brace_helper(comp, pns, true);
 | |
| }
 | |
| 
 | |
| STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
 | |
| }
 | |
| 
 | |
| STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // object who's index we want is on top of stack
 | |
|     compile_node(comp, pns->nodes[0]); // the index
 | |
|     EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
 | |
| }
 | |
| 
 | |
| STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // object who's attribute we want is on top of stack
 | |
|     EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), MP_EMIT_ATTR_LOAD); // attribute to get
 | |
| }
 | |
| 
 | |
| #if MICROPY_PY_BUILTINS_SLICE
 | |
| STATIC void compile_subscript(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_2) {
 | |
|         compile_node(comp, pns->nodes[0]); // start of slice
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
 | |
|         pns = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|     } else {
 | |
|         // pns is a PN_subscript_3, load None for start of slice
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|     }
 | |
| 
 | |
|     assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
 | |
|     mp_parse_node_t pn = pns->nodes[0];
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         // [?:]
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
 | |
|         pns = (mp_parse_node_struct_t *)pn;
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|             pn = pns->nodes[0];
 | |
|             if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|                 // [?::]
 | |
|                 EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
 | |
|             } else {
 | |
|                 // [?::x]
 | |
|                 compile_node(comp, pn);
 | |
|                 EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
 | |
|             }
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
 | |
|             compile_node(comp, pns->nodes[0]);
 | |
|             assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
 | |
|             pns = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
|             assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|                 // [?:x:]
 | |
|                 EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
 | |
|             } else {
 | |
|                 // [?:x:x]
 | |
|                 compile_node(comp, pns->nodes[0]);
 | |
|                 EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
 | |
|             }
 | |
|         } else {
 | |
|             // [?:x]
 | |
|             compile_node(comp, pn);
 | |
|             EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
 | |
|         }
 | |
|     } else {
 | |
|         // [?:x]
 | |
|         compile_node(comp, pn);
 | |
|         EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
 | |
|     }
 | |
| }
 | |
| #endif // MICROPY_PY_BUILTINS_SLICE
 | |
| 
 | |
| STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     // if this is called then we are compiling a dict key:value pair
 | |
|     compile_node(comp, pns->nodes[1]); // value
 | |
|     compile_node(comp, pns->nodes[0]); // key
 | |
| }
 | |
| 
 | |
| STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
 | |
|     // store class object into class name
 | |
|     compile_store_id(comp, cname);
 | |
| }
 | |
| 
 | |
| STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
 | |
|         compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield' outside function"));
 | |
|         return;
 | |
|     }
 | |
|     if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
 | |
|         reserve_labels_for_native(comp, 1);
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
 | |
|         pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|         compile_yield_from(comp);
 | |
|     } else {
 | |
|         compile_node(comp, pns->nodes[0]);
 | |
|         EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
 | |
|         reserve_labels_for_native(comp, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if MICROPY_PY_ASYNC_AWAIT
 | |
| STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
 | |
|         compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'await' outside function"));
 | |
|         return;
 | |
|     }
 | |
|     compile_atom_expr_normal(comp, pns);
 | |
|     compile_yield_from(comp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
 | |
|     #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
 | |
|     // nodes are 32-bit pointers, but need to extract 64-bit object
 | |
|     return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
 | |
|     #else
 | |
|     return (mp_obj_t)pns->nodes[0];
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
 | |
|     EMIT_ARG(load_const_obj, get_const_object(pns));
 | |
| }
 | |
| 
 | |
| typedef void (*compile_function_t)(compiler_t *, mp_parse_node_struct_t *);
 | |
| STATIC const compile_function_t compile_function[] = {
 | |
| // only define rules with a compile function
 | |
| #define c(f) compile_##f
 | |
| #define DEF_RULE(rule, comp, kind, ...) comp,
 | |
| #define DEF_RULE_NC(rule, kind, ...)
 | |
|     #include "py/grammar.h"
 | |
| #undef c
 | |
| #undef DEF_RULE
 | |
| #undef DEF_RULE_NC
 | |
|     compile_const_object,
 | |
| };
 | |
| 
 | |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn)) {
 | |
|         // pass
 | |
|     } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
 | |
|         mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
 | |
|         #if MICROPY_DYNAMIC_COMPILER
 | |
|         mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1));
 | |
|         if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
 | |
|             // integer fits in target runtime's small-int
 | |
|             EMIT_ARG(load_const_small_int, arg);
 | |
|         } else {
 | |
|             // integer doesn't fit, so create a multi-precision int object
 | |
|             // (but only create the actual object on the last pass)
 | |
|             if (comp->pass != MP_PASS_EMIT) {
 | |
|                 EMIT_ARG(load_const_obj, mp_const_none);
 | |
|             } else {
 | |
|                 EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
 | |
|             }
 | |
|         }
 | |
|         #else
 | |
|         EMIT_ARG(load_const_small_int, arg);
 | |
|         #endif
 | |
|     } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
 | |
|         uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
 | |
|         switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
 | |
|             case MP_PARSE_NODE_ID:
 | |
|                 compile_load_id(comp, arg);
 | |
|                 break;
 | |
|             case MP_PARSE_NODE_STRING:
 | |
|                 EMIT_ARG(load_const_str, arg);
 | |
|                 break;
 | |
|             case MP_PARSE_NODE_BYTES:
 | |
|                 // only create and load the actual bytes object on the last pass
 | |
|                 if (comp->pass != MP_PASS_EMIT) {
 | |
|                     EMIT_ARG(load_const_obj, mp_const_none);
 | |
|                 } else {
 | |
|                     size_t len;
 | |
|                     const byte *data = qstr_data(arg, &len);
 | |
|                     EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
 | |
|                 }
 | |
|                 break;
 | |
|             case MP_PARSE_NODE_TOKEN:
 | |
|             default:
 | |
|                 if (arg == MP_TOKEN_NEWLINE) {
 | |
|                     // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
 | |
|                     // or when single_input lets through a NEWLINE (user enters a blank line)
 | |
|                     // do nothing
 | |
|                 } else {
 | |
|                     EMIT_ARG(load_const_tok, arg);
 | |
|                 }
 | |
|                 break;
 | |
|         }
 | |
|     } else {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         EMIT_ARG(set_source_line, pns->source_line);
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
 | |
|         compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
 | |
|         f(comp, pns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if MICROPY_EMIT_NATIVE
 | |
| STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) {
 | |
|     int native_type = MP_NATIVE_TYPE_OBJ;
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn_annotation)) {
 | |
|         // No annotation, type defaults to object
 | |
|     } else if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
 | |
|         qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
 | |
|         native_type = mp_native_type_from_qstr(type_name);
 | |
|         if (native_type < 0) {
 | |
|             comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, MP_ERROR_TEXT("unknown type '%q'"), type_name);
 | |
|             native_type = 0;
 | |
|         }
 | |
|     } else {
 | |
|         compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("annotation must be an identifier"));
 | |
|     }
 | |
|     return native_type;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
 | |
|     (void)pn_dbl_star;
 | |
| 
 | |
|     // check that **kw is last
 | |
|     if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
 | |
|         compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qstr param_name = MP_QSTRnull;
 | |
|     uint param_flag = ID_FLAG_IS_PARAM;
 | |
|     mp_parse_node_struct_t *pns = NULL;
 | |
|     if (MP_PARSE_NODE_IS_ID(pn)) {
 | |
|         param_name = MP_PARSE_NODE_LEAF_ARG(pn);
 | |
|         if (comp->have_star) {
 | |
|             // comes after a star, so counts as a keyword-only parameter
 | |
|             comp->scope_cur->num_kwonly_args += 1;
 | |
|         } else {
 | |
|             // comes before a star, so counts as a positional parameter
 | |
|             comp->scope_cur->num_pos_args += 1;
 | |
|         }
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(pn));
 | |
|         pns = (mp_parse_node_struct_t *)pn;
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
 | |
|             // named parameter with possible annotation
 | |
|             param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|             if (comp->have_star) {
 | |
|                 // comes after a star, so counts as a keyword-only parameter
 | |
|                 comp->scope_cur->num_kwonly_args += 1;
 | |
|             } else {
 | |
|                 // comes before a star, so counts as a positional parameter
 | |
|                 comp->scope_cur->num_pos_args += 1;
 | |
|             }
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
 | |
|             if (comp->have_star) {
 | |
|                 // more than one star
 | |
|                 compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
 | |
|                 return;
 | |
|             }
 | |
|             comp->have_star = true;
 | |
|             param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
 | |
|             if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
 | |
|                 // bare star
 | |
|                 // TODO see http://www.python.org/dev/peps/pep-3102/
 | |
|                 // assert(comp->scope_cur->num_dict_params == 0);
 | |
|                 pns = NULL;
 | |
|             } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
 | |
|                 // named star
 | |
|                 comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
 | |
|                 param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|                 pns = NULL;
 | |
|             } else {
 | |
|                 assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
 | |
|                 // named star with possible annotation
 | |
|                 comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
 | |
|                 pns = (mp_parse_node_struct_t *)pns->nodes[0];
 | |
|                 param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|             }
 | |
|         } else {
 | |
|             // double star with possible annotation
 | |
|             assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
 | |
|             param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
 | |
|             param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
 | |
|             comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (param_name != MP_QSTRnull) {
 | |
|         id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, ID_INFO_KIND_UNDECIDED);
 | |
|         if (id_info->kind != ID_INFO_KIND_UNDECIDED) {
 | |
|             compile_syntax_error(comp, pn, MP_ERROR_TEXT("argument name reused"));
 | |
|             return;
 | |
|         }
 | |
|         id_info->kind = ID_INFO_KIND_LOCAL;
 | |
|         id_info->flags = param_flag;
 | |
| 
 | |
|         #if MICROPY_EMIT_NATIVE
 | |
|         if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) {
 | |
|             id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS;
 | |
|         }
 | |
|         #else
 | |
|         (void)pns;
 | |
|         #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
 | |
| }
 | |
| 
 | |
| STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
 | |
| }
 | |
| 
 | |
| STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
 | |
|     uint l_top = comp_next_label(comp);
 | |
|     uint l_end = comp_next_label(comp);
 | |
|     EMIT_ARG(label_assign, l_top);
 | |
|     EMIT_ARG(for_iter, l_end);
 | |
|     c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
 | |
|     mp_parse_node_t pn_iter = pns_comp_for->nodes[2];
 | |
| 
 | |
| tail_recursion:
 | |
|     if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
 | |
|         // no more nested if/for; compile inner expression
 | |
|         compile_node(comp, pn_inner_expr);
 | |
|         if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
 | |
|             EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
 | |
|             reserve_labels_for_native(comp, 1);
 | |
|             EMIT(pop_top);
 | |
|         } else {
 | |
|             EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
 | |
|         }
 | |
|     } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_if) {
 | |
|         // if condition
 | |
|         mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t *)pn_iter;
 | |
|         c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
 | |
|         pn_iter = pns_comp_if->nodes[1];
 | |
|         goto tail_recursion;
 | |
|     } else {
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_for); // should be
 | |
|         // for loop
 | |
|         mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t *)pn_iter;
 | |
|         compile_node(comp, pns_comp_for2->nodes[1]);
 | |
|         EMIT_ARG(get_iter, true);
 | |
|         compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
 | |
|     }
 | |
| 
 | |
|     EMIT_ARG(jump, l_top);
 | |
|     EMIT_ARG(label_assign, l_end);
 | |
|     EMIT(for_iter_end);
 | |
| }
 | |
| 
 | |
| STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
 | |
|     #if MICROPY_ENABLE_DOC_STRING
 | |
|     // see http://www.python.org/dev/peps/pep-0257/
 | |
| 
 | |
|     // look for the first statement
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
 | |
|         // a statement; fall through
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
 | |
|         // file input; find the first non-newline node
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
 | |
|         for (int i = 0; i < num_nodes; i++) {
 | |
|             pn = pns->nodes[i];
 | |
|             if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
 | |
|                 // not a newline, so this is the first statement; finish search
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
 | |
|     } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
 | |
|         // a list of statements; get the first one
 | |
|         pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
 | |
|     } else {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // check the first statement for a doc string
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
 | |
|         if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
 | |
|              && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
 | |
|             || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
 | |
|                 && mp_obj_is_str(get_const_object((mp_parse_node_struct_t *)pns->nodes[0])))) {
 | |
|             // compile the doc string
 | |
|             compile_node(comp, pns->nodes[0]);
 | |
|             // store the doc string
 | |
|             compile_store_id(comp, MP_QSTR___doc__);
 | |
|         }
 | |
|     }
 | |
|     #else
 | |
|     (void)comp;
 | |
|     (void)pn;
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
 | |
|     comp->pass = pass;
 | |
|     comp->scope_cur = scope;
 | |
|     comp->next_label = 0;
 | |
|     EMIT_ARG(start_pass, pass, scope);
 | |
|     reserve_labels_for_native(comp, 6); // used by native's start_pass
 | |
| 
 | |
|     if (comp->pass == MP_PASS_SCOPE) {
 | |
|         // reset maximum stack sizes in scope
 | |
|         // they will be computed in this first pass
 | |
|         scope->stack_size = 0;
 | |
|         scope->exc_stack_size = 0;
 | |
|     }
 | |
| 
 | |
|     // compile
 | |
|     if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
 | |
|         assert(scope->kind == SCOPE_MODULE);
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|         compile_node(comp, pns->nodes[0]); // compile the expression
 | |
|         EMIT(return_value);
 | |
|     } else if (scope->kind == SCOPE_MODULE) {
 | |
|         if (!comp->is_repl) {
 | |
|             check_for_doc_string(comp, scope->pn);
 | |
|         }
 | |
|         compile_node(comp, scope->pn);
 | |
|         EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         EMIT(return_value);
 | |
|     } else if (scope->kind == SCOPE_FUNCTION) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
 | |
| 
 | |
|         // work out number of parameters, keywords and default parameters, and add them to the id_info array
 | |
|         // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
 | |
|         if (comp->pass == MP_PASS_SCOPE) {
 | |
|             comp->have_star = false;
 | |
|             apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
 | |
| 
 | |
|             #if MICROPY_EMIT_NATIVE
 | |
|             if (scope->emit_options == MP_EMIT_OPT_VIPER) {
 | |
|                 // Compile return type; pns->nodes[2] is return/whole function annotation
 | |
|                 scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS;
 | |
|             }
 | |
|             #endif // MICROPY_EMIT_NATIVE
 | |
|         }
 | |
| 
 | |
|         compile_node(comp, pns->nodes[3]); // 3 is function body
 | |
|         // emit return if it wasn't the last opcode
 | |
|         if (!EMIT(last_emit_was_return_value)) {
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|             EMIT(return_value);
 | |
|         }
 | |
|     } else if (scope->kind == SCOPE_LAMBDA) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|         assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
 | |
| 
 | |
|         // Set the source line number for the start of the lambda
 | |
|         EMIT_ARG(set_source_line, pns->source_line);
 | |
| 
 | |
|         // work out number of parameters, keywords and default parameters, and add them to the id_info array
 | |
|         // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
 | |
|         if (comp->pass == MP_PASS_SCOPE) {
 | |
|             comp->have_star = false;
 | |
|             apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
 | |
|         }
 | |
| 
 | |
|         compile_node(comp, pns->nodes[1]); // 1 is lambda body
 | |
| 
 | |
|         // if the lambda is a generator, then we return None, not the result of the expression of the lambda
 | |
|         if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
 | |
|             EMIT(pop_top);
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         }
 | |
|         EMIT(return_value);
 | |
|     } else if (SCOPE_IS_COMP_LIKE(scope->kind)) {
 | |
|         // a bit of a hack at the moment
 | |
| 
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|         assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
 | |
|         mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
 | |
| 
 | |
|         // We need a unique name for the comprehension argument (the iterator).
 | |
|         // CPython uses .0, but we should be able to use anything that won't
 | |
|         // clash with a user defined variable.  Best to use an existing qstr,
 | |
|         // so we use the blank qstr.
 | |
|         qstr qstr_arg = MP_QSTR_;
 | |
|         if (comp->pass == MP_PASS_SCOPE) {
 | |
|             scope_find_or_add_id(comp->scope_cur, qstr_arg, ID_INFO_KIND_LOCAL);
 | |
|             scope->num_pos_args = 1;
 | |
|         }
 | |
| 
 | |
|         // Set the source line number for the start of the comprehension
 | |
|         EMIT_ARG(set_source_line, pns->source_line);
 | |
| 
 | |
|         if (scope->kind == SCOPE_LIST_COMP) {
 | |
|             EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
 | |
|         } else if (scope->kind == SCOPE_DICT_COMP) {
 | |
|             EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
 | |
|         #if MICROPY_PY_BUILTINS_SET
 | |
|         } else if (scope->kind == SCOPE_SET_COMP) {
 | |
|             EMIT_ARG(build, 0, MP_EMIT_BUILD_SET);
 | |
|         #endif
 | |
|         }
 | |
| 
 | |
|         // There are 4 slots on the stack for the iterator, and the first one is
 | |
|         // NULL to indicate that the second one points to the iterator object.
 | |
|         if (scope->kind == SCOPE_GEN_EXPR) {
 | |
|             MP_STATIC_ASSERT(MP_OBJ_ITER_BUF_NSLOTS == 4);
 | |
|             EMIT(load_null);
 | |
|             compile_load_id(comp, qstr_arg);
 | |
|             EMIT(load_null);
 | |
|             EMIT(load_null);
 | |
|         } else {
 | |
|             compile_load_id(comp, qstr_arg);
 | |
|             EMIT_ARG(get_iter, true);
 | |
|         }
 | |
| 
 | |
|         compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);
 | |
| 
 | |
|         if (scope->kind == SCOPE_GEN_EXPR) {
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         }
 | |
|         EMIT(return_value);
 | |
|     } else {
 | |
|         assert(scope->kind == SCOPE_CLASS);
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
 | |
|         mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|         assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
 | |
| 
 | |
|         if (comp->pass == MP_PASS_SCOPE) {
 | |
|             scope_find_or_add_id(scope, MP_QSTR___class__, ID_INFO_KIND_LOCAL);
 | |
|         }
 | |
| 
 | |
|         #if MICROPY_PY_SYS_SETTRACE
 | |
|         EMIT_ARG(set_source_line, pns->source_line);
 | |
|         #endif
 | |
|         compile_load_id(comp, MP_QSTR___name__);
 | |
|         compile_store_id(comp, MP_QSTR___module__);
 | |
|         EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
 | |
|         compile_store_id(comp, MP_QSTR___qualname__);
 | |
| 
 | |
|         check_for_doc_string(comp, pns->nodes[2]);
 | |
|         compile_node(comp, pns->nodes[2]); // 2 is class body
 | |
| 
 | |
|         id_info_t *id = scope_find(scope, MP_QSTR___class__);
 | |
|         assert(id != NULL);
 | |
|         if (id->kind == ID_INFO_KIND_LOCAL) {
 | |
|             EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
 | |
|         } else {
 | |
|             EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
 | |
|         }
 | |
|         EMIT(return_value);
 | |
|     }
 | |
| 
 | |
|     EMIT(end_pass);
 | |
| 
 | |
|     // make sure we match all the exception levels
 | |
|     assert(comp->cur_except_level == 0);
 | |
| }
 | |
| 
 | |
| #if MICROPY_EMIT_INLINE_ASM
 | |
| // requires 3 passes: SCOPE, CODE_SIZE, EMIT
 | |
| STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
 | |
|     comp->pass = pass;
 | |
|     comp->scope_cur = scope;
 | |
|     comp->next_label = 0;
 | |
| 
 | |
|     if (scope->kind != SCOPE_FUNCTION) {
 | |
|         compile_syntax_error(comp, MP_PARSE_NODE_NULL, MP_ERROR_TEXT("inline assembler must be a function"));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (comp->pass > MP_PASS_SCOPE) {
 | |
|         EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
 | |
|     }
 | |
| 
 | |
|     // get the function definition parse node
 | |
|     assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
 | |
|     mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
 | |
|     assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
 | |
| 
 | |
|     // qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
 | |
| 
 | |
|     // parameters are in pns->nodes[1]
 | |
|     if (comp->pass == MP_PASS_CODE_SIZE) {
 | |
|         mp_parse_node_t *pn_params;
 | |
|         size_t n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
 | |
|         scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
 | |
|         if (comp->compile_error != MP_OBJ_NULL) {
 | |
|             goto inline_asm_error;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // pns->nodes[2] is function return annotation
 | |
|     mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
 | |
|     mp_parse_node_t pn_annotation = pns->nodes[2];
 | |
|     if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
 | |
|         // nodes[2] can be null or a test-expr
 | |
|         if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
 | |
|             qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
 | |
|             switch (ret_type) {
 | |
|                 case MP_QSTR_object:
 | |
|                     type_sig = MP_NATIVE_TYPE_OBJ;
 | |
|                     break;
 | |
|                 case MP_QSTR_bool:
 | |
|                     type_sig = MP_NATIVE_TYPE_BOOL;
 | |
|                     break;
 | |
|                 case MP_QSTR_int:
 | |
|                     type_sig = MP_NATIVE_TYPE_INT;
 | |
|                     break;
 | |
|                 case MP_QSTR_uint:
 | |
|                     type_sig = MP_NATIVE_TYPE_UINT;
 | |
|                     break;
 | |
|                 default:
 | |
|                     compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("unknown type"));
 | |
|                     return;
 | |
|             }
 | |
|         } else {
 | |
|             compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("return annotation must be an identifier"));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mp_parse_node_t pn_body = pns->nodes[3]; // body
 | |
|     mp_parse_node_t *nodes;
 | |
|     size_t num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
 | |
| 
 | |
|     for (size_t i = 0; i < num; i++) {
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
 | |
|         mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)nodes[i];
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
 | |
|             // no instructions
 | |
|             continue;
 | |
|         } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
 | |
|             // not an instruction; error
 | |
|         not_an_instruction:
 | |
|             compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("expecting an assembler instruction"));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // check structure of parse node
 | |
|         assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
 | |
|         if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
 | |
|             goto not_an_instruction;
 | |
|         }
 | |
|         pns2 = (mp_parse_node_struct_t *)pns2->nodes[0];
 | |
|         if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
 | |
|             goto not_an_instruction;
 | |
|         }
 | |
|         if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
 | |
|             goto not_an_instruction;
 | |
|         }
 | |
|         if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
 | |
|             goto not_an_instruction;
 | |
|         }
 | |
| 
 | |
|         // parse node looks like an instruction
 | |
|         // get instruction name and args
 | |
|         qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
 | |
|         pns2 = (mp_parse_node_struct_t *)pns2->nodes[1]; // PN_trailer_paren
 | |
|         mp_parse_node_t *pn_arg;
 | |
|         size_t n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
 | |
| 
 | |
|         // emit instructions
 | |
|         if (op == MP_QSTR_label) {
 | |
|             if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
 | |
|                 compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'label' requires 1 argument"));
 | |
|                 return;
 | |
|             }
 | |
|             uint lab = comp_next_label(comp);
 | |
|             if (pass > MP_PASS_SCOPE) {
 | |
|                 if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
 | |
|                     compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("label redefined"));
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         } else if (op == MP_QSTR_align) {
 | |
|             if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
 | |
|                 compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'align' requires 1 argument"));
 | |
|                 return;
 | |
|             }
 | |
|             if (pass > MP_PASS_SCOPE) {
 | |
|                 mp_asm_base_align((mp_asm_base_t *)comp->emit_inline_asm,
 | |
|                     MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
 | |
|             }
 | |
|         } else if (op == MP_QSTR_data) {
 | |
|             if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
 | |
|                 compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires at least 2 arguments"));
 | |
|                 return;
 | |
|             }
 | |
|             if (pass > MP_PASS_SCOPE) {
 | |
|                 mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
 | |
|                 for (uint j = 1; j < n_args; j++) {
 | |
|                     if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
 | |
|                         compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires integer arguments"));
 | |
|                         return;
 | |
|                     }
 | |
|                     mp_asm_base_data((mp_asm_base_t *)comp->emit_inline_asm,
 | |
|                         bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if (pass > MP_PASS_SCOPE) {
 | |
|                 EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (comp->compile_error != MP_OBJ_NULL) {
 | |
|             pns = pns2; // this is the parse node that had the error
 | |
|             goto inline_asm_error;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (comp->pass > MP_PASS_SCOPE) {
 | |
|         EMIT_INLINE_ASM_ARG(end_pass, type_sig);
 | |
| 
 | |
|         if (comp->pass == MP_PASS_EMIT) {
 | |
|             void *f = mp_asm_base_get_code((mp_asm_base_t *)comp->emit_inline_asm);
 | |
|             mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
 | |
|                 f, mp_asm_base_get_code_size((mp_asm_base_t *)comp->emit_inline_asm),
 | |
|                 NULL,
 | |
|                 #if MICROPY_PERSISTENT_CODE_SAVE
 | |
|                 0, 0, 0, 0, NULL,
 | |
|                 #endif
 | |
|                 comp->scope_cur->num_pos_args, 0, type_sig);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (comp->compile_error != MP_OBJ_NULL) {
 | |
|         // inline assembler had an error; set line for its exception
 | |
|     inline_asm_error:
 | |
|         comp->compile_error_line = pns->source_line;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| STATIC void scope_compute_things(scope_t *scope) {
 | |
|     // in MicroPython we put the *x parameter after all other parameters (except **y)
 | |
|     if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
 | |
|         id_info_t *id_param = NULL;
 | |
|         for (int i = scope->id_info_len - 1; i >= 0; i--) {
 | |
|             id_info_t *id = &scope->id_info[i];
 | |
|             if (id->flags & ID_FLAG_IS_STAR_PARAM) {
 | |
|                 if (id_param != NULL) {
 | |
|                     // swap star param with last param
 | |
|                     id_info_t temp = *id_param;
 | |
|                     *id_param = *id;
 | |
|                     *id = temp;
 | |
|                 }
 | |
|                 break;
 | |
|             } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
 | |
|                 id_param = id;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // in functions, turn implicit globals into explicit globals
 | |
|     // compute the index of each local
 | |
|     scope->num_locals = 0;
 | |
|     for (int i = 0; i < scope->id_info_len; i++) {
 | |
|         id_info_t *id = &scope->id_info[i];
 | |
|         if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
 | |
|             // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
 | |
|             continue;
 | |
|         }
 | |
|         if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
 | |
|             id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
 | |
|         }
 | |
|         #if MICROPY_EMIT_NATIVE
 | |
|         if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) {
 | |
|             // This function makes a reference to a global variable
 | |
|             if (scope->emit_options == MP_EMIT_OPT_VIPER
 | |
|                 && mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) {
 | |
|                 // A casting operator in viper mode, not a real global reference
 | |
|             } else {
 | |
|                 scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS;
 | |
|             }
 | |
|         }
 | |
|         #endif
 | |
|         // params always count for 1 local, even if they are a cell
 | |
|         if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
 | |
|             id->local_num = scope->num_locals++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compute the index of cell vars
 | |
|     for (int i = 0; i < scope->id_info_len; i++) {
 | |
|         id_info_t *id = &scope->id_info[i];
 | |
|         // in MicroPython the cells come right after the fast locals
 | |
|         // parameters are not counted here, since they remain at the start
 | |
|         // of the locals, even if they are cell vars
 | |
|         if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
 | |
|             id->local_num = scope->num_locals;
 | |
|             scope->num_locals += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compute the index of free vars
 | |
|     // make sure they are in the order of the parent scope
 | |
|     if (scope->parent != NULL) {
 | |
|         int num_free = 0;
 | |
|         for (int i = 0; i < scope->parent->id_info_len; i++) {
 | |
|             id_info_t *id = &scope->parent->id_info[i];
 | |
|             if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
 | |
|                 for (int j = 0; j < scope->id_info_len; j++) {
 | |
|                     id_info_t *id2 = &scope->id_info[j];
 | |
|                     if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
 | |
|                         assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
 | |
|                         // in MicroPython the frees come first, before the params
 | |
|                         id2->local_num = num_free;
 | |
|                         num_free += 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // in MicroPython shift all other locals after the free locals
 | |
|         if (num_free > 0) {
 | |
|             for (int i = 0; i < scope->id_info_len; i++) {
 | |
|                 id_info_t *id = &scope->id_info[i];
 | |
|                 if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
 | |
|                     id->local_num += num_free;
 | |
|                 }
 | |
|             }
 | |
|             scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
 | |
|             scope->num_locals += num_free;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !MICROPY_PERSISTENT_CODE_SAVE
 | |
| STATIC
 | |
| #endif
 | |
| mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
 | |
|     // put compiler state on the stack, it's relatively small
 | |
|     compiler_t comp_state = {0};
 | |
|     compiler_t *comp = &comp_state;
 | |
| 
 | |
|     comp->source_file = source_file;
 | |
|     comp->is_repl = is_repl;
 | |
|     comp->break_label = INVALID_LABEL;
 | |
|     comp->continue_label = INVALID_LABEL;
 | |
| 
 | |
|     // create the module scope
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     const uint emit_opt = MP_STATE_VM(default_emit_opt);
 | |
|     #else
 | |
|     const uint emit_opt = MP_EMIT_OPT_NONE;
 | |
|     #endif
 | |
|     scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);
 | |
| 
 | |
|     // create standard emitter; it's used at least for MP_PASS_SCOPE
 | |
|     emit_t *emit_bc = emit_bc_new();
 | |
| 
 | |
|     // compile pass 1
 | |
|     comp->emit = emit_bc;
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     comp->emit_method_table = &emit_bc_method_table;
 | |
|     #endif
 | |
|     uint max_num_labels = 0;
 | |
|     for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
 | |
|         #if MICROPY_EMIT_INLINE_ASM
 | |
|         if (s->emit_options == MP_EMIT_OPT_ASM) {
 | |
|             compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
 | |
|         } else
 | |
|         #endif
 | |
|         {
 | |
|             compile_scope(comp, s, MP_PASS_SCOPE);
 | |
| 
 | |
|             // Check if any implicitly declared variables should be closed over
 | |
|             for (size_t i = 0; i < s->id_info_len; ++i) {
 | |
|                 id_info_t *id = &s->id_info[i];
 | |
|                 if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
 | |
|                     scope_check_to_close_over(s, id);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // update maximim number of labels needed
 | |
|         if (comp->next_label > max_num_labels) {
 | |
|             max_num_labels = comp->next_label;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compute some things related to scope and identifiers
 | |
|     for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
 | |
|         scope_compute_things(s);
 | |
|     }
 | |
| 
 | |
|     // set max number of labels now that it's calculated
 | |
|     emit_bc_set_max_num_labels(emit_bc, max_num_labels);
 | |
| 
 | |
|     // compile pass 2 and 3
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     emit_t *emit_native = NULL;
 | |
|     #endif
 | |
|     for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
 | |
|         #if MICROPY_EMIT_INLINE_ASM
 | |
|         if (s->emit_options == MP_EMIT_OPT_ASM) {
 | |
|             // inline assembly
 | |
|             if (comp->emit_inline_asm == NULL) {
 | |
|                 comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
 | |
|             }
 | |
|             comp->emit = NULL;
 | |
|             comp->emit_inline_asm_method_table = ASM_EMITTER_TABLE;
 | |
|             compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
 | |
|             #if MICROPY_EMIT_INLINE_XTENSA
 | |
|             // Xtensa requires an extra pass to compute size of l32r const table
 | |
|             // TODO this can be improved by calculating it during SCOPE pass
 | |
|             // but that requires some other structural changes to the asm emitters
 | |
|             #if MICROPY_DYNAMIC_COMPILER
 | |
|             if (mp_dynamic_compiler.native_arch == MP_NATIVE_ARCH_XTENSA)
 | |
|             #endif
 | |
|             {
 | |
|                 compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
 | |
|             }
 | |
|             #endif
 | |
|             if (comp->compile_error == MP_OBJ_NULL) {
 | |
|                 compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
 | |
|             }
 | |
|         } else
 | |
|         #endif
 | |
|         {
 | |
| 
 | |
|             // choose the emit type
 | |
| 
 | |
|             switch (s->emit_options) {
 | |
| 
 | |
|                 #if MICROPY_EMIT_NATIVE
 | |
|                 case MP_EMIT_OPT_NATIVE_PYTHON:
 | |
|                 case MP_EMIT_OPT_VIPER:
 | |
|                     if (emit_native == NULL) {
 | |
|                         emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels);
 | |
|                     }
 | |
|                     comp->emit_method_table = NATIVE_EMITTER_TABLE;
 | |
|                     comp->emit = emit_native;
 | |
|                     break;
 | |
|                 #endif // MICROPY_EMIT_NATIVE
 | |
| 
 | |
|                 default:
 | |
|                     comp->emit = emit_bc;
 | |
|                     #if MICROPY_EMIT_NATIVE
 | |
|                     comp->emit_method_table = &emit_bc_method_table;
 | |
|                     #endif
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             // need a pass to compute stack size
 | |
|             compile_scope(comp, s, MP_PASS_STACK_SIZE);
 | |
| 
 | |
|             // second last pass: compute code size
 | |
|             if (comp->compile_error == MP_OBJ_NULL) {
 | |
|                 compile_scope(comp, s, MP_PASS_CODE_SIZE);
 | |
|             }
 | |
| 
 | |
|             // final pass: emit code
 | |
|             if (comp->compile_error == MP_OBJ_NULL) {
 | |
|                 compile_scope(comp, s, MP_PASS_EMIT);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (comp->compile_error != MP_OBJ_NULL) {
 | |
|         // if there is no line number for the error then use the line
 | |
|         // number for the start of this scope
 | |
|         compile_error_set_line(comp, comp->scope_cur->pn);
 | |
|         // add a traceback to the exception using relevant source info
 | |
|         mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
 | |
|             comp->compile_error_line, comp->scope_cur->simple_name);
 | |
|     }
 | |
| 
 | |
|     // free the emitters
 | |
| 
 | |
|     emit_bc_free(emit_bc);
 | |
|     #if MICROPY_EMIT_NATIVE
 | |
|     if (emit_native != NULL) {
 | |
|         NATIVE_EMITTER(free)(emit_native);
 | |
|     }
 | |
|     #endif
 | |
|     #if MICROPY_EMIT_INLINE_ASM
 | |
|     if (comp->emit_inline_asm != NULL) {
 | |
|         ASM_EMITTER(free)(comp->emit_inline_asm);
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     // free the parse tree
 | |
|     mp_parse_tree_clear(parse_tree);
 | |
| 
 | |
|     // free the scopes
 | |
|     mp_raw_code_t *outer_raw_code = module_scope->raw_code;
 | |
|     for (scope_t *s = module_scope; s;) {
 | |
|         scope_t *next = s->next;
 | |
|         scope_free(s);
 | |
|         s = next;
 | |
|     }
 | |
| 
 | |
|     if (comp->compile_error != MP_OBJ_NULL) {
 | |
|         nlr_raise(comp->compile_error);
 | |
|     } else {
 | |
|         return outer_raw_code;
 | |
|     }
 | |
| }
 | |
| 
 | |
| mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
 | |
|     mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, is_repl);
 | |
|     // return function that executes the outer module
 | |
|     return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
 | |
| }
 | |
| 
 | |
| #endif // MICROPY_ENABLE_COMPILER
 |