Merge branch 'prepare_for_master' of https://git.trustie.net/xuos/xiuos into xidatong-arm32

This commit is contained in:
wgzAIIT 2023-09-11 10:05:37 +08:00
commit 652e5789a7
35 changed files with 2279 additions and 1725 deletions

View File

@ -324,7 +324,7 @@ void TestSocket(int argc, char* argv[])
return;
} else {
memset(iperf_param.host, 0, sizeof(iperf_param.host));
strncpy(iperf_param.host, ip_ptr, strlen(ip_ptr));
strncpy(iperf_param.host, ip_ptr, sizeof(iperf_param.host));
}
iperf_mode->mode = IPERF_MODE_CLIENT;
}

View File

@ -206,7 +206,7 @@ static int PrivLcdIoctl(int fd, int cmd, void *args)
int PrivIoctl(int fd, int cmd, void *args)
{
int ret;
int ret = -ERROR;
struct PrivIoctlCfg *ioctl_cfg = (struct PrivIoctlCfg *)args;
switch (ioctl_cfg->ioctl_driver_type)
{

View File

@ -66,7 +66,7 @@ int timer_create(clockid_t clockid, struct sigevent * evp, timer_t * timerid)
}
memset(timer_name, 0, sizeof(timer_name));
snprintf(timer_name, sizeof(timer_name), "timer_%d", clockid);
snprintf(timer_name, sizeof(timer_name), "timer_%ld", clockid);
sem_init(&timer_sem, 0, 0);

View File

@ -1,4 +1,5 @@
export CFLAGS := -mcmodel=medany -march=rv64imafdc -mabi=lp64d -fno-common -ffunction-sections -fdata-sections -fstrict-volatile-bitfields -O0 -ggdb -fgnu89-inline -Werror
export CFLAGS := -mcmodel=medany -march=rv64imafdc -mabi=lp64d -fno-common -ffunction-sections -fdata-sections -fstrict-volatile-bitfields -O1 -fgnu89-inline -Wformat -Wuninitialized
# export CFLAGS := -mcmodel=medany -march=rv64imafdc -mabi=lp64d -fno-common -ffunction-sections -fdata-sections -fstrict-volatile-bitfields -O0 -ggdb -fgnu89-inline -Werror -Wformat -Wuninitialized
export AFLAGS := -c -mcmodel=medany -march=rv64imafdc -mabi=lp64d -x assembler-with-cpp -ggdb
export LFLAGS := -mcmodel=medany -march=rv64imafdc -mabi=lp64d -nostartfiles -Wl,--gc-sections,-Map=XiZi-edu-riscv64.map,-cref,-u,_start -T $(BSP_ROOT)/link.lds
@ -19,7 +20,7 @@ export CXXFLAGS := -mcmodel=medany -march=rv64imafdc -mabi=lp64d -fno-common -ff
export CROSS_COMPILE ?=/opt/gnu-mcu-eclipse/riscv-none-gcc/8.2.0-2.1-20190425-1021/bin/riscv-none-embed-
export DEFINES := -DHAVE_CCONFIG_H -DHAVE_SIGINFO
export DEFINES := -DHAVE_CCONFIG_H -DHAVE_SIGINFO -DRISCV_LWIP
export ARCH = risc-v
export MCU = k210

View File

@ -25,11 +25,12 @@
#ifndef _BSP_ATOMIC_H
#define _BSP_ATOMIC_H
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SPINLOCK_INIT \
{ \
0 \
@ -63,7 +64,7 @@ extern "C" {
typedef struct _spinlock
{
int lock;
int32_t lock;
} spinlock_t;
typedef struct _semaphore

View File

@ -2,6 +2,7 @@
config BSP_USING_W5500
bool "Using w5500"
select BSP_USING_LWIP
default y
config BSP_WIZ_RST_PIN
@ -15,3 +16,8 @@ config BSP_WIZ_INT_PIN
config BSP_WIZ_USE_IPERF
bool "Using iperf"
default y
menuconfig BSP_USING_LWIP
bool "Using LwIP device"
default n
select RESOURCES_LWIP

View File

@ -1,3 +1,4 @@
SRC_FILES := socket.c connect_w5500.c w5500.c wizchip_conf.c spi_interface.c wiz_ping.c connect_w5500_test.c wiz_iperf.c
# SRC_FILES := socket.c connect_w5500.c w5500.c wizchip_conf.c spi_interface.c wiz_ping.c connect_w5500_test.c wiz_iperf.c
SRC_FILES := socket.c connect_w5500.c w5500.c wizchip_conf.c spi_interface.c wiz_ping.c connect_w5500_test.c w5x00_lwip.c wiz_iperf.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -5,8 +5,8 @@
#include <dev_pin.h>
#include <drv_io_config.h>
#include <fpioa.h>
#include <string.h>
#include <stdlib.h>
#include <string.h>
#include <xs_base.h>
#include "gpio_common.h"
@ -14,6 +14,10 @@
#include "socket.h"
#include "w5500.h"
#include "connect_ethernet.h"
#include <sys.h>
#define SPI_LORA_FREQUENCY 10000000
// spi operations
@ -23,242 +27,329 @@ extern void spi_select_cs(void);
extern void spi_deselete_cs(void);
// global configurations for w5500 tcp connection
uint32_t get_gbuf_size() {
static const uint32_t g_wiznet_buf_size = 2048;
return g_wiznet_buf_size;
uint32_t get_gbuf_size()
{
static const uint32_t g_wiznet_buf_size = 2048;
return g_wiznet_buf_size;
}
wiz_NetInfo *get_gnetinfo() {
static wiz_NetInfo g_wiz_netinfo = {.mac = {0x00, 0x08, 0xdc, 0x11, 0x11, 0x11},
.ip = {192, 168, 130, 77},
.sn = {255, 255, 254, 0},
.gw = {192, 168, 130, 1},
.dns = {0, 0, 0, 0},
.dhcp = NETINFO_STATIC};
return &g_wiz_netinfo;
wiz_NetInfo* get_gnetinfo()
{
static wiz_NetInfo g_wiz_netinfo = { .mac = { 0x00, 0x08, 0xdc, 0x11, 0x11, 0x11 },
.ip = { 192, 168, 130, 77 },
.sn = { 255, 255, 254, 0 },
.gw = { 192, 168, 130, 1 },
.dns = { 0, 0, 0, 0 },
.dhcp = NETINFO_STATIC };
return &g_wiz_netinfo;
}
int network_init() {
wiz_NetInfo check_wiz_netinfo;
check_wiz_netinfo.dhcp = NETINFO_STATIC;
ctlnetwork(CN_SET_NETINFO, (void *)get_gnetinfo());
ctlnetwork(CN_GET_NETINFO, (void *)&check_wiz_netinfo);
int network_init()
{
wiz_NetInfo check_wiz_netinfo;
check_wiz_netinfo.dhcp = NETINFO_STATIC;
ctlnetwork(CN_SET_NETINFO, (void*)get_gnetinfo());
ctlnetwork(CN_GET_NETINFO, (void*)&check_wiz_netinfo);
if (memcmp(get_gnetinfo(), &check_wiz_netinfo, sizeof(wiz_NetInfo)) != 0) {
KPrintf(
"mac: %d; ip: %d; gw: %d; sn: %d; dns: %d; dhcp: %d;\n",
memcmp(&get_gnetinfo()->mac, &check_wiz_netinfo.mac, sizeof(uint8_t) * 6),
memcmp(&get_gnetinfo()->ip, &check_wiz_netinfo.ip, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->sn, &check_wiz_netinfo.sn, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->gw, &check_wiz_netinfo.gw, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->dns, &check_wiz_netinfo.dns, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->dhcp, &check_wiz_netinfo.dhcp, sizeof(uint8_t)));
KPrintf("WIZCHIP set network information fail.\n");
return ERROR;
}
uint8_t tmpstr[6];
ctlwizchip(CW_GET_ID, (void *)tmpstr);
KPrintf("=== %s NET CONF ===\r\n", (char *)tmpstr);
KPrintf("MAC: %02X:%02X:%02X:%02X:%02X:%02X\r\n", get_gnetinfo()->mac[0],
get_gnetinfo()->mac[1], get_gnetinfo()->mac[2], get_gnetinfo()->mac[3],
get_gnetinfo()->mac[4], get_gnetinfo()->mac[5]);
KPrintf("SIP: %d.%d.%d.%d\r\n", get_gnetinfo()->ip[0], get_gnetinfo()->ip[1],
get_gnetinfo()->ip[2], get_gnetinfo()->ip[3]);
KPrintf("GAR: %d.%d.%d.%d\r\n", get_gnetinfo()->gw[0], get_gnetinfo()->gw[1],
get_gnetinfo()->gw[2], get_gnetinfo()->gw[3]);
KPrintf("SUB: %d.%d.%d.%d\r\n", get_gnetinfo()->sn[0], get_gnetinfo()->sn[1],
get_gnetinfo()->sn[2], get_gnetinfo()->sn[3]);
KPrintf("DNS: %d.%d.%d.%d\r\n", get_gnetinfo()->dns[0], get_gnetinfo()->dns[1],
get_gnetinfo()->dns[2], get_gnetinfo()->dns[3]);
KPrintf("======================\r\n");
if (memcmp(get_gnetinfo(), &check_wiz_netinfo, sizeof(wiz_NetInfo)) != 0) {
KPrintf(
"mac: %d; ip: %d; gw: %d; sn: %d; dns: %d; dhcp: %d;\n",
memcmp(&get_gnetinfo()->mac, &check_wiz_netinfo.mac, sizeof(uint8_t) * 6),
memcmp(&get_gnetinfo()->ip, &check_wiz_netinfo.ip, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->sn, &check_wiz_netinfo.sn, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->gw, &check_wiz_netinfo.gw, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->dns, &check_wiz_netinfo.dns, sizeof(uint8_t) * 4),
memcmp(&get_gnetinfo()->dhcp, &check_wiz_netinfo.dhcp, sizeof(uint8_t)));
KPrintf("WIZCHIP set network information fail.\n");
return ERROR;
}
uint8_t tmpstr[6];
ctlwizchip(CW_GET_ID, (void*)tmpstr);
KPrintf("=== %s NET CONF ===\r\n", (char*)tmpstr);
KPrintf("MAC: %02X:%02X:%02X:%02X:%02X:%02X\r\n", get_gnetinfo()->mac[0],
get_gnetinfo()->mac[1], get_gnetinfo()->mac[2], get_gnetinfo()->mac[3],
get_gnetinfo()->mac[4], get_gnetinfo()->mac[5]);
KPrintf("SIP: %d.%d.%d.%d\r\n", get_gnetinfo()->ip[0], get_gnetinfo()->ip[1],
get_gnetinfo()->ip[2], get_gnetinfo()->ip[3]);
KPrintf("GAR: %d.%d.%d.%d\r\n", get_gnetinfo()->gw[0], get_gnetinfo()->gw[1],
get_gnetinfo()->gw[2], get_gnetinfo()->gw[3]);
KPrintf("SUB: %d.%d.%d.%d\r\n", get_gnetinfo()->sn[0], get_gnetinfo()->sn[1],
get_gnetinfo()->sn[2], get_gnetinfo()->sn[3]);
KPrintf("DNS: %d.%d.%d.%d\r\n", get_gnetinfo()->dns[0], get_gnetinfo()->dns[1],
get_gnetinfo()->dns[2], get_gnetinfo()->dns[3]);
KPrintf("======================\r\n");
return EOK;
return EOK;
}
/****************** spi init ******************/
static struct Bus *w5500_spi_bus;
int w5500_spi_init() {
x_err_t ret = EOK;
static struct Bus* w5500_spi_bus;
int w5500_spi_init()
{
x_err_t ret = EOK;
w5500_spi_bus = BusFind(SPI_BUS_NAME_1);
w5500_spi_bus->owner_haldev =
BusFindDevice(w5500_spi_bus, SPI_1_DEVICE_NAME_0);
w5500_spi_bus->owner_driver = BusFindDriver(w5500_spi_bus, SPI_1_DRV_NAME);
w5500_spi_bus = BusFind(SPI_BUS_NAME_1);
w5500_spi_bus->owner_haldev = BusFindDevice(w5500_spi_bus, SPI_1_DEVICE_NAME_0);
w5500_spi_bus->owner_driver = BusFindDriver(w5500_spi_bus, SPI_1_DRV_NAME);
w5500_spi_bus->match(w5500_spi_bus->owner_driver,
w5500_spi_bus->owner_haldev);
w5500_spi_bus->match(w5500_spi_bus->owner_driver,
w5500_spi_bus->owner_haldev);
struct BusConfigureInfo configure_info;
struct SpiMasterParam spi_master_param;
spi_master_param.spi_data_bit_width = 8;
spi_master_param.spi_work_mode = SPI_MODE_0 | SPI_MSB;
spi_master_param.spi_maxfrequency = SPI_LORA_FREQUENCY;
spi_master_param.spi_data_endian = 0;
struct BusConfigureInfo configure_info;
struct SpiMasterParam spi_master_param;
spi_master_param.spi_data_bit_width = 8;
spi_master_param.spi_work_mode = SPI_MODE_0 | SPI_MSB;
spi_master_param.spi_maxfrequency = SPI_LORA_FREQUENCY;
spi_master_param.spi_data_endian = 0;
configure_info.configure_cmd = OPE_CFG;
configure_info.private_data = (void *)&spi_master_param;
ret = BusDrvConfigure(w5500_spi_bus->owner_driver, &configure_info);
if (ret) {
KPrintf("spi drv OPE_CFG error drv %8p cfg %8p\n",
configure_info.configure_cmd = OPE_CFG;
configure_info.private_data = (void*)&spi_master_param;
ret = BusDrvConfigure(w5500_spi_bus->owner_driver, &configure_info);
if (ret) {
KPrintf("spi drv OPE_CFG error drv %8p cfg %8p\n",
w5500_spi_bus->owner_driver, &spi_master_param);
return ERROR;
}
return ERROR;
}
configure_info.configure_cmd = OPE_INT;
ret = BusDrvConfigure(w5500_spi_bus->owner_driver, &configure_info);
if (ret) {
KPrintf("spi drv OPE_INT error drv %8p\n", w5500_spi_bus->owner_driver);
return ERROR;
}
configure_info.configure_cmd = OPE_INT;
ret = BusDrvConfigure(w5500_spi_bus->owner_driver, &configure_info);
if (ret) {
KPrintf("spi drv OPE_INT error drv %8p\n", w5500_spi_bus->owner_driver);
return ERROR;
}
return EOK;
return EOK;
}
void spi_write_byte(uint8_t tx_data) {
struct BusBlockWriteParam write_param;
write_param.buffer = &tx_data;
write_param.size = 1;
BusDevWriteData(w5500_spi_bus->owner_haldev, &write_param);
void spi_write_byte(uint8_t tx_data)
{
struct BusBlockWriteParam write_param;
uint8_t data = tx_data;
write_param.buffer = &data;
write_param.size = 1;
BusDevWriteData(w5500_spi_bus->owner_haldev, &write_param);
}
uint8_t spi_read_byte(void) {
uint8_t result = 0;
struct BusBlockReadParam read_param;
read_param.buffer = &result;
read_param.size = 1;
BusDevReadData(w5500_spi_bus->owner_haldev, &read_param);
return result;
uint8_t spi_read_byte(void)
{
uint8_t result = 0;
struct BusBlockReadParam read_param;
read_param.buffer = &result;
read_param.size = 1;
BusDevReadData(w5500_spi_bus->owner_haldev, &read_param);
return result;
}
void spi_write_burst(uint8_t *tx_buf, uint16_t len) {
struct BusBlockWriteParam write_param;
write_param.buffer = tx_buf;
write_param.size = len;
BusDevWriteData(w5500_spi_bus->owner_haldev, &write_param);
void spi_write_burst(uint8_t* tx_buf, uint16_t len)
{
struct BusBlockWriteParam write_param;
write_param.buffer = tx_buf;
write_param.size = len;
BusDevWriteData(w5500_spi_bus->owner_haldev, &write_param);
}
void spi_read_burst(uint8_t *rx_buf, uint16_t len) {
struct BusBlockReadParam read_param;
read_param.buffer = rx_buf;
read_param.size = len;
BusDevReadData(w5500_spi_bus->owner_haldev, &read_param);
void spi_read_burst(uint8_t* rx_buf, uint16_t len)
{
struct BusBlockReadParam read_param;
read_param.buffer = rx_buf;
read_param.size = len;
BusDevReadData(w5500_spi_bus->owner_haldev, &read_param);
}
/****************** chip init ******************/
void wiz_reset() {
gpiohs_set_drive_mode(WIZ_RST_PIN, GPIO_DM_OUTPUT);
gpiohs_set_pin(WIZ_RST_PIN, GPIO_PV_LOW);
MdelayKTask(20);
void wiz_reset()
{
gpiohs_set_drive_mode(WIZ_RST_PIN, GPIO_DM_OUTPUT);
gpiohs_set_pin(WIZ_RST_PIN, GPIO_PV_LOW);
MdelayKTask(20);
gpiohs_set_pin(WIZ_RST_PIN, GPIO_PV_HIGH);
MdelayKTask(20);
gpiohs_set_pin(WIZ_RST_PIN, GPIO_PV_HIGH);
MdelayKTask(20);
}
void wiz_spi_handler_reg() {
// spi ops registration
#if (_WIZCHIP_IO_MODE_ == _WIZCHIP_IO_MODE_SPI_VDM_) || \
(_WIZCHIP_IO_MODE_ == _WIZCHIP_IO_MODE_SPI_FDM_)
/* register SPI device CS select callback function */
gpiohs_set_drive_mode(SPI1_CS0_PIN, GPIO_DM_OUTPUT);
reg_wizchip_cs_cbfunc(spi_select_cs, spi_deselete_cs);
void wiz_spi_handler_reg()
{
// spi ops registration
#if (_WIZCHIP_IO_MODE_ == _WIZCHIP_IO_MODE_SPI_VDM_) || (_WIZCHIP_IO_MODE_ == _WIZCHIP_IO_MODE_SPI_FDM_)
/* register SPI device CS select callback function */
gpiohs_set_drive_mode(SPI1_CS0_PIN, GPIO_DM_OUTPUT);
reg_wizchip_cs_cbfunc(spi_select_cs, spi_deselete_cs);
#else
#if (_WIZCHIP_IO_MODE_ & _WIZCHIP_IO_MODE_SIP_) != _WIZCHIP_IO_MODE_SIP_
#error "Unknown _WIZCHIP_IO_MODE_"
#else
reg_wizchip_cs_cbfunc(wizchip_select, wizchip_deselect);
reg_wizchip_cs_cbfunc(wizchip_select, wizchip_deselect);
#endif
#endif
reg_wizchip_spi_cbfunc(spi_read_byte, spi_write_byte);
reg_wizchip_cris_cbfunc(spi_enter_cris, spi_exit_cris);
reg_wizchip_spiburst_cbfunc(spi_read_burst, spi_write_burst);
reg_wizchip_spi_cbfunc(spi_read_byte, spi_write_byte);
reg_wizchip_cris_cbfunc(spi_enter_cris, spi_exit_cris);
reg_wizchip_spiburst_cbfunc(spi_read_burst, spi_write_burst);
}
int wiz_chip_cfg_init() {
uint8_t mem_size[2][8] = {{2, 2, 2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 2, 2, 2, 2}};
int wiz_chip_cfg_init()
{
uint8_t mem_size[2][8] = { { 2, 2, 2, 2, 2, 2, 2, 2 }, { 2, 2, 2, 2, 2, 2, 2, 2 } };
/* reset WIZnet chip internal PHY, configures PHY mode. */
if (ctlwizchip(CW_INIT_WIZCHIP, (void *)mem_size) == -1) {
KPrintf("WIZCHIP initialize failed.");
return ERROR;
}
/* reset WIZnet chip internal PHY, configures PHY mode. */
if (ctlwizchip(CW_INIT_WIZCHIP, (void*)mem_size) == -1) {
KPrintf("WIZCHIP initialize failed.");
return ERROR;
}
struct wiz_NetTimeout_t net_timeout;
net_timeout.retry_cnt = 5;
net_timeout.time_100us = 20000;
ctlnetwork(CN_SET_TIMEOUT, (void *)&net_timeout);
struct wiz_NetTimeout_t net_timeout;
net_timeout.retry_cnt = 5;
net_timeout.time_100us = 20000;
ctlnetwork(CN_SET_TIMEOUT, (void*)&net_timeout);
return EOK;
return EOK;
}
/****************** interrupt handle ******************/
void wiz_irq_handler() {}
int wiz_interrupt_init() {
int32_t ret = -ERROR;
struct Bus *pin_bus = PinBusInitGet();
struct PinParam pin_param;
struct BusConfigureInfo pin_configure_info;
pin_configure_info.configure_cmd = OPE_CFG;
pin_configure_info.private_data = (void *)&pin_param;
pin_param.cmd = GPIO_CONFIG_MODE;
pin_param.pin = BSP_WIZ_INT_PIN;
pin_param.mode = GPIO_CFG_INPUT_PULLUP;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("config pin_param %d input failed!\n", pin_param.pin);
return -ERROR;
}
pin_param.cmd = GPIO_IRQ_REGISTER;
pin_param.pin = BSP_WIZ_INT_PIN;
pin_param.irq_set.irq_mode = GPIO_IRQ_EDGE_FALLING;
pin_param.irq_set.hdr = wiz_irq_handler;
pin_param.irq_set.args = NONE;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("register pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
pin_param.cmd = GPIO_IRQ_DISABLE;
pin_param.pin = BSP_WIZ_INT_PIN;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("disable pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
// 4. enable interuption
pin_param.cmd = GPIO_IRQ_ENABLE;
pin_param.pin = BSP_WIZ_INT_PIN;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("enable pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
return EOK;
return EOK;
#ifdef BSP_USING_LWIP
#include <sys.h>
static inline void spi_if_clr(void)
{
setSn_IR(0, 0x1F);
setSIR(0);
}
int HwWiznetInit(void) {
wiz_reset();
void wiz_irq_handler()
{
static x_base eth_irq_lock;
eth_irq_lock = DISABLE_INTERRUPT();
if (EOK != w5500_spi_init()) {
return ERROR;
}
if (*get_eth_recv_sem() > 0) {
sys_sem_signal(get_eth_recv_sem());
}
wiz_spi_handler_reg();
ENABLE_INTERRUPT(eth_irq_lock);
}
#else
void wiz_irq_handler()
{
static x_base eth_irq_lock;
eth_irq_lock = DISABLE_INTERRUPT();
if (EOK != wiz_chip_cfg_init()) {
return ERROR;
}
printf("=");
uint8_t ir = getIR();
setSIR(0x00);
setIR(0x00);
network_init();
ENABLE_INTERRUPT(eth_irq_lock);
}
#endif
return EOK;
void wizchip_interrupt_init(uint8_t socket, void (*callback)(void*))
{
int ret_val;
uint8_t reg_val1;
reg_val1 = (SIK_CONNECTED | SIK_DISCONNECTED | SIK_RECEIVED | SIK_TIMEOUT); // except SendOK
ret_val = wiz_ctlsocket(socket, CS_SET_INTMASK, (void*)&reg_val1);
#if (_WIZCHIP_ == W5100S)
reg_val = (1 << socket);
#elif (_WIZCHIP_ == W5500)
uint16_t reg_val2 = ((1 << socket) << 8);
#endif
ret_val = ctlwizchip(CW_SET_INTRMASK, (void*)&reg_val2);
(void)ret_val;
}
int wiz_interrupt_init()
{
int32_t ret = -ERROR;
wizchip_interrupt_init(0, wiz_irq_handler);
struct Bus* pin_bus = PinBusInitGet();
struct PinParam pin_param;
struct BusConfigureInfo pin_configure_info;
pin_configure_info.configure_cmd = OPE_CFG;
pin_configure_info.private_data = (void*)&pin_param;
pin_param.cmd = GPIO_CONFIG_MODE;
pin_param.pin = BSP_WIZ_INT_PIN;
pin_param.mode = GPIO_CFG_INPUT_PULLUP;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("config pin_param %d input failed!\n", pin_param.pin);
return -ERROR;
}
pin_param.cmd = GPIO_IRQ_REGISTER;
pin_param.pin = BSP_WIZ_INT_PIN;
pin_param.irq_set.irq_mode = GPIO_IRQ_EDGE_FALLING;
pin_param.irq_set.hdr = wiz_irq_handler;
pin_param.irq_set.args = NONE;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("register pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
pin_param.cmd = GPIO_IRQ_DISABLE;
pin_param.pin = BSP_WIZ_INT_PIN;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("disable pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
// 4. enable interuption
pin_param.cmd = GPIO_IRQ_ENABLE;
pin_param.pin = BSP_WIZ_INT_PIN;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("enable pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
return EOK;
}
int HwWiznetInit(void)
{
wiz_reset();
if (EOK != w5500_spi_init()) {
return ERROR;
}
wiz_spi_handler_reg();
if (EOK != wiz_chip_cfg_init()) {
return ERROR;
}
extern uint8_t wiz_mac[6];
setSHAR(wiz_mac);
ctlwizchip(CW_RESET_PHY, 0);
wiz_interrupt_init(0, wiz_irq_handler);
setSn_RXBUF_SIZE(0, 16);
setSn_TXBUF_SIZE(0, 16);
#define SOCK_ANY_PORT_NUM 0xC000
setSn_MR(0, Sn_MR_MFEN | Sn_MR_MACRAW | Sn_MR_MIP6B | Sn_MR_MMB);
wiz_socket(0, Sn_MR_MACRAW, SOCK_ANY_PORT_NUM, SOCK_IO_NONBLOCK);
uint8_t sock_iomode = SOCK_IO_NONBLOCK;
wiz_ctlsocket(0, CS_SET_IOMODE, &sock_iomode);
uint8_t sock_sr = 0;
while (1) {
sock_sr = getSn_SR(0);
SYS_KDEBUG_LOG(WIZNET_DEBUG, ("[%s] sock_sr: %x, MACRAW: %x\n", __func__, sock_sr, SOCK_MACRAW));
if (sock_sr == SOCK_MACRAW) {
SYS_KDEBUG_LOG(WIZNET_DEBUG, ("Socket 0 MACRAW mode established\r\n"));
break;
}
}
network_init();
return EOK;
}

View File

@ -54,7 +54,7 @@
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
//#include <stdio.h>
// #include <stdio.h>
#include "w5500.h"
#define _W5500_SPI_VDM_OP_ 0x00
@ -65,191 +65,198 @@
#if (_WIZCHIP_ == 5500)
////////////////////////////////////////////////////
uint8_t WIZCHIP_READ(uint32_t AddrSel) {
uint8_t ret;
uint8_t spi_data[3];
uint8_t WIZCHIP_READ(uint32_t AddrSel)
{
uint8_t ret = 0;
uint8_t spi_data[3];
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
if (!WIZCHIP.IF.SPI._read_burst ||
!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
}
ret = WIZCHIP.IF.SPI._read_byte();
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
return ret;
}
void WIZCHIP_WRITE(uint32_t AddrSel, uint8_t wb) {
uint8_t spi_data[4];
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
// if(!WIZCHIP.IF.SPI._read_burst || !WIZCHIP.IF.SPI._write_burst) // byte
// operation
if (!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
WIZCHIP.IF.SPI._write_byte(wb);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
spi_data[3] = wb;
WIZCHIP.IF.SPI._write_burst(spi_data, 4);
}
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_READ_BUF(uint32_t AddrSel, uint8_t *pBuf, uint16_t len) {
uint8_t spi_data[3];
uint16_t i;
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
if (!WIZCHIP.IF.SPI._read_burst ||
!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
for (i = 0; i < len; i++)
pBuf[i] = WIZCHIP.IF.SPI._read_byte();
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
WIZCHIP.IF.SPI._read_burst(pBuf, len);
}
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_WRITE_BUF(uint32_t AddrSel, uint8_t *pBuf, uint16_t len) {
uint8_t spi_data[3];
uint16_t i;
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
if (!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
for (i = 0; i < len; i++)
WIZCHIP.IF.SPI._write_byte(pBuf[i]);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
WIZCHIP.IF.SPI._write_burst(pBuf, len);
}
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
uint16_t getSn_TX_FSR(uint8_t sn) {
uint16_t val = 0, val1 = 0;
do {
val1 = WIZCHIP_READ(Sn_TX_FSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn), 1));
if (val1 != 0) {
val = WIZCHIP_READ(Sn_TX_FSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn), 1));
if (!WIZCHIP.IF.SPI._read_burst || !WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
}
} while (val != val1);
return val;
ret = WIZCHIP.IF.SPI._read_byte();
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
return ret;
}
uint16_t getSn_RX_RSR(uint8_t sn) {
uint16_t val = 0, val1 = 0;
void WIZCHIP_WRITE(uint32_t AddrSel, uint8_t wb)
{
uint8_t spi_data[4];
do {
val1 = WIZCHIP_READ(Sn_RX_RSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn), 1));
if (val1 != 0) {
val = WIZCHIP_READ(Sn_RX_RSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn), 1));
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
// if(!WIZCHIP.IF.SPI._read_burst || !WIZCHIP.IF.SPI._write_burst) // byte
// operation
if (!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
WIZCHIP.IF.SPI._write_byte(wb);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
spi_data[3] = wb;
WIZCHIP.IF.SPI._write_burst(spi_data, 4);
}
} while (val != val1);
return val;
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void wiz_send_data(uint8_t sn, uint8_t *wizdata, uint16_t len) {
uint16_t ptr = 0;
uint32_t addrsel = 0;
void WIZCHIP_READ_BUF(uint32_t AddrSel, uint8_t* pBuf, uint16_t len)
{
uint8_t spi_data[3];
uint16_t i;
if (len == 0)
return;
ptr = getSn_TX_WR(sn);
// M20140501 : implict type casting -> explict type casting
// addrsel = (ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
//
WIZCHIP_WRITE_BUF(addrsel, wizdata, len);
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
ptr += len;
setSn_TX_WR(sn, ptr);
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
if (!WIZCHIP.IF.SPI._read_burst || !WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
for (i = 0; i < len; i++)
pBuf[i] = WIZCHIP.IF.SPI._read_byte();
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
WIZCHIP.IF.SPI._read_burst(pBuf, len);
}
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void wiz_recv_data(uint8_t sn, uint8_t *wizdata, uint16_t len) {
uint16_t ptr = 0;
uint32_t addrsel = 0;
void WIZCHIP_WRITE_BUF(uint32_t AddrSel, uint8_t* pBuf, uint16_t len)
{
uint8_t spi_data[3];
uint16_t i;
if (len == 0)
return;
ptr = getSn_RX_RD(sn);
// M20140501 : implict type casting -> explict type casting
// addrsel = ((ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
//
WIZCHIP_READ_BUF(addrsel, wizdata, len);
ptr += len;
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
setSn_RX_RD(sn, ptr);
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
if (!WIZCHIP.IF.SPI._write_burst) // byte operation
{
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
for (i = 0; i < len; i++)
WIZCHIP.IF.SPI._write_byte(pBuf[i]);
} else // burst operation
{
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
WIZCHIP.IF.SPI._write_burst(spi_data, 3);
WIZCHIP.IF.SPI._write_burst(pBuf, len);
}
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void wiz_recv_ignore(uint8_t sn, uint16_t len) {
uint16_t ptr = 0;
uint16_t getSn_TX_FSR(uint8_t sn)
{
uint16_t val = 0, val1 = 0;
ptr = getSn_RX_RD(sn);
ptr += len;
setSn_RX_RD(sn, ptr);
do {
val1 = WIZCHIP_READ(Sn_TX_FSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn), 1));
if (val1 != 0) {
val = WIZCHIP_READ(Sn_TX_FSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn), 1));
}
} while (val != val1);
return val;
}
uint16_t getSn_RX_RSR(uint8_t sn)
{
uint16_t val = 0, val1 = 0;
do {
val1 = WIZCHIP_READ(Sn_RX_RSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn), 1));
if (val1 != 0) {
val = WIZCHIP_READ(Sn_RX_RSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn), 1));
}
} while (val != val1);
return val;
}
void wiz_send_data(uint8_t sn, uint8_t* wizdata, uint16_t len)
{
uint16_t ptr = 0;
uint32_t addrsel = 0;
if (len == 0)
return;
ptr = getSn_TX_WR(sn);
// M20140501 : implict type casting -> explict type casting
// addrsel = (ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
//
WIZCHIP_WRITE_BUF(addrsel, wizdata, len);
ptr += len;
setSn_TX_WR(sn, ptr);
}
void wiz_recv_data(uint8_t sn, uint8_t* wizdata, uint16_t len)
{
uint16_t ptr = 0;
uint32_t addrsel = 0;
if (len == 0)
return;
ptr = getSn_RX_RD(sn);
// M20140501 : implict type casting -> explict type casting
// addrsel = ((ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
//
WIZCHIP_READ_BUF(addrsel, wizdata, len);
ptr += len;
setSn_RX_RD(sn, ptr);
}
void wiz_recv_ignore(uint8_t sn, uint16_t len)
{
uint16_t ptr = 0;
ptr = getSn_RX_RD(sn);
ptr += len;
setSn_RX_RD(sn, ptr);
}
#endif

View File

@ -0,0 +1,248 @@
/**
* Copyright (c) 2022 WIZnet Co.,Ltd
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/**
* ----------------------------------------------------------------------------------------------------
* Includes
* ----------------------------------------------------------------------------------------------------
*/
#include <stdio.h>
#include "connect_ethernet.h"
#include "socket.h"
#include "netif/etharp.h"
#include <sys.h>
#include <xs_kdbg.h>
#include <xizi.h>
/**
* ----------------------------------------------------------------------------------------------------
* Macros
* ----------------------------------------------------------------------------------------------------
*/
/**
* ----------------------------------------------------------------------------------------------------
* Variables
* ----------------------------------------------------------------------------------------------------
*/
uint8_t wiz_mac[6] = { 0x00, 0x08, 0xDC, 0x12, 0x34, 0x56 };
static const uint32_t ethernet_polynomial_le = 0xedb88320U;
static sys_mutex_t wiz_trans_mtx;
/**
* ----------------------------------------------------------------------------------------------------
* Functions
* ----------------------------------------------------------------------------------------------------
*/
void* ethernetif_config_enet_set(uint8_t enet_port)
{
return NONE;
}
void Time_Update_LwIP(void)
{
// no need to do
}
static inline void spi_if_clr(void)
{
setSn_IR(0, 0x1F);
setSIR(0);
}
// macraw func
uint16_t macraw_send(const uint8_t* buf, uint16_t len)
{
uint8_t sock_num = 0;
uint16_t ret = 0;
if (len > getSn_TxMAX(sock_num)) {
ret = getSn_TxMAX(sock_num);
} else {
ret = len;
}
wiz_send_data(sock_num, (uint8_t*)buf, len);
WIZCHIP_WRITE(Sn_CR(sock_num), Sn_CR_SEND);
while (WIZCHIP_READ(Sn_CR(sock_num))) {
}
while (WIZCHIP_READ(Sn_IR(sock_num)) & Sn_IR_SENDOK != Sn_IR_SENDOK) {
}
WIZCHIP_WRITE(Sn_IR(sock_num), Sn_IR_SENDOK);
return ret;
}
uint16_t macraw_recv(uint8_t* buf, uint16_t len)
{
uint8_t sock_num = 0;
uint16_t lowlevel_len = getSn_RX_RSR(sock_num);
if (lowlevel_len <= 0 || len <= 0) {
return 0;
}
uint16_t data_len = 0;
uint8_t macraw_head[2];
uint16_t ptr = getSn_RX_RD(sock_num);
uint32_t addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sock_num) << 3);
WIZCHIP_READ_BUF(addrsel, macraw_head, 2);
ptr += 2;
data_len = (macraw_head[0] << 8) + macraw_head[1] - 2;
if (data_len > 1514) {
KPrintf("[%s:%d] Info: data recved oversize: %d\n", __func__, __LINE__, data_len);
wiz_recv_ignore(sock_num, data_len);
// wiz_sock_close(sock_num);
// wiz_socket(sock_num, Sn_MR_MACRAW, 0xC000, 0);
return 0;
}
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sock_num) << 3);
WIZCHIP_READ_BUF(addrsel, buf, data_len);
ptr += data_len;
setSn_RX_RD(sock_num, ptr);
WIZCHIP_WRITE(Sn_CR(sock_num), Sn_CR_RECV);
while (WIZCHIP_READ(Sn_CR(sock_num)))
;
return data_len;
}
void netif_link_callback(struct netif* netif)
{
printf("netif link status changed %s\n", netif_is_link_up(netif) ? "up" : "down");
}
void netif_status_callback(struct netif* netif)
{
printf("netif status changed %s\n", ip4addr_ntoa(netif_ip4_addr(netif)));
}
static int32_t wiz_transmit_pbuf(struct pbuf* p)
{
static uint8_t addr[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
int32_t send_ret = 0;
while (1) {
spi_if_clr();
if ((send_ret = wiz_sock_sendto(0, (uint8_t*)p->payload, p->len, addr, 0)) <= 0) {
SYS_KDEBUG_LOG(WIZNET_DEBUG, ("[%s] data send failed: %d, sock: %x\n", __func__, send_ret, getSn_SR(0)));
return -ERROR;
}
if (p->len == p->tot_len) {
break;
}
p = p->next;
}
return EOK;
}
static struct pbuf* wiz_read_receive_pbuf(struct pbuf* buf)
{
#define RX_FRAME_SIZE 1542
static uint8_t rx_frame[RX_FRAME_SIZE];
static uint8_t addr[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
uint16_t port = 0;
uint16_t lowlevel_len = getSn_RX_RSR(0);
if (lowlevel_len <= 0) {
return NULL;
}
int32_t data_len = wiz_sock_recvfrom(0, rx_frame, RX_FRAME_SIZE, addr, &port);
if (data_len > 0 && data_len <= RX_FRAME_SIZE) {
buf = pbuf_alloc(PBUF_RAW, data_len, PBUF_POOL);
if (buf == NULL) {
return NULL;
}
memcpy(buf->payload, rx_frame, data_len);
} else {
return NULL;
}
return buf;
}
void ethernetif_input(void* netif_arg)
{
struct netif* netif = (struct netif*)netif_arg;
struct pbuf* p = NULL;
for (;;) {
sys_arch_sem_wait(get_eth_recv_sem(), WAITING_FOREVER);
while (1) {
sys_mutex_lock(&wiz_trans_mtx);
spi_if_clr();
p = NULL;
p = wiz_read_receive_pbuf(p);
sys_mutex_unlock(&wiz_trans_mtx);
if (p != NULL) {
// SYS_KDEBUG_LOG(WIZNET_DEBUG, ("[%s:%d] Info Recved package with size %d\n", __func__, __LINE__, p->len));
if (ERR_OK != netif->input(p, netif)) {
pbuf_free(p);
}
p = NULL;
} else {
break;
}
}
}
}
static err_t spi_if_linkoutput(struct netif* netif, struct pbuf* p)
{
sys_mutex_lock(&wiz_trans_mtx);
if (!(getSn_SR(0) & SOCK_MACRAW)) {
SYS_KDEBUG_LOG(WIZNET_DEBUG, ("[%s:%d] err socket state %d\n", __func__, __LINE__, p->len));
wiz_sock_close(0);
setSn_MR(0, Sn_MR_MFEN | Sn_MR_MACRAW | Sn_MR_MIP6B | Sn_MR_MMB);
wiz_socket(0, Sn_MR_MACRAW, 0, SOCK_IO_NONBLOCK);
}
int32_t ret = wiz_transmit_pbuf(p);
sys_mutex_unlock(&wiz_trans_mtx);
if (ret != EOK) {
return ERR_USE;
}
/* TODO: Set up result value */
return ERR_OK;
}
err_t netif_initialize(struct netif* netif)
{
sys_mutex_new(&wiz_trans_mtx);
netif->linkoutput = spi_if_linkoutput;
// netif->linkoutput = netif_output;
netif->output = etharp_output;
netif->mtu = ETHERNET_MTU;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP | NETIF_FLAG_MLD6;
netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP;
SMEMCPY(netif->hwaddr, wiz_mac, sizeof(netif->hwaddr));
netif->hwaddr_len = sizeof(netif->hwaddr);
netif->name[0] = 'e';
netif->name[1] = '0';
return ERR_OK;
}

View File

@ -304,7 +304,7 @@ __exit:
if (recv_data) free(recv_data);
}
void iperf_usage(void)
static void iperf_usage(void)
{
KPrintf("Usage: iperf [-s|-c host] [options] [multi-threaded]\n");
KPrintf(" iperf [-h|--stop]\n");
@ -326,7 +326,7 @@ void iperf_usage(void)
return;
}
int iperf(int argc, char **argv)
int wiz_iperf(int argc, char** argv)
{
int mode = 0; /* server mode */
char *host = NULL;
@ -460,6 +460,6 @@ __usage:
return 0;
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0) | SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
iperf, iperf,
iperf throughput test);
wiz_iperf, wiz_iperf,
iperf throughput test);
#endif

View File

@ -12,8 +12,8 @@
#define PING_BIND_PORT 3000
PINGMSGR PingRequest = {0};
PINGMSGR PingReply = {0};
PINGMSGR PingRequest = { 0 };
PINGMSGR PingReply = { 0 };
static uint16_t ping_RandomID = 0x1234;
static uint16_t ping_RandomSeqNum = 0x4321;
@ -21,7 +21,7 @@ uint8_t ping_reply_received = 0;
uint8_t ping_req = 0;
uint8_t ping_rep = 0;
uint8_t ping_cnt = 0;
uint8_t ping_rep_buf[150] = {0};
uint8_t ping_rep_buf[150] = { 0 };
// ping状态机
#define PING_STA_FREE 0
@ -32,41 +32,43 @@ uint8_t ping_rep_buf[150] = {0};
uint8_t ping_sta = PING_STA_FREE;
//当前ping的设备的序号
// 当前ping的设备的序号
uint8_t ping_socket = 0;
#define bswap_16(A) ((((uint16)(A)&0xff00) >> 8) | (((uint16)(A)&0x00ff) << 8))
#define bswap_16(A) ((((uint16)(A) & 0xff00) >> 8) | (((uint16)(A) & 0x00ff) << 8))
uint16_t htons(uint16_t n) {
union {
int i;
char c;
} u = {1};
return u.c ? bswap_16(n) : n;
uint16_t htons(uint16_t n)
{
union {
int i;
char c;
} u = { 1 };
return u.c ? bswap_16(n) : n;
}
uint16_t checksum(uint8_t *src, uint32_t len) {
uint16_t sum, tsum, i, j;
uint32_t lsum;
uint16_t checksum(uint8_t* src, uint32_t len)
{
uint16_t sum, tsum, i, j;
uint32_t lsum;
j = len >> 1;
lsum = 0;
j = len >> 1;
lsum = 0;
for (i = 0; i < j; i++) {
tsum = src[i * 2];
tsum = tsum << 8;
tsum += src[i * 2 + 1];
lsum += tsum;
}
for (i = 0; i < j; i++) {
tsum = src[i * 2];
tsum = tsum << 8;
tsum += src[i * 2 + 1];
lsum += tsum;
}
if (len % 2) {
tsum = src[i * 2];
lsum += (tsum << 8);
}
if (len % 2) {
tsum = src[i * 2];
lsum += (tsum << 8);
}
sum = lsum;
sum = ~(sum + (lsum >> 16));
return (uint16_t)sum;
sum = lsum;
sum = ~(sum + (lsum >> 16));
return (uint16_t)sum;
}
/**
@ -76,64 +78,64 @@ uint16_t checksum(uint8_t *src, uint32_t len) {
*@param pCount- ping的次数
*@return ping成功次数
*/
uint8_t ping_count(uint8_t sn, uint16_t pCount, uint8_t *addr) {
uint16_t rlen, cnt, i;
uint8_t ping_count(uint8_t sn, uint16_t pCount, uint8_t* addr)
{
uint16_t rlen, cnt, i;
ping_reply_received = 0;
ping_req = 0;
ping_rep = 0;
KPrintf("Ping:%d.%d.%d.%d\r\n", (addr[0]), (addr[1]), (addr[2]), (addr[3]));
ping_reply_received = 0;
ping_req = 0;
ping_rep = 0;
KPrintf("Ping:%d.%d.%d.%d, socket state: %x\r\n", (addr[0]), (addr[1]), (addr[2]), (addr[3]), getSn_SR(sn));
for (i = 0; i < pCount + 1; i++) /*循环ping pCount次*/
{
switch (getSn_SR(sn)) /*获取socket状态*/
for (i = 0; i < pCount + 1; i++) /*循环ping pCount次*/
{
case SOCK_CLOSED: /*socket关闭状态*/
{
wiz_sock_close(sn);
/* Create Socket */
IINCHIP_WRITE(Sn_PROTO(sn), IPPROTO_ICMP); /*设置ICMP 协议*/
if (wiz_socket(sn, Sn_MR_IPRAW, PING_BIND_PORT, 0) !=
0) /*判断ip raw模式socket是否开启*/
switch (getSn_SR(sn)) /*获取socket状态*/
{
}
/* Check socket register */
while (getSn_SR(sn) != SOCK_IPRAW) {
MdelayKTask(50);
};
break;
}
case SOCK_IPRAW: /*ip raw模式*/
{
cnt = 0;
ping_request(sn, addr); /*发送Ping请求*/
ping_req++;
while (1) {
if ((rlen = getSn_RX_RSR(sn)) > 0) {
rlen = ping_reply(sn, addr, rlen); /*获取回复信息*/
ping_rep++;
if (ping_reply_received) {
break;
case SOCK_CLOSED: /*socket关闭状态*/
{
wiz_sock_close(sn);
/* Create Socket */
IINCHIP_WRITE(Sn_PROTO(sn), IPPROTO_ICMP); /*设置ICMP 协议*/
if (wiz_socket(sn, Sn_MR_IPRAW, PING_BIND_PORT, 0) != 0) /*判断ip raw模式socket是否开启*/
{
}
}
if ((cnt > 300)) {
cnt = 0;
/* Check socket register */
while (getSn_SR(sn) != SOCK_IPRAW) {
MdelayKTask(50);
};
break;
} else {
cnt++;
MdelayKTask(10);
}
}
break;
}
default:
break;
case SOCK_IPRAW: /*ip raw模式*/
{
cnt = 0;
ping_request(sn, addr); /*发送Ping请求*/
ping_req++;
while (1) {
if ((rlen = getSn_RX_RSR(sn)) > 0) {
rlen = ping_reply(sn, addr, rlen); /*获取回复信息*/
ping_rep++;
if (ping_reply_received) {
break;
}
}
if ((cnt > 300)) {
cnt = 0;
break;
} else {
cnt++;
MdelayKTask(10);
}
}
break;
}
default:
break;
}
if (ping_req >= pCount) {
wiz_sock_close(sn);
}
}
if (ping_req >= pCount) {
wiz_sock_close(sn);
}
}
return ping_rep;
return ping_rep;
}
/**
@ -142,31 +144,30 @@ uint8_t ping_count(uint8_t sn, uint16_t pCount, uint8_t *addr) {
*@param addr- P地址
*@return
*/
uint8_t ping_request(uint8_t sn, uint8_t *addr) {
uint8_t *buffer;
uint16_t i, temp_len = 0;
ping_reply_received = 0; /*ping 回复初始化标志位*/
PingRequest.Type = PING_REQUEST; /*Ping-Request*/
PingRequest.Code = CODE_ZERO; /*总是 '0'*/
PingRequest.ID = htons(ping_RandomID++); /*设置ping响应ID为随机的整型变量*/
PingRequest.SeqNum =
htons(ping_RandomSeqNum++); /*设置ping响应的序列号为随机整形变量*/
for (i = 0; i < PING_BUF_LEN; i++) {
PingRequest.Data[i] = (i) % 8; /*ping相应的数在'0'~'8*/
}
PingRequest.CheckSum = 0;
/* 计算响应次数*/
PingRequest.CheckSum =
htons(checksum((uint8_t *)&PingRequest, sizeof(PingRequest)));
uint8_t ping_request(uint8_t sn, uint8_t* addr)
{
uint8_t* buffer;
/*发送ping响应到目的方 */
if (wiz_sock_sendto(sn, (uint8_t *)&PingRequest, sizeof(PingRequest), addr,
PING_BIND_PORT) == 0) {
KPrintf("Fail to send ping-reply packet\r\n");
} else {
KPrintf("ping send\n");
}
return 0;
uint16_t i, temp_len = 0;
ping_reply_received = 0; /*ping 回复初始化标志位*/
PingRequest.Type = PING_REQUEST; /*Ping-Request*/
PingRequest.Code = CODE_ZERO; /*总是 '0'*/
PingRequest.ID = htons(ping_RandomID++); /*设置ping响应ID为随机的整型变量*/
PingRequest.SeqNum = htons(ping_RandomSeqNum++); /*设置ping响应的序列号为随机整形变量*/
for (i = 0; i < PING_BUF_LEN; i++) {
PingRequest.Data[i] = (i) % 8; /*ping相应的数在'0'~'8*/
}
PingRequest.CheckSum = 0;
/* 计算响应次数*/
PingRequest.CheckSum = htons(checksum((uint8_t*)&PingRequest, sizeof(PingRequest)));
/*发送ping响应到目的方 */
if (wiz_sock_sendto(sn, (uint8_t*)&PingRequest, sizeof(PingRequest), addr, PING_BIND_PORT) == 0) {
KPrintf("Fail to send ping-reply packet\r\n");
} else {
KPrintf("ping send\n");
}
return 0;
}
/**
@ -175,82 +176,84 @@ uint8_t ping_request(uint8_t sn, uint8_t *addr) {
*@param addr- Ping地址
*@return
*/
uint8_t ping_reply(uint8_t sn, uint8_t *addr, uint16_t rlen) {
uint16_t tmp_checksum;
uint16_t len;
uint16_t i;
uint8_t ping_reply(uint8_t sn, uint8_t* addr, uint16_t rlen)
{
uint16_t tmp_checksum;
uint16_t len;
uint16_t i;
uint16_t port = PING_BIND_PORT;
PINGMSGR PingReply;
uint16_t port = PING_BIND_PORT;
PINGMSGR PingReply;
memset(ping_rep_buf, 0, sizeof(ping_rep_buf));
len = wiz_sock_recvfrom(sn, ping_rep_buf, rlen, addr,
&port); /*从目的端接收数据*/
memset(ping_rep_buf, 0, sizeof(ping_rep_buf));
len = wiz_sock_recvfrom(sn, ping_rep_buf, rlen, addr,
&port); /*从目的端接收数据*/
if (ping_rep_buf[0] == PING_REPLY) {
PingReply.Type = ping_rep_buf[0];
PingReply.Code = ping_rep_buf[1];
PingReply.CheckSum = (ping_rep_buf[3] << 8) + ping_rep_buf[2];
PingReply.ID = (ping_rep_buf[5] << 8) + ping_rep_buf[4];
PingReply.SeqNum = (ping_rep_buf[7] << 8) + ping_rep_buf[6];
if (ping_rep_buf[0] == PING_REPLY) {
PingReply.Type = ping_rep_buf[0];
PingReply.Code = ping_rep_buf[1];
PingReply.CheckSum = (ping_rep_buf[3] << 8) + ping_rep_buf[2];
PingReply.ID = (ping_rep_buf[5] << 8) + ping_rep_buf[4];
PingReply.SeqNum = (ping_rep_buf[7] << 8) + ping_rep_buf[6];
for (i = 0; i < len - 8; i++) {
PingReply.Data[i] = ping_rep_buf[8 + i];
}
tmp_checksum = ~checksum(ping_rep_buf, len); /*检查ping回复的次数*/
if (tmp_checksum != 0xffff) {
KPrintf("tmp_checksum = %x\r\n", tmp_checksum);
for (i = 0; i < len - 8; i++) {
PingReply.Data[i] = ping_rep_buf[8 + i];
}
tmp_checksum = ~checksum(ping_rep_buf, len); /*检查ping回复的次数*/
if (tmp_checksum != 0xffff) {
KPrintf("tmp_checksum = %x\r\n", tmp_checksum);
} else {
KPrintf("Reply from %3d.%3d.%3d.%3d ID=%x Byte=%d\r\n\r\n", (addr[0]),
(addr[1]), (addr[2]), (addr[3]), htons(PingReply.ID), (rlen + 6));
ping_reply_received = 1; /*当退出ping回复循环时设置ping回复标志为1*/
}
} else if (ping_rep_buf[0] == PING_REQUEST) {
PingReply.Code = ping_rep_buf[1];
PingReply.Type = ping_rep_buf[2];
PingReply.CheckSum = (ping_rep_buf[3] << 8) + ping_rep_buf[2];
PingReply.ID = (ping_rep_buf[5] << 8) + ping_rep_buf[4];
PingReply.SeqNum = (ping_rep_buf[7] << 8) + ping_rep_buf[6];
for (i = 0; i < len - 8; i++) {
PingReply.Data[i] = ping_rep_buf[8 + i];
}
tmp_checksum = PingReply.CheckSum; /*检查ping回复次数*/
PingReply.CheckSum = 0;
if (tmp_checksum != PingReply.CheckSum) {
KPrintf(" \n CheckSum is in correct %x shold be %x \n", (tmp_checksum),
htons(PingReply.CheckSum));
} else {
}
KPrintf(
" Request from %d.%d.%d.%d ID:%x SeqNum:%x :data size %d bytes\r\n",
(addr[0]), (addr[1]), (addr[2]), (addr[3]), (PingReply.ID),
(PingReply.SeqNum), (rlen + 6));
ping_reply_received = 1; /* 当退出ping回复循环时设置ping回复标志为1
*/
} else {
KPrintf("Reply from %3d.%3d.%3d.%3d ID=%x Byte=%d\r\n\r\n", (addr[0]),
(addr[1]), (addr[2]), (addr[3]), htons(PingReply.ID), (rlen + 6));
ping_reply_received = 1; /*当退出ping回复循环时设置ping回复标志为1*/
KPrintf(" Unkonwn msg. \n");
}
} else if (ping_rep_buf[0] == PING_REQUEST) {
PingReply.Code = ping_rep_buf[1];
PingReply.Type = ping_rep_buf[2];
PingReply.CheckSum = (ping_rep_buf[3] << 8) + ping_rep_buf[2];
PingReply.ID = (ping_rep_buf[5] << 8) + ping_rep_buf[4];
PingReply.SeqNum = (ping_rep_buf[7] << 8) + ping_rep_buf[6];
for (i = 0; i < len - 8; i++) {
PingReply.Data[i] = ping_rep_buf[8 + i];
}
tmp_checksum = PingReply.CheckSum; /*检查ping回复次数*/
PingReply.CheckSum = 0;
if (tmp_checksum != PingReply.CheckSum) {
KPrintf(" \n CheckSum is in correct %x shold be %x \n", (tmp_checksum),
htons(PingReply.CheckSum));
} else {
}
KPrintf(
" Request from %d.%d.%d.%d ID:%x SeqNum:%x :data size %d bytes\r\n",
(addr[0]), (addr[1]), (addr[2]), (addr[3]), (PingReply.ID),
(PingReply.SeqNum), (rlen + 6));
ping_reply_received = 1; /* 当退出ping回复循环时设置ping回复标志为1
*/
} else {
KPrintf(" Unkonwn msg. \n");
}
return 0;
return 0;
}
void wiz_ping_test(int argc, char *argv[]) {
uint32_t tmp_ip[4];
uint8_t target_ip[4];
uint16_t pCount = 5; //默认ping 5次
void wiz_ping_test(int argc, char* argv[])
{
uint32_t tmp_ip[4];
uint8_t target_ip[4];
uint16_t pCount = 5; // 默认ping 5次
if (argc >= 2) {
KPrintf("This is a Ping test: %s\n", argv[1]);
sscanf(argv[1], "%d.%d.%d.%d", &tmp_ip[0], &tmp_ip[1], &tmp_ip[2],
&tmp_ip[3]);
target_ip[0] = (uint8_t)tmp_ip[0];
target_ip[1] = (uint8_t)tmp_ip[1];
target_ip[2] = (uint8_t)tmp_ip[2];
target_ip[3] = (uint8_t)tmp_ip[3];
if (argc >= 3){
pCount = atoi(argv[2]); //如果ip后面跟具体的数字,代表ping的次数
if (argc >= 2) {
KPrintf("This is a Ping test: %s\n", argv[1]);
sscanf(argv[1], "%d.%d.%d.%d", &tmp_ip[0], &tmp_ip[1], &tmp_ip[2],
&tmp_ip[3]);
target_ip[0] = (uint8_t)tmp_ip[0];
target_ip[1] = (uint8_t)tmp_ip[1];
target_ip[2] = (uint8_t)tmp_ip[2];
target_ip[3] = (uint8_t)tmp_ip[3];
if (argc >= 3) {
pCount = atoi(argv[2]); // 如果ip后面跟具体的数字,代表ping的次数
}
ping_count(ping_socket, pCount, target_ip);
}
ping_count(ping_socket, pCount, target_ip);
}
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0) | SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
ping, wiz_ping_test, ping to given addr);
wiz_ping, wiz_ping_test, ping to given addr);

View File

@ -0,0 +1,118 @@
/**
* Copyright (c) 2022 WIZnet Co.,Ltd
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _W5x00_LWIP_H_
#define _W5x00_LWIP_H_
/**
* ----------------------------------------------------------------------------------------------------
* Includes
* ----------------------------------------------------------------------------------------------------
*/
#include "lwip/netif.h"
/**
* ----------------------------------------------------------------------------------------------------
* Macros
* ----------------------------------------------------------------------------------------------------
*/
/* LWIP */
#define ETHERNET_MTU 1500
#define SOCKET_MACRAW 0
/**
* ----------------------------------------------------------------------------------------------------
* Variables
* ----------------------------------------------------------------------------------------------------
*/
/**
* ----------------------------------------------------------------------------------------------------
* Functions
* ----------------------------------------------------------------------------------------------------
*/
/*! \brief send an ethernet packet
* \ingroup w5x00_lwip
*
* It is used to send outgoing data to the socket.
*
* \param sn socket number
* \param buf a pointer to the data to send
* \param len the length of data in packet
* \return he sent data size
*/
int32_t send_lwip(uint8_t sn, uint8_t* buf, uint16_t len);
/*! \brief read an ethernet packet
* \ingroup w5x00_lwip
*
* It is used to read incoming data from the socket.
*
* \param sn socket number
* \param buf a pointer buffer to read incoming data
* \param len the length of the data in the packet
* \return the real received data size
*/
int32_t recv_lwip(uint8_t sn, uint8_t* buf, uint16_t len);
/*! \brief callback function
* \ingroup w5x00_lwip
*
* This function is called by ethernet_output() when it wants
* to send a packet on the interface. This function outputs
* the pbuf as-is on the link medium.
*
* \param netif a pre-allocated netif structure
* \param p main packet buffer struct
* \return ERR_OK if data was sent.
*/
err_t netif_output(struct netif* netif, struct pbuf* p);
/*! \brief callback function
* \ingroup w5x00_lwip
*
* Callback function for link.
*
* \param netif a pre-allocated netif structure
*/
void netif_link_callback(struct netif* netif);
/*! \brief callback function
* \ingroup w5x00_lwip
*
* Callback function for status.
*
* \param netif a pre-allocated netif structure
*/
void netif_status_callback(struct netif* netif);
/*! \brief callback function
* \ingroup w5x00_lwip
*
* Callback function that initializes the interface.
*
* \param netif a pre-allocated netif structure
* \return ERR_OK if Network interface initialized
*/
err_t netif_initialize(struct netif* netif);
/*! \brief ethernet frame cyclic redundancy check
* \ingroup w5x00_lwip
*
* Perform cyclic redundancy check on ethernet frame
*
* \param data a pointer to the ethernet frame
* \param length the total length of ethernet frame
* \return an ethernet frame cyclic redundancy check result value
*/
static uint32_t ethernet_frame_crc(const uint8_t* data, int length);
void ethernetif_input(void* netif_arg);
void* ethernetif_config_enet_set(uint8_t enet_port);
void Time_Update_LwIP(void);
#define NETIF_ENET0_INIT_FUNC netif_initialize
#endif /* _W5x00_LWIP_H_ */

View File

@ -191,8 +191,8 @@ static uint32 SpiWriteData(struct SpiHardwareDevice *spi_dev, struct SpiDataStan
for (i = 0; i < spi_datacfg->length; i++) {
tx_buff[i] = ((uint8_t *)spi_datacfg->tx_buff)[i];
}
dmac_set_single_mode(dev_param->spi_dma_param->spi_dmac_txchannel, tx_buff, (void *)(&spi_instance[device_master_id]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, spi_datacfg->length);
dmac_set_single_mode(dev_param->spi_dma_param->spi_dmac_txchannel, tx_buff, (void*)(&spi_instance[device_master_id]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, spi_datacfg->length);
}
spi_instance[device_master_id]->ser = 1U << dev_param->spi_slave_param->spi_cs_select_id;
@ -202,9 +202,9 @@ static uint32 SpiWriteData(struct SpiHardwareDevice *spi_dev, struct SpiDataStan
spi_instance[device_master_id]->ssienr = 0x00;
transfer_done:
if (tx_buff) {
x_free(tx_buff);
}
if (tx_buff != NULL) {
x_free(tx_buff);
}
}
if (spi_datacfg->spi_cs_release) {

View File

@ -231,9 +231,9 @@ int MountFilesystem(const char *bus_name,
enum FilesystemType fs_type, const char *path)
{
struct MountPoint *mp = NULL, *itr;
struct Bus *bus;
struct Bus* bus = NULL;
HardwareDevType dev;
DriverType drv;
DriverType drv = NULL;
struct SysDoubleLinklistNode *node;
int ret = -EINVAL;

View File

@ -46,6 +46,7 @@ extern "C" {
#define FILESYS_DEBUG 0
#define NETDEV_DEBUG 0
#define WEBNET_DEBUG 0
#define WIZNET_DEBUG 0
#define SYS_KDEBUG_LOG(section, information) \
do { \

View File

@ -61,6 +61,9 @@ enum SmallSizeAllocSize {
#define SMALL_SIZE_32B(ITEMSIZE) ((ITEMSIZE + SIZEOF_DYNAMICALLOCNODE_MEM) * SMALL_NUMBER_32B) /* Calculate the total size for SIZEOF_32B blocks*/
#define SMALL_SIZE_64B(ITEMSIZE) ((ITEMSIZE + SIZEOF_DYNAMICALLOCNODE_MEM) * SMALL_NUMBER_64B) /* Calculate the total size for SIZEOF_64B blocks*/
#define FREE_LIST_LOCK() DISABLE_INTERRUPT()
#define FREE_LIST_UNLOCK(lock) ENABLE_INTERRUPT(lock)
/**
* The structure describes an allocated memory block from dynamic buddy memory.
*/
@ -632,66 +635,65 @@ void *x_malloc(x_size_t size)
register x_base lock = 0;
/* hold lock before allocation */
lock = CriticalAreaLock();
lock = FREE_LIST_LOCK();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
/* parameter detection */
/* parameter detection */
#ifdef MEM_EXTERN_SRAM
/* parameter detection */
if(size == 0 ){
CriticalAreaUnLock(lock);
return NONE;
}
if((size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)){
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
goto try_extmem;
}
/* parameter detection */
if (size == 0) {
FREE_LIST_UNLOCK(lock);
return NONE;
}
if ((size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)) {
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
goto try_extmem;
}
#else
/* parameter detection */
if((size == 0) || (size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)) {
CriticalAreaUnLock(lock);
return NONE;
}
/* parameter detection */
if ((size == 0) || (size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)) {
FREE_LIST_UNLOCK(lock);
return NONE;
}
#endif
/* determine allocation operation from static segments or dynamic buddy memory */
/* determine allocation operation from static segments or dynamic buddy memory */
#ifdef KERNEL_SMALL_MEM_ALLOC
if(size <= SIZEOF_32B) {
ret = ByteManager.static_manager[0].done->malloc(&ByteManager, SIZEOF_32B);
} else if (size <= SIZEOF_64B) {
ret = ByteManager.static_manager[1].done->malloc(&ByteManager, SIZEOF_64B);
}
if (size <= SIZEOF_32B) {
ret = ByteManager.static_manager[0].done->malloc(&ByteManager, SIZEOF_32B);
} else if (size <= SIZEOF_64B) {
ret = ByteManager.static_manager[1].done->malloc(&ByteManager, SIZEOF_64B);
}
#endif
if (ret == NONE) {
ret = ByteManager.dynamic_buddy_manager.done->malloc(&ByteManager.dynamic_buddy_manager, size, DYNAMIC_BLOCK_NO_EXTMEM_MASK);
if (ret != NONE) {
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
}
if (ret == NONE) {
ret = ByteManager.dynamic_buddy_manager.done->malloc(&ByteManager.dynamic_buddy_manager, size, DYNAMIC_BLOCK_NO_EXTMEM_MASK);
if (ret != NONE) {
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
}
#ifdef MEM_EXTERN_SRAM
try_extmem:
if(NONE == ret) {
for(i = 0; i < EXTSRAM_MAX_NUM; i++) {
if(NONE != ExtByteManager[i].done) {
ret = ExtByteManager[i].dynamic_buddy_manager.done->malloc(&ExtByteManager[i].dynamic_buddy_manager, size, DYNAMIC_BLOCK_EXTMEMn_MASK(i + 1));
if (ret){
CHECK(ExtByteManager[i].dynamic_buddy_manager.done->JudgeLegal(&ExtByteManager[i].dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
break;
}
}
}
}
try_extmem:
if (NONE == ret) {
for (i = 0; i < EXTSRAM_MAX_NUM; i++) {
if (NONE != ExtByteManager[i].done) {
ret = ExtByteManager[i].dynamic_buddy_manager.done->malloc(&ExtByteManager[i].dynamic_buddy_manager, size, DYNAMIC_BLOCK_EXTMEMn_MASK(i + 1));
if (ret) {
CHECK(ExtByteManager[i].dynamic_buddy_manager.done->JudgeLegal(&ExtByteManager[i].dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
break;
}
}
}
}
#endif
}
}
/* release lock */
CriticalAreaUnLock(lock);
return ret;
/* release lock */
FREE_LIST_UNLOCK(lock);
return ret;
}
/**
@ -702,49 +704,49 @@ try_extmem:
*
* @return pointer on success; NULL on failure
*/
void *x_realloc(void *pointer, x_size_t size)
void* x_realloc(void* pointer, x_size_t size)
{
x_size_t newsize = 0;
x_size_t oldsize = 0;
void *newmem = NONE;
struct DynamicAllocNode *oldnode = NONE;
x_size_t newsize = 0;
x_size_t oldsize = 0;
void* newmem = NONE;
struct DynamicAllocNode* oldnode = NONE;
/* the given pointer is NULL */
if (pointer == NONE)
return x_malloc(size);
/* the given pointer is NULL */
if (pointer == NONE)
return x_malloc(size);
/* parameter detection */
if (size == 0) {
x_free(pointer);
return NONE;
}
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager,pointer));
if (size == 0) {
x_free(pointer);
return NONE;
}
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager, pointer));
/* alignment and calculate the real size */
/* alignment and calculate the real size */
newsize = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
oldnode= PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
oldnode = PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(ByteManager.done->JudgeAllocated(oldnode));
/* achieve the old memory size */
if(ByteManager.done->JudgeStaticOrDynamic(oldnode)) {
if (ByteManager.done->JudgeStaticOrDynamic(oldnode)) {
oldsize = ((struct segment*)(long)(oldnode->size))->block_size;
} else {
} else {
oldsize = oldnode->size - SIZEOF_DYNAMICALLOCNODE_MEM;
}
}
/* allocate new memory */
newmem = x_malloc(size);
if(newmem == NONE) {
/* allocate new memory */
newmem = x_malloc(size);
if (newmem == NONE) {
return NONE;
}
}
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*) pointer,size > oldsize ? oldsize : size);
x_free(pointer);
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*)pointer, size > oldsize ? oldsize : size);
x_free(pointer);
return newmem;
return newmem;
}
/**
@ -755,22 +757,22 @@ void *x_realloc(void *pointer, x_size_t size)
*
* @return pointer on success; NULL on failure
*/
void *x_calloc(x_size_t count, x_size_t size)
void* x_calloc(x_size_t count, x_size_t size)
{
void *p = NONE;
void* p = NONE;
/* parameter detection */
if(count * size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)
if (count * size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)
return NONE;
/* calls x_malloc to allocate count * size memory */
p = x_malloc(count * size);
p = x_malloc(count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
return p;
return p;
}
/**
@ -778,52 +780,52 @@ void *x_calloc(x_size_t count, x_size_t size)
*
* @param pointer the memory to be released
*/
void x_free(void *pointer)
void x_free(void* pointer)
{
x_base lock = 0;
struct DynamicAllocNode *node = NONE;
x_base lock = 0;
struct DynamicAllocNode* node = NONE;
/* parameter detection */
if (pointer == NONE) {
return;
}
if (pointer == NONE) {
return;
}
/* hold lock before release */
lock = CriticalAreaLock();
lock = FREE_LIST_LOCK();
if (!ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager, pointer)) {
CriticalAreaUnLock(lock);
SYS_ERR("[%s] Freeing a unallocated address.\n", __func__);
return;
}
FREE_LIST_UNLOCK(lock);
SYS_ERR("[%s] Freeing a unallocated address.\n", __func__);
return;
}
node = PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
node = PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(ByteManager.done->JudgeAllocated(node));
/* judge release the memory block ro static_segment or dynamic buddy memory */
#ifdef KERNEL_SMALL_MEM_ALLOC
if(node->flag & STATIC_BLOCK_MASK) {
ByteManager.static_manager->done->release(pointer);
} else
if (node->flag & STATIC_BLOCK_MASK) {
ByteManager.static_manager->done->release(pointer);
} else
#endif
{
{
#ifdef MEM_EXTERN_SRAM
/* judge the pointer is not malloced from extern memory*/
if(0 == (node->flag & 0xFF0000)) {
ByteManager.dynamic_buddy_manager.done->release(&ByteManager,pointer);
}
/* judge the pointer is not malloced from extern memory*/
if (0 == (node->flag & 0xFF0000)) {
ByteManager.dynamic_buddy_manager.done->release(&ByteManager, pointer);
}
/* judge the pointer is malloced from extern memory*/
if(0 != (node->flag & 0xFF0000)) {
ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1].dynamic_buddy_manager.done->release(&ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1],pointer);
}
/* judge the pointer is malloced from extern memory*/
if (0 != (node->flag & 0xFF0000)) {
ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1].dynamic_buddy_manager.done->release(&ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1], pointer);
}
#else
ByteManager.dynamic_buddy_manager.done->release(&ByteManager, pointer);
#endif
}
ByteManager.dynamic_buddy_manager.done->release(&ByteManager, pointer);
#endif
}
/* release the lock */
CriticalAreaUnLock(lock);
/* release the lock */
FREE_LIST_UNLOCK(lock);
}
#ifdef MEM_EXTERN_SRAM
@ -834,43 +836,42 @@ void x_free(void *pointer)
* @param end_phy_address the end physical address for static and dynamic memory
* @param extsram_idx the idx of extsram chip
*/
void ExtSramInitBoardMemory(void *start_phy_address, void *end_phy_address, uint8 extsram_idx)
void ExtSramInitBoardMemory(void* start_phy_address, void* end_phy_address, uint8 extsram_idx)
{
register x_size_t offset = 0;
register x_size_t offset = 0;
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory *uheap = &ExtByteManager[extsram_idx].dynamic_buddy_manager;
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory* uheap = &ExtByteManager[extsram_idx].dynamic_buddy_manager;
/* align begin and end addr to page */
ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
KPrintf("%s: 0x%x-0x%x extsram_idx = %d\n",__func__,ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start,ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end, extsram_idx);
/* align begin and end addr to page */
ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
KPrintf("%s: 0x%x-0x%x extsram_idx = %d\n", __func__, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end, extsram_idx);
/* parameter detection */
if (ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start >= ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end) {
KPrintf("ExtSramInitBoardMemory, wrong address[0x%x - 0x%x]\n",
(x_ubase)start_phy_address, (x_ubase)end_phy_address);
return;
}
if (ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start >= ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end) {
KPrintf("ExtSramInitBoardMemory, wrong address[0x%x - 0x%x]\n",
(x_ubase)start_phy_address, (x_ubase)end_phy_address);
return;
}
uheap->mm_total_size = 0;
memset(uheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
memset(uheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
uheap->mm_freenode_list[offset - 1].next = &uheap->mm_freenode_list[offset];
uheap->mm_freenode_list[offset].prev = &uheap->mm_freenode_list[offset - 1];
}
ExtByteManager[extsram_idx].dynamic_buddy_manager.done = &DynamicDone;
ExtByteManager[extsram_idx].done = &NodeDone;
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
uheap->mm_freenode_list[offset - 1].next = &uheap->mm_freenode_list[offset];
uheap->mm_freenode_list[offset].prev = &uheap->mm_freenode_list[offset - 1];
}
ExtByteManager[extsram_idx].dynamic_buddy_manager.done = &DynamicDone;
ExtByteManager[extsram_idx].done = &NodeDone;
/* dynamic buddy memory initialization */
ExtByteManager[extsram_idx].dynamic_buddy_manager.done->init(&ExtByteManager[extsram_idx].dynamic_buddy_manager, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end - ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start);
ExtByteManager[extsram_idx].dynamic_buddy_manager.done->init(&ExtByteManager[extsram_idx].dynamic_buddy_manager, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start, ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_end - ExtByteManager[extsram_idx].dynamic_buddy_manager.dynamic_buddy_start);
}
#endif
@ -880,49 +881,48 @@ void ExtSramInitBoardMemory(void *start_phy_address, void *end_phy_address, uint
* @param start_phy_address the start physical address for static and dynamic memory
* @param end_phy_address the end physical address for static and dynamic memory
*/
void InitBoardMemory(void *start_phy_address, void *end_phy_address)
void InitBoardMemory(void* start_phy_address, void* end_phy_address)
{
register x_size_t offset = 0;
register x_size_t offset = 0;
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory *mheap = &ByteManager.dynamic_buddy_manager;
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory* mheap = &ByteManager.dynamic_buddy_manager;
/* align begin and end addr to page */
ByteManager.dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
ByteManager.dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
//KPrintf("%s: 0x%x-0x%x \n",__func__,ByteManager.dynamic_buddy_manager.dynamic_buddy_start,ByteManager.dynamic_buddy_manager.dynamic_buddy_end);
/* align begin and end addr to page */
ByteManager.dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
ByteManager.dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
// KPrintf("%s: 0x%x-0x%x \n",__func__,ByteManager.dynamic_buddy_manager.dynamic_buddy_start,ByteManager.dynamic_buddy_manager.dynamic_buddy_end);
/* parameter detection */
if (ByteManager.dynamic_buddy_manager.dynamic_buddy_start >= ByteManager.dynamic_buddy_manager.dynamic_buddy_end) {
//KPrintf("InitBoardMemory, wrong address[0x%x - 0x%x]\n", (x_ubase)start_phy_address, (x_ubase)end_phy_address);
if (ByteManager.dynamic_buddy_manager.dynamic_buddy_start >= ByteManager.dynamic_buddy_manager.dynamic_buddy_end) {
// KPrintf("InitBoardMemory, wrong address[0x%x - 0x%x]\n", (x_ubase)start_phy_address, (x_ubase)end_phy_address);
SYS_KDEBUG_LOG(KDBG_MEM, ("InitBoardMemory, wrong address[0x%x - 0x%x]\n", (x_ubase)start_phy_address, (x_ubase)end_phy_address));
return;
}
}
mheap->mm_total_size = 0;
memset(mheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
memset(mheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
mheap->mm_freenode_list[offset - 1].next = &mheap->mm_freenode_list[offset];
mheap->mm_freenode_list[offset].prev = &mheap->mm_freenode_list[offset - 1];
}
ByteManager.dynamic_buddy_manager.done = &DynamicDone;
ByteManager.static_manager[MM_SEGMENT_32B].done = &StaticDone;
ByteManager.static_manager[MM_SEGMENT_64B].done = &StaticDone;
ByteManager.done = &NodeDone;
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
mheap->mm_freenode_list[offset - 1].next = &mheap->mm_freenode_list[offset];
mheap->mm_freenode_list[offset].prev = &mheap->mm_freenode_list[offset - 1];
}
ByteManager.dynamic_buddy_manager.done = &DynamicDone;
ByteManager.static_manager[MM_SEGMENT_32B].done = &StaticDone;
ByteManager.static_manager[MM_SEGMENT_64B].done = &StaticDone;
ByteManager.done = &NodeDone;
/* dynamic buddy memory initialization */
ByteManager.dynamic_buddy_manager.done->init(&ByteManager.dynamic_buddy_manager, ByteManager.dynamic_buddy_manager.dynamic_buddy_start, ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start);
ByteManager.dynamic_buddy_manager.done->init(&ByteManager.dynamic_buddy_manager, ByteManager.dynamic_buddy_manager.dynamic_buddy_start, ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start);
/* dynamic static segments initialization */
#ifdef KERNEL_SMALL_MEM_ALLOC
ByteManager.static_manager->done->init(&ByteManager);
ByteManager.static_manager->done->init(&ByteManager);
#endif
}
@ -935,57 +935,55 @@ void InitBoardMemory(void *start_phy_address, void *end_phy_address)
*
* @return pointer on success; NULL on failure
*/
void *x_umalloc(x_size_t size)
void* x_umalloc(x_size_t size)
{
uint8 i = 0;
void *ret = NONE;
register x_base lock = 0;
uint8 i = 0;
void* ret = NONE;
register x_base lock = 0;
#ifdef MEM_EXTERN_SRAM
/* parameter detection */
if(size == 0 ){
return NONE;
}
if((size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)){
lock = CriticalAreaLock();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
goto try_extmem;
}
/* parameter detection */
if (size == 0) {
return NONE;
}
if ((size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)) {
lock = FREE_LIST_LOCK();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
goto try_extmem;
}
#else
/* parameter detection */
if((size == 0) || (size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory))
return NONE;
/* parameter detection */
if ((size == 0) || (size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory))
return NONE;
#endif
/* hold lock before allocation */
lock = CriticalAreaLock();
/* hold lock before allocation */
lock = FREE_LIST_LOCK();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
ret = UserByteManager.dynamic_buddy_manager.done->malloc(&UserByteManager.dynamic_buddy_manager,size,DYNAMIC_BLOCK_NO_EXTMEM_MASK);
if(ret != NONE)
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
ret = UserByteManager.dynamic_buddy_manager.done->malloc(&UserByteManager.dynamic_buddy_manager, size, DYNAMIC_BLOCK_NO_EXTMEM_MASK);
if (ret != NONE)
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
#ifdef MEM_EXTERN_SRAM
try_extmem:
if(NONE == ret) {
for(i = 0; i < EXTSRAM_MAX_NUM; i++) {
if(NONE != ExtByteManager[i].done) {
ret = ExtByteManager[i].dynamic_buddy_manager.done->malloc(&ExtByteManager[i].dynamic_buddy_manager, size, DYNAMIC_BLOCK_EXTMEMn_MASK(i + 1));
if (ret) {
CHECK(ExtByteManager[i].dynamic_buddy_manager.done->JudgeLegal(&ExtByteManager[i].dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
break;
}
}
}
}
if (NONE == ret) {
for (i = 0; i < EXTSRAM_MAX_NUM; i++) {
if (NONE != ExtByteManager[i].done) {
ret = ExtByteManager[i].dynamic_buddy_manager.done->malloc(&ExtByteManager[i].dynamic_buddy_manager, size, DYNAMIC_BLOCK_EXTMEMn_MASK(i + 1));
if (ret) {
CHECK(ExtByteManager[i].dynamic_buddy_manager.done->JudgeLegal(&ExtByteManager[i].dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
break;
}
}
}
}
#endif
/* release lock */
CriticalAreaUnLock(lock);
return ret;
/* release lock */
FREE_LIST_UNLOCK(lock);
return ret;
}
/**
@ -996,49 +994,49 @@ try_extmem:
*
* @return pointer on success; NULL on failure
*/
void *x_urealloc(void *pointer, x_size_t size)
void* x_urealloc(void* pointer, x_size_t size)
{
x_size_t newsize = 0;
x_size_t oldsize = 0;
void *newmem = NONE;
struct DynamicAllocNode *oldnode = NONE;
x_size_t newsize = 0;
x_size_t oldsize = 0;
void* newmem = NONE;
struct DynamicAllocNode* oldnode = NONE;
/* the given pointer is NULL */
if (pointer == NONE)
return x_umalloc(size);
/* the given pointer is NULL */
if (pointer == NONE)
return x_umalloc(size);
/* parameter detection */
if (size == 0) {
x_ufree(pointer);
return NONE;
}
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager,pointer));
if (size == 0) {
x_ufree(pointer);
return NONE;
}
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager, pointer));
/* alignment and calculate the real size */
/* alignment and calculate the real size */
newsize = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
oldnode= PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
oldnode = PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(UserByteManager.done->JudgeAllocated(oldnode));
/* achieve the old memory size */
if(UserByteManager.done->JudgeStaticOrDynamic(oldnode)) {
if (UserByteManager.done->JudgeStaticOrDynamic(oldnode)) {
oldsize = ((struct segment*)(oldnode->size))->block_size;
} else {
} else {
oldsize = oldnode->size - SIZEOF_DYNAMICALLOCNODE_MEM;
}
}
/* allocate new memory */
newmem = x_umalloc(size);
if(newmem == NONE) {
/* allocate new memory */
newmem = x_umalloc(size);
if (newmem == NONE) {
return NONE;
}
}
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*) pointer,size > oldsize ? oldsize : size);
x_ufree(pointer);
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*)pointer, size > oldsize ? oldsize : size);
x_ufree(pointer);
return newmem;
return newmem;
}
/**
@ -1049,22 +1047,22 @@ void *x_urealloc(void *pointer, x_size_t size)
*
* @return pointer on success; NULL on failure
*/
void *x_ucalloc(x_size_t count, x_size_t size)
void* x_ucalloc(x_size_t count, x_size_t size)
{
void *p = NONE;
void* p = NONE;
/* parameter detection */
if(count * size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory)
if (count * size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory)
return NONE;
/* calls x_malloc to allocate count * size memory */
p = x_umalloc(count * size);
p = x_umalloc(count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
return p;
return p;
}
/**
@ -1072,37 +1070,37 @@ void *x_ucalloc(x_size_t count, x_size_t size)
*
* @param pointer the memory to be released
*/
void x_ufree(void *pointer)
void x_ufree(void* pointer)
{
x_base lock = 0;
struct DynamicAllocNode *node = NONE;
x_base lock = 0;
struct DynamicAllocNode* node = NONE;
/* parameter detection */
if (pointer == NONE)
return ;
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager,pointer));
if (pointer == NONE)
return;
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager, pointer));
/* hold lock before release */
lock = CriticalAreaLock();
node = PTR2ALLOCNODE((char*)pointer-SIZEOF_DYNAMICALLOCNODE_MEM);
lock = FREE_LIST_LOCK();
node = PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(UserByteManager.done->JudgeAllocated(node));
#ifdef MEM_EXTERN_SRAM
/* judge the pointer is not malloced from extern memory*/
if(0 == (node->flag & 0xFF0000)) {
UserByteManager.dynamic_buddy_manager.done->release(&ByteManager,pointer);
}
/* judge the pointer is not malloced from extern memory*/
if (0 == (node->flag & 0xFF0000)) {
UserByteManager.dynamic_buddy_manager.done->release(&ByteManager, pointer);
}
/* judge the pointer is malloced from extern memory*/
if(0 != (node->flag & 0xFF0000)) {
ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1].dynamic_buddy_manager.done->release(&ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1],pointer);
}
/* judge the pointer is malloced from extern memory*/
if (0 != (node->flag & 0xFF0000)) {
ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1].dynamic_buddy_manager.done->release(&ExtByteManager[((node->flag & 0xFF0000) >> 16) - 1], pointer);
}
#else
UserByteManager.dynamic_buddy_manager.done->release(&UserByteManager,pointer);
UserByteManager.dynamic_buddy_manager.done->release(&UserByteManager, pointer);
#endif
/* release the lock */
CriticalAreaUnLock(lock);
/* release the lock */
FREE_LIST_UNLOCK(lock);
}
/**
@ -1213,8 +1211,8 @@ void ShowBuddy(void)
int lock = 0;
struct DynamicFreeNode *debug = NONE;
lock = CriticalAreaLock();
KPrintf("\n\033[41;1mlist memory information\033[0m\n", __func__);
lock = FREE_LIST_LOCK();
KPrintf("\n\033[41;1mlist memory information\033[0m\n", __func__);
for(int level = 0; level < MEM_LINKNRS; level++) {
KPrintf("%s level [%d],memory size[2^%d] \n",__func__, level,level +6);
for (debug = &ByteManager.dynamic_buddy_manager.mm_freenode_list[level]; ; ) {
@ -1258,7 +1256,7 @@ void ShowBuddy(void)
}
#endif
CriticalAreaUnLock(lock);
FREE_LIST_UNLOCK(lock);
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0),
ShowBuddy,ShowBuddy,list memory usage information);

View File

@ -94,7 +94,7 @@ static x_err_t _MsgQueueSend(struct MsgQueue* mq,
NULL_PARAM_CHECK(mq);
NULL_PARAM_CHECK(buffer);
SYS_KDEBUG_LOG(MSGQUEUE_DEBUG, ("[%s] mq_num_msgs: %d, block size: %d, needed size: %d\n", __func__, mq->num_msgs, mq->each_len, size));
SYS_KDEBUG_LOG(MSGQUEUE_DEBUG, ("[%s] mq_num_msgs: %d, block size: %d, needed size: %lu\n", __func__, mq->num_msgs, mq->each_len, size));
if (size > mq->each_len)
return -ERROR;

View File

@ -175,12 +175,12 @@ SWITCH:
HOOK(hook.assign.hook_Assign,(runningtask, new_task));
SYS_KDEBUG_LOG(KDBG_SCHED,
("[%d]switch to priority#%d "
"task:%.*s(sp:0x%08x), "
"from task:%.*s(sp: 0x%08x)\n",
isrManager.done->getCounter(), highest_prio,
NAME_NUM_MAX, new_task->task_base_info.name, new_task->stack_point,
NAME_NUM_MAX, runningtask->task_base_info.name, runningtask->stack_point));
("[%d]switch to priority#%ld "
"task:%.*s(sp:0x%8p), "
"from task:%.*s(sp: 0x%8p)\n",
isrManager.done->getCounter(), highest_prio,
NAME_NUM_MAX, new_task->task_base_info.name, new_task->stack_point,
NAME_NUM_MAX, runningtask->task_base_info.name, runningtask->stack_point));
Assign.smp_assign_done->SwitchToNew(runningtask,new_task);
}
@ -442,12 +442,12 @@ x_err_t YieldOsAssign(void)
HOOK(hook.assign.hook_Assign,(runningtask, new_task));
SYS_KDEBUG_LOG(KDBG_SCHED,
("[%d]switch to priority#%d "
"task:%.*s(sp:0x%08x), "
"from task:%.*s(sp: 0x%08x)\n",
isrManager.done->getCounter(), highest_prio,
NAME_NUM_MAX, new_task->task_base_info.name, new_task->stack_point,
NAME_NUM_MAX, runningtask->task_base_info.name, runningtask->stack_point));
("[%d]switch to priority#%ld "
"task:%.*s(sp:0x%8p), "
"from task:%.*s(sp: 0x%8p)\n",
isrManager.done->getCounter(), highest_prio,
NAME_NUM_MAX, new_task->task_base_info.name, new_task->stack_point,
NAME_NUM_MAX, runningtask->task_base_info.name, runningtask->stack_point));
Assign.smp_assign_done->SwitchToNew(runningtask,new_task);

View File

@ -112,6 +112,21 @@ KERNELPATHS += \
-I$(BSP_ROOT)/third_party_driver/drivers \
-I$(BSP_ROOT)/third_party_driver/lcd \
-I$(KERNEL_ROOT)/include #
ifeq ($(CONFIG_RESOURCES_LWIP),y)
KERNELPATHS += \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/compat \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/lwip \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/netif \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/lwip/apps \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/lwip/priv \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/include/lwip/prot \
-I$(KERNEL_ROOT)/resources/ethernet/LwIP/arch
KERNELPATHS += -I$(KERNEL_ROOT)/resources/include/netdev
endif
endif
ifeq ($(BSP_ROOT),$(KERNEL_ROOT)/board/kd233)

View File

@ -1,31 +1,31 @@
/**
******************************************************************************
* @file lwipopts.h
* @author MCD Application Team
* @version V1.1.0
* @date 31-July-2013
* @brief lwIP Options Configuration.
* This file is based on Utilities\lwip_v1.4.1\src\include\lwip\opt.h
* and contains the lwIP configuration for the STM32F4x7 demonstration.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
******************************************************************************
* @file lwipopts.h
* @author MCD Application Team
* @version V1.1.0
* @date 31-July-2013
* @brief lwIP Options Configuration.
* This file is based on Utilities\lwip_v1.4.1\src\include\lwip\opt.h
* and contains the lwIP configuration for the STM32F4x7 demonstration.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
#ifndef __LWIPOPTS_H__
#define __LWIPOPTS_H__
@ -34,282 +34,298 @@
/* ---------- Debug options ---------- */
#ifndef LWIP_DEBUG
#define LWIP_DEBUG 1
#define LWIP_DEBUG 1
// #define LWIP_SOCKET_DEBUG
// #define LWIP_TCPIP_DEBUG
// #define LWIP_MEMP_DEBUG
// #define LWIP_PBUF_DEBUG
// #define LWIP_TCP_INPUT_DEBUG
// #define LWIP_TCP_OUTPUT_DEBUG
// #define LWIP_NETIF_DEBUG
// #define LWIP_ETHARP_DEBUG
// #define LWIP_API_MSG_DEBUG
#endif
#ifdef LWIP_DEBUG
#ifdef LWIP_SYS_DEBUG
#define SYS_DEBUG LWIP_DBG_ON
#define SYS_DEBUG LWIP_DBG_ON
#else
#define SYS_DEBUG LWIP_DBG_OFF
#define SYS_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_ETHARP_DEBUG
#define ETHARP_DEBUG LWIP_DBG_ON
#define ETHARP_DEBUG LWIP_DBG_ON
#else
#define ETHARP_DEBUG LWIP_DBG_OFF
#define ETHARP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_PPP_DEBUG
#define PPP_DEBUG LWIP_DBG_ON
#define PPP_DEBUG LWIP_DBG_ON
#else
#define PPP_DEBUG LWIP_DBG_OFF
#define PPP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_MEM_DEBUG
#define MEM_DEBUG LWIP_DBG_ON
#define MEM_DEBUG LWIP_DBG_ON
#else
#define MEM_DEBUG LWIP_DBG_OFF
#define MEM_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_MEMP_DEBUG
#define MEMP_DEBUG LWIP_DBG_ON
#define MEMP_DEBUG LWIP_DBG_ON
#else
#define MEMP_DEBUG LWIP_DBG_OFF
#define MEMP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_PBUF_DEBUG
#define PBUF_DEBUG LWIP_DBG_ON
#define PBUF_DEBUG LWIP_DBG_ON
#else
#define PBUF_DEBUG LWIP_DBG_OFF
#define PBUF_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_API_LIB_DEBUG
#define API_LIB_DEBUG LWIP_DBG_ON
#define API_LIB_DEBUG LWIP_DBG_ON
#else
#define API_LIB_DEBUG LWIP_DBG_OFF
#define API_LIB_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_API_MSG_DEBUG
#define API_MSG_DEBUG LWIP_DBG_ON
#define API_MSG_DEBUG LWIP_DBG_ON
#else
#define API_MSG_DEBUG LWIP_DBG_OFF
#define API_MSG_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCPIP_DEBUG
#define TCPIP_DEBUG LWIP_DBG_ON
#define TCPIP_DEBUG LWIP_DBG_ON
#else
#define TCPIP_DEBUG LWIP_DBG_OFF
#define TCPIP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_NETIF_DEBUG
#define NETIF_DEBUG LWIP_DBG_ON
#define NETIF_DEBUG LWIP_DBG_ON
#else
#define NETIF_DEBUG LWIP_DBG_OFF
#define NETIF_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_SOCKETS_DEBUG
#define SOCKETS_DEBUG LWIP_DBG_ON
#define SOCKETS_DEBUG LWIP_DBG_ON
#else
#define SOCKETS_DEBUG LWIP_DBG_OFF
#define SOCKETS_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_DNS_DEBUG
#define DNS_DEBUG LWIP_DBG_ON
#define DNS_DEBUG LWIP_DBG_ON
#else
#define DNS_DEBUG LWIP_DBG_OFF
#define DNS_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_AUTOIP_DEBUG
#define AUTOIP_DEBUG LWIP_DBG_ON
#define AUTOIP_DEBUG LWIP_DBG_ON
#else
#define AUTOIP_DEBUG LWIP_DBG_OFF
#define AUTOIP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_DHCP_DEBUG
#define DHCP_DEBUG LWIP_DBG_ON
#define DHCP_DEBUG LWIP_DBG_ON
#else
#define DHCP_DEBUG LWIP_DBG_OFF
#define DHCP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_IP_DEBUG
#define IP_DEBUG LWIP_DBG_ON
#define IP_DEBUG LWIP_DBG_ON
#else
#define IP_DEBUG LWIP_DBG_OFF
#define IP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_IP_REASS_DEBUG
#define IP_REASS_DEBUG LWIP_DBG_ON
#define IP_REASS_DEBUG LWIP_DBG_ON
#else
#define IP_REASS_DEBUG LWIP_DBG_OFF
#define IP_REASS_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_ICMP_DEBUG
#define ICMP_DEBUG LWIP_DBG_ON
#define ICMP_DEBUG LWIP_DBG_ON
#else
#define ICMP_DEBUG LWIP_DBG_OFF
#define ICMP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_IGMP_DEBUG
#define IGMP_DEBUG LWIP_DBG_ON
#define IGMP_DEBUG LWIP_DBG_ON
#else
#define IGMP_DEBUG LWIP_DBG_OFF
#define IGMP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_UDP_DEBUG
#define UDP_DEBUG LWIP_DBG_ON
#define UDP_DEBUG LWIP_DBG_ON
#else
#define UDP_DEBUG LWIP_DBG_OFF
#define UDP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_DEBUG
#define TCP_DEBUG LWIP_DBG_ON
#define TCP_DEBUG LWIP_DBG_ON
#else
#define TCP_DEBUG LWIP_DBG_OFF
#define TCP_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_INPUT_DEBUG
#define TCP_INPUT_DEBUG LWIP_DBG_ON
#define TCP_INPUT_DEBUG LWIP_DBG_ON
#else
#define TCP_INPUT_DEBUG LWIP_DBG_OFF
#define TCP_INPUT_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_OUTPUT_DEBUG
#define TCP_OUTPUT_DEBUG LWIP_DBG_ON
#define TCP_OUTPUT_DEBUG LWIP_DBG_ON
#else
#define TCP_OUTPUT_DEBUG LWIP_DBG_OFF
#define TCP_OUTPUT_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_RTO_DEBUG
#define TCP_RTO_DEBUG LWIP_DBG_ON
#define TCP_RTO_DEBUG LWIP_DBG_ON
#else
#define TCP_RTO_DEBUG LWIP_DBG_OFF
#define TCP_RTO_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_CWND_DEBUG
#define TCP_CWND_DEBUG LWIP_DBG_ON
#define TCP_CWND_DEBUG LWIP_DBG_ON
#else
#define TCP_CWND_DEBUG LWIP_DBG_OFF
#define TCP_CWND_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_WND_DEBUG
#define TCP_WND_DEBUG LWIP_DBG_ON
#define TCP_WND_DEBUG LWIP_DBG_ON
#else
#define TCP_WND_DEBUG LWIP_DBG_OFF
#define TCP_WND_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_FR_DEBUG
#define TCP_FR_DEBUG LWIP_DBG_ON
#define TCP_FR_DEBUG LWIP_DBG_ON
#else
#define TCP_FR_DEBUG LWIP_DBG_OFF
#define TCP_FR_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_QLEN_DEBUG
#define TCP_QLEN_DEBUG LWIP_DBG_ON
#define TCP_QLEN_DEBUG LWIP_DBG_ON
#else
#define TCP_QLEN_DEBUG LWIP_DBG_OFF
#define TCP_QLEN_DEBUG LWIP_DBG_OFF
#endif
#ifdef LWIP_TCP_RST_DEBUG
#define TCP_RST_DEBUG LWIP_DBG_ON
#define TCP_RST_DEBUG LWIP_DBG_ON
#else
#define TCP_RST_DEBUG LWIP_DBG_OFF
#define TCP_RST_DEBUG LWIP_DBG_OFF
#endif
#endif /* LWIP_DEBUG */
#define LWIP_TIMEVAL_PRIVATE 0
#define LWIP_NO_UNISTD_H 0
#define LWIP_NO_STDDEF_H 0
#define LWIP_NO_STDINT_H 0
#define LWIP_NO_INTTYPES_H 0
#define LWIP_NO_LIMITS_H 0
#define LWIP_NO_CTYPE_H 0
#define LWIP_SOCKET_SELECT 1
#define LWIP_SOCKET_POLL 1
#define LWIP_TIMEVAL_PRIVATE 0
#define LWIP_NO_UNISTD_H 0
#define LWIP_NO_STDDEF_H 0
#define LWIP_NO_STDINT_H 0
#define LWIP_NO_INTTYPES_H 0
#define LWIP_NO_LIMITS_H 0
#define LWIP_NO_CTYPE_H 0
#define LWIP_SOCKET_SELECT 1
#define LWIP_SOCKET_POLL 1
#define LWIP_DHCP_DOES_ACD_CHECK 0
/**
* SYS_LIGHTWEIGHT_PROT==1: if you want inter-task protection for certain
* critical regions during buffer allocation, deallocation and memory
* allocation and deallocation.
*/
#define SYS_LIGHTWEIGHT_PROT 1
#define SYS_LIGHTWEIGHT_PROT 1
/**
* NO_SYS==1: Provides VERY minimal functionality. Otherwise,
* use lwIP facilities.
*/
#define NO_SYS 0
#define NO_SYS 0
/**
* NO_SYS_NO_TIMERS==1: Drop support for sys_timeout when NO_SYS==1
* Mainly for compatibility to old versions.
*/
#define NO_SYS_NO_TIMERS 0
#define NO_SYS_NO_TIMERS 0
/* ---------- Memory options ---------- */
/* MEM_ALIGNMENT: should be set to the alignment of the CPU for which
lwIP is compiled. 4 byte alignment -> define MEM_ALIGNMENT to 4, 2
byte alignment -> define MEM_ALIGNMENT to 2. */
#define MEM_ALIGNMENT 4
#ifndef RISCV_LWIP
#define MEM_ALIGNMENT 4
#else
#define MEM_ALIGNMENT 8
#endif
/* MEM_SIZE: the size of the heap memory. If the application will send
a lot of data that needs to be copied, this should be set high. */
#define MEM_SIZE (64*1024)
#ifndef RISCV_LWIP
#define MEM_SIZE (64 * 1024)
#else
#define MEM_SIZE (32 * 1024)
#endif
/* MEMP_NUM_PBUF: the number of memp struct pbufs. If the application
sends a lot of data out of ROM (or other static memory), this
should be set high. */
#define MEMP_NUM_PBUF 32
#define MEMP_NUM_PBUF 32
/* MEMP_NUM_UDP_PCB: the number of UDP protocol control blocks. One
per active UDP "connection". */
#define MEMP_NUM_UDP_PCB 4
#define MEMP_NUM_UDP_PCB 4
/* MEMP_NUM_TCP_PCB: the number of simulatenously active TCP
connections. */
#define MEMP_NUM_TCP_PCB 64
#define MEMP_NUM_TCP_PCB 64
/* MEMP_NUM_TCP_PCB_LISTEN: the number of listening TCP
connections. */
#define MEMP_NUM_TCP_PCB_LISTEN 2
/* MEMP_NUM_TCP_SEG: the number of simultaneously queued TCP
segments. */
#define MEMP_NUM_TCP_SEG 256
#define MEMP_NUM_TCP_SEG 256
/* MEMP_NUM_SYS_TIMEOUT: the number of simulateously active
timeouts. */
// #define MEMP_NUM_SYS_TIMEOUT 6
#define MEMP_NUM_SYS_TIMEOUT (LWIP_TCP + IP_REASSEMBLY + LWIP_ARP + (2*LWIP_DHCP) + LWIP_AUTOIP + LWIP_IGMP + LWIP_DNS + PPP_SUPPORT + (LWIP_IPV6 ? (1 + (2*LWIP_IPV6)) : 0))
#define MEMP_NUM_SYS_TIMEOUT (LWIP_TCP + IP_REASSEMBLY + LWIP_ARP + (2 * LWIP_DHCP) + LWIP_AUTOIP + LWIP_IGMP + LWIP_DNS + PPP_SUPPORT + (LWIP_IPV6 ? (1 + (2 * LWIP_IPV6)) : 0))
/* ---------- Pbuf options ---------- */
/* PBUF_POOL_SIZE: the number of buffers in the pbuf pool. */
#define PBUF_POOL_SIZE 255
#define PBUF_POOL_SIZE 255
/* PBUF_POOL_BUFSIZE: the size of each pbuf in the pbuf pool. */
// #define PBUF_POOL_BUFSIZE 1024
#define PBUF_POOL_BUFSIZE LWIP_MEM_ALIGN_SIZE(TCP_MSS+40+PBUF_LINK_ENCAPSULATION_HLEN+PBUF_LINK_HLEN)
#define PBUF_POOL_BUFSIZE LWIP_MEM_ALIGN_SIZE(TCP_MSS + 40 + PBUF_LINK_ENCAPSULATION_HLEN + PBUF_LINK_HLEN)
/* ---------- ARP options ---------- */
#define LWIP_ARP 1
#define ARP_TABLE_SIZE 10
#define ARP_QUEUEING 1
#define LWIP_ARP 1
#define ARP_TABLE_SIZE 10
#define ARP_QUEUEING 1
/* ---------- TCP options ---------- */
#define LWIP_TCP 1
#define TCP_TTL 255
#define LWIP_TCP 1
#define TCP_TTL 255
/* Controls if TCP should queue segments that arrive out of
order. Define to 0 if your device is low on memory. */
#define TCP_QUEUE_OOSEQ 1
#define TCP_QUEUE_OOSEQ 0
/* TCP Maximum segment size. */
#define TCP_MSS (1500 - 40) /* TCP_MSS = (Ethernet MTU - IP header size - TCP header size) */
#define TCP_MSS (1500 - 40) /* TCP_MSS = (Ethernet MTU - IP header size - TCP header size) */
/* TCP sender buffer space (bytes). */
#define TCP_SND_BUF (11*TCP_MSS)
#define TCP_SND_BUF (11 * TCP_MSS)
/* TCP_SND_QUEUELEN: TCP sender buffer space (pbufs). This must be at least
as much as (2 * TCP_SND_BUF/TCP_MSS) for things to work. */
#define TCP_SND_QUEUELEN (8* TCP_SND_BUF/TCP_MSS)
#define TCP_SND_QUEUELEN (8 * TCP_SND_BUF / TCP_MSS)
/* TCP receive window. */
#define TCP_WND 8192
#define TCP_WND 8192
// #define TCP_WND (12 * TCP_MSS)
/* Maximum number of retransmissions of data segments. */
#define TCP_MAXRTX 12
#define TCP_MAXRTX 12
/* Maximum number of retransmissions of SYN segments. */
#define TCP_SYNMAXRTX 4
#define TCP_SYNMAXRTX 4
/**
* LWIP_TCP_KEEPALIVE==1: Enable TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT
@ -317,21 +333,21 @@ a lot of data that needs to be copied, this should be set high. */
* in seconds. (does not require sockets.c, and will affect tcp.c)
*/
#ifndef LWIP_TCP_KEEPALIVE
#define LWIP_TCP_KEEPALIVE 1
#define LWIP_TCP_KEEPALIVE 1
#endif
/**
* LWIP_NETIF_HOSTNAME==1: Support netif hostname
*/
#ifndef LWIP_NETIF_HOSTNAME
#define LWIP_NETIF_HOSTNAME 1
#define LWIP_NETIF_HOSTNAME 1
#endif
/**
* LWIP_NETIF_API==1: Support netif api (in netifapi.c)
*/
#ifndef LWIP_NETIF_API
#define LWIP_NETIF_API 1
#define LWIP_NETIF_API 1
#endif
/**
@ -339,7 +355,7 @@ a lot of data that needs to be copied, this should be set high. */
* SO_SNDTIMEO processing.
*/
#ifndef LWIP_SO_SNDTIMEO
#define LWIP_SO_SNDTIMEO 1
#define LWIP_SO_SNDTIMEO 1
#endif
/**
@ -347,47 +363,44 @@ a lot of data that needs to be copied, this should be set high. */
* SO_RCVTIMEO processing.
*/
#ifndef LWIP_SO_RCVTIMEO
#define LWIP_SO_RCVTIMEO 1
#define LWIP_SO_RCVTIMEO 1
#endif
/**
* LWIP_SO_RCVBUF==1: Enable SO_RCVBUF processing.
*/
#ifndef LWIP_SO_RCVBUF
#define LWIP_SO_RCVBUF 1
#define LWIP_SO_RCVBUF 1
#endif
/**
* If LWIP_SO_RCVBUF is used, this is the default value for recv_bufsize.
*/
#ifndef RECV_BUFSIZE_DEFAULT
#define RECV_BUFSIZE_DEFAULT 8192
#define RECV_BUFSIZE_DEFAULT 8192
#endif
/* ---------- ICMP options ---------- */
#define LWIP_ICMP 1
#define LWIP_ICMP 1
/* ---------- DHCP options ---------- */
/* Define LWIP_DHCP to 1 if you want DHCP configuration of
interfaces. DHCP is not implemented in lwIP 0.5.1, however, so
turning this on does currently not work. */
#define LWIP_DHCP 1
#define LWIP_DHCP 1
/* ---------- UDP options ---------- */
#define LWIP_UDP 1
#define UDP_TTL 255
#define LWIP_UDP 1
#define UDP_TTL 255
/* ---------- Statistics options ---------- */
#define LWIP_PROVIDE_ERRNO 1
#define LWIP_PROVIDE_ERRNO 1
/* ---------- link callback options ---------- */
/* LWIP_NETIF_LINK_CALLBACK==1: Support a callback function from an interface
* whenever the link changes (i.e., link down)
*/
#define LWIP_NETIF_LINK_CALLBACK 0
#define LWIP_NETIF_LINK_CALLBACK 0
/*
--------------------------------------
---------- Checksum options ----------
@ -399,41 +412,40 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
- To use this feature let the following define uncommented.
- To disable it and process by CPU comment the the checksum.
*/
#define CHECKSUM_BY_HARDWARE
// #define CHECKSUM_BY_HARDWARE
#ifdef CHECKSUM_BY_HARDWARE
/* CHECKSUM_GEN_IP==0: Generate checksums by hardware for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 0
/* CHECKSUM_GEN_UDP==0: Generate checksums by hardware for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 0
/* CHECKSUM_GEN_TCP==0: Generate checksums by hardware for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 0
/* CHECKSUM_CHECK_IP==0: Check checksums by hardware for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 0
/* CHECKSUM_CHECK_UDP==0: Check checksums by hardware for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 0
/* CHECKSUM_CHECK_TCP==0: Check checksums by hardware for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 0
/* CHECKSUM_CHECK_ICMP==0: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 0
/* CHECKSUM_GEN_IP==0: Generate checksums by hardware for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 0
/* CHECKSUM_GEN_UDP==0: Generate checksums by hardware for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 0
/* CHECKSUM_GEN_TCP==0: Generate checksums by hardware for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 0
/* CHECKSUM_CHECK_IP==0: Check checksums by hardware for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 0
/* CHECKSUM_CHECK_UDP==0: Check checksums by hardware for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 0
/* CHECKSUM_CHECK_TCP==0: Check checksums by hardware for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 0
/* CHECKSUM_CHECK_ICMP==0: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 0
#else
/* CHECKSUM_GEN_IP==1: Generate checksums in software for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 1
/* CHECKSUM_GEN_UDP==1: Generate checksums in software for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 1
/* CHECKSUM_GEN_TCP==1: Generate checksums in software for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 1
/* CHECKSUM_CHECK_IP==1: Check checksums in software for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 1
/* CHECKSUM_CHECK_UDP==1: Check checksums in software for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 1
/* CHECKSUM_CHECK_TCP==1: Check checksums in software for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 1
/* CHECKSUM_CHECK_ICMP==1: Check checksums by software for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 1
/* CHECKSUM_GEN_IP==1: Generate checksums in software for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 1
/* CHECKSUM_GEN_UDP==1: Generate checksums in software for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 1
/* CHECKSUM_GEN_TCP==1: Generate checksums in software for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 1
/* CHECKSUM_CHECK_IP==1: Check checksums in software for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 1
/* CHECKSUM_CHECK_UDP==1: Check checksums in software for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 1
/* CHECKSUM_CHECK_TCP==1: Check checksums in software for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 1
/* CHECKSUM_CHECK_ICMP==1: Check checksums by software for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 1
#endif
/*
----------------------------------------------
---------- Sequential layer options ----------
@ -442,7 +454,11 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
/**
* LWIP_NETCONN==1: Enable Netconn API (require to use api_lib.c)
*/
#define LWIP_NETCONN 1
// #ifndef RISCV_LWIP
// #define LWIP_NETCONN 1
// #else
#define LWIP_NETCONN 1
// #endif
/*
------------------------------------
@ -452,76 +468,74 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
/**
* LWIP_SOCKET==1: Enable Socket API (require to use sockets.c)
*/
#define LWIP_SOCKET 1
#define LWIP_SOCKET 1
/**
* LWIP_SO_RCVBUF==1: Enable SO_RCVBUF processing.
*/
#define LWIP_SO_RCVBUF 1
#define LWIP_SO_RCVBUF 1
/**
* LWIP_SO_SNDTIMEO==1: Enable send timeout for sockets/netconns and
* SO_SNDTIMEO processing.
*/
/**
* LWIP_SO_SNDTIMEO==1: Enable send timeout for sockets/netconns and
* SO_SNDTIMEO processing.
*/
#ifndef LWIP_SO_SNDTIMEO
#define LWIP_SO_SNDTIMEO 1
#define LWIP_SO_SNDTIMEO 1
#endif
/**
* LWIP_SO_RCVTIMEO==1: Enable receive timeout for sockets/netconns and
* SO_RCVTIMEO processing.
*/
/**
* LWIP_SO_RCVTIMEO==1: Enable receive timeout for sockets/netconns and
* SO_RCVTIMEO processing.
*/
#ifndef LWIP_SO_RCVTIMEO
#define LWIP_SO_RCVTIMEO 1
#define LWIP_SO_RCVTIMEO 1
#endif
/**
* LWIP_SO_LINGER==1: Enable SO_LINGER processing.
*/
/**
* LWIP_SO_LINGER==1: Enable SO_LINGER processing.
*/
// #define LWIP_SO_LINGER 1
/* ---------- IP options ---------- */
/* Define IP_FORWARD to 1 if you wish to have the ability to forward
IP packets across network interfaces. If you are going to run lwIP
on a device with only one network interface, define this to 0. */
#define IP_FORWARD 0
#define IP_FORWARD 0
/* IP reassembly and segmentation.These are orthogonal even
* if they both deal with IP fragments */
#ifdef LWIP_REASSEMBLY_FRAG
#define IP_REASSEMBLY 1
#define IP_FRAG 1
#define IP_REASS_MAX_PBUFS 10
#define MEMP_NUM_REASSDATA 10
#define IP_REASSEMBLY 1
#define IP_FRAG 1
#define IP_REASS_MAX_PBUFS 10
#define MEMP_NUM_REASSDATA 10
#else
#define IP_REASSEMBLY 0
#define IP_FRAG 0
#define IP_REASSEMBLY 0
#define IP_FRAG 0
#endif
/* ---------- ICMP options ---------- */
#define ICMP_TTL 255
#define ICMP_TTL 255
/* ---------- DHCP options ---------- */
/* Define LWIP_DHCP to 1 if you want DHCP configuration of
interfaces. */
#define LWIP_DHCP 1
#define LWIP_DHCP 1
/* 1 if you want to do an ARP check on the offered address
(recommended). */
#define DHCP_DOES_ARP_CHECK (LWIP_DHCP)
#define DHCP_DOES_ARP_CHECK (LWIP_DHCP)
/* ---------- AUTOIP options ------- */
#define LWIP_AUTOIP 0
#define LWIP_DHCP_AUTOIP_COOP (LWIP_DHCP && LWIP_AUTOIP)
#define LWIP_UDPLITE 0
#define UDP_TTL 255
#define LWIP_AUTOIP 0
#define LWIP_DHCP_AUTOIP_COOP (LWIP_DHCP && LWIP_AUTOIP)
#define LWIP_UDPLITE 0
#define UDP_TTL 255
/* ---------- Statistics options ---------- */
#define LWIP_STATS 1
#define LWIP_STATS_DISPLAY 1
#define LWIP_STATS 1
#define LWIP_STATS_DISPLAY 1
/*
---------------------------------
@ -529,17 +543,17 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
---------------------------------
*/
#define DEFAULT_RAW_RECVMBOX_SIZE 8
#define DEFAULT_UDP_RECVMBOX_SIZE 8
#define DEFAULT_TCP_RECVMBOX_SIZE 8
#define DEFAULT_ACCEPTMBOX_SIZE 10
#define DEFAULT_RAW_RECVMBOX_SIZE 8
#define DEFAULT_UDP_RECVMBOX_SIZE 8
#define DEFAULT_TCP_RECVMBOX_SIZE 8
#define DEFAULT_ACCEPTMBOX_SIZE 12
#define DEFAULT_THREAD_PRIO 20
#define DEFAULT_THREAD_STACKSIZE 2048
#define DEFAULT_THREAD_PRIO 20
#define DEFAULT_THREAD_STACKSIZE 2048
#define TCPIP_THREAD_NAME "tcp"
#define TCPIP_THREAD_STACKSIZE 2048
#define TCPIP_MBOX_SIZE 16
#define TCPIP_THREAD_NAME "tcp"
#define TCPIP_THREAD_STACKSIZE 4096
#define TCPIP_MBOX_SIZE 16
#define TCPIP_THREAD_PRIO 30
/*
@ -547,9 +561,9 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
---------- Lwip Debug options ----------
----------------------------------------
*/
#define LWIP_IPV4 1
#define LWIP_RAW 1
#define LWIP_DNS 1
#define LWIP_IPV4 1
#define LWIP_RAW 1
#define LWIP_DNS 1
#if LWIP_DNS
#define LWIP_RAND rand
@ -559,9 +573,8 @@ The STM32F4x7 allows computing and verifying the IP, UDP, TCP and ICMP checksums
typedef unsigned int nfds_t;
#endif
#define MEMP_LIB_MALLOC 1
#define MEMP_MEM_MALLOC 1
#define MEMP_LIB_MALLOC 1
#define MEMP_MEM_MALLOC 1
#define lw_print KPrintf
#define lw_error KPrintf
@ -570,4 +583,3 @@ typedef unsigned int nfds_t;
#endif /* __LWIPOPTS_H__ */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -338,11 +338,11 @@ void lwip_config_input(struct netif* net)
th_id = sys_thread_new("eth_input", ethernetif_input, net, LWIP_TASK_STACK_SIZE, 30);
if (th_id >= 0) {
lw_print("%s %d successfully!\n", __func__, th_id);
} else {
lw_print("%s failed!\n", __func__);
}
// if (th_id >= 0) {
// lw_print("%s %d successfully!\n", __func__, th_id);
// } else {
// lw_print("%s failed!\n", __func__);
// }
}
void lwip_config_tcp(uint8_t enet_port, char* ip, char* mask, char* gw)
@ -387,7 +387,7 @@ void lwip_config_tcp(uint8_t enet_port, char* ip, char* mask, char* gw)
#endif
}
netif_set_default(&gnetif);
// netif_set_default(&gnetif);
netif_set_up(&gnetif);
lw_print("\r\n************************************************\r\n");

View File

@ -200,7 +200,9 @@ typedef uintptr_t mem_ptr_t;
#include <unistd.h>
#endif
#else /* SSIZE_MAX */
#ifndef RISCV_LWIP
typedef int ssize_t;
#endif
#define SSIZE_MAX INT_MAX
#endif /* SSIZE_MAX */

View File

@ -1,4 +1,4 @@
SRC_FILES := ping.c lwip_ping_demo.c lwip_tcp_demo.c lwip_udp_demo.c tcpecho_raw.c lwip_config_demo.c lwip_dhcp_demo.c iperf.c http_test.c
# SRC_FILES := ping.c lwip_ping_demo.c lwip_tcp_demo.c lwip_udp_demo.c tcpecho_raw.c lwip_config_demo.c lwip_dhcp_demo.c iperf.c
# SRC_FILES := ping.c lwip_ping_demo.c lwip_config_demo.c lwip_dhcp_demo.c iperf.c http_test.c
SRC_FILES := ping.c lwip_ping_demo.c lwip_tcp_demo.c lwip_udp_demo.c tcpecho_raw.c lwip_config_demo.c lwip_dhcp_demo.c iperf.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -9,7 +9,7 @@ void httpc_app_recv_end(void *arg, httpc_result_t httpc_result, u32_t rx_content
httpc_state_t **req = (httpc_state_t**)arg;
LWIP_DEBUGF(LWIP_DEBUG, ("[HTTPC] Transfer finished. rx_content_len is %lu\r\n", rx_content_len));
printf("[HTTPC] Transfer finished. rx_content_len is %lu\r\n", rx_content_len);
printf("[HTTPC] Transfer finished. rx_content_len is %u\r\n", rx_content_len);
*req = NULL;
}

View File

@ -266,6 +266,8 @@ void iperf_server_worker(void* arg) {
struct sock_conn_cb *sccb = (struct sock_conn_cb *)arg;
x_ticks_t tick1, tick2;
int cur_tid = GetKTaskDescriptor()->id.id;
uint8_t *recv_data = (uint8_t *)malloc(IPERF_BUFSZ);
if(recv_data == NULL) {
KPrintf("[%s] No Memory.\n", __func__);
@ -282,8 +284,6 @@ void iperf_server_worker(void* arg) {
(void *) &flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
int cur_tid = GetKTaskDescriptor()->id.id;
tick1 = CurrentTicksGain();
while (param.mode != IPERF_MODE_STOP) {
bytes_received = recv(sccb->connected, recv_data, IPERF_BUFSZ, 0);
@ -393,7 +393,7 @@ __exit:
void iperf_server(void *thread_param)
{
uint8_t *recv_data;
uint8_t* recv_data = NULL;
socklen_t sin_size;
x_ticks_t tick1, tick2;
int sock = -1, connected, bytes_received;

View File

@ -41,10 +41,10 @@ void LwipSetIPTest(int argc, char* argv[])
{
if (argc >= 4) {
printf("lw: [%s] ip %s mask %s gw %s netport %s\n", __func__, argv[1], argv[2], argv[3], argv[4]);
sscanf(argv[1], "%d.%d.%d.%d", &lwip_ipaddr[0], &lwip_ipaddr[1], &lwip_ipaddr[2], &lwip_ipaddr[3]);
sscanf(argv[2], "%d.%d.%d.%d", &lwip_netmask[0], &lwip_netmask[1], &lwip_netmask[2], &lwip_netmask[3]);
sscanf(argv[3], "%d.%d.%d.%d", &lwip_gwaddr[0], &lwip_gwaddr[1], &lwip_gwaddr[2], &lwip_gwaddr[3]);
sscanf(argv[4], "%d", &enet_id);
sscanf(argv[1], "%hhd.%hhd.%hhd.%hhd", &lwip_ipaddr[0], &lwip_ipaddr[1], &lwip_ipaddr[2], &lwip_ipaddr[3]);
sscanf(argv[2], "%hhd.%hhd.%hhd.%hhd", &lwip_netmask[0], &lwip_netmask[1], &lwip_netmask[2], &lwip_netmask[3]);
sscanf(argv[3], "%hhd.%hhd.%hhd.%hhd", &lwip_gwaddr[0], &lwip_gwaddr[1], &lwip_gwaddr[2], &lwip_gwaddr[3]);
sscanf(argv[4], "%hhd", &enet_id);
if (0 == enet_id) {
printf("save eth0 info\n");
@ -59,7 +59,7 @@ void LwipSetIPTest(int argc, char* argv[])
}
} else if (argc == 2) {
printf("lw: [%s] set eth0 ipaddr %s \n", __func__, argv[1]);
sscanf(argv[1], "%d.%d.%d.%d", &lwip_ipaddr[0], &lwip_ipaddr[1], &lwip_ipaddr[2], &lwip_ipaddr[3]);
sscanf(argv[1], "%hhd.%hhd.%hhd.%hhd", &lwip_ipaddr[0], &lwip_ipaddr[1], &lwip_ipaddr[2], &lwip_ipaddr[3]);
memcpy(lwip_eth0_ipaddr, lwip_ipaddr, strlen(lwip_ipaddr));
}
// sys_thread_new("SET ip address", LwipSetIPTask, &enet_id, LWIP_TASK_STACK_SIZE, LWIP_DEMO_TASK_PRIO);

View File

@ -144,13 +144,13 @@ void LwipDHCPTest(void)
/* Print DHCP progress */
if(LwipPrintDHCP(&gnetif))
{
sscanf(ipaddr_ntoa(&gnetif.ip_addr), "%d.%d.%d.%d", &lwip_ipaddr[0], &lwip_ipaddr[1],
sscanf(ipaddr_ntoa(&gnetif.ip_addr), "%hhd.%hhd.%hhd.%hhd", &lwip_ipaddr[0], &lwip_ipaddr[1],
&lwip_ipaddr[2], &lwip_ipaddr[3]);
sscanf(ipaddr_ntoa(&gnetif.netmask), "%d.%d.%d.%d", &lwip_netmask[0], &lwip_netmask[1],
sscanf(ipaddr_ntoa(&gnetif.netmask), "%hhd.%hhd.%hhd.%hhd", &lwip_netmask[0], &lwip_netmask[1],
&lwip_netmask[2], &lwip_netmask[3]);
sscanf(ipaddr_ntoa(&gnetif.gw), "%d.%d.%d.%d", &lwip_gwaddr[0], &lwip_gwaddr[1],
sscanf(ipaddr_ntoa(&gnetif.gw), "%hhd.%hhd.%hhd.%hhd", &lwip_gwaddr[0], &lwip_gwaddr[1],
&lwip_gwaddr[2], &lwip_gwaddr[3]);
break;

View File

@ -47,8 +47,7 @@ void LwipPingTest(int argc, char *argv[])
printf("lw: [%s] ping %s\n", __func__, argv[1]);
if(isdigit(argv[1][0]))
{
if(sscanf(argv[1], "%d.%d.%d.%d", &arg_ip[0], &arg_ip[1], &arg_ip[2], &arg_ip[3]) == EOF)
{
if (sscanf(argv[1], "%hhd.%hhd.%hhd.%hhd", &arg_ip[0], &arg_ip[1], &arg_ip[2], &arg_ip[3]) == EOF) {
lw_notice("input wrong ip\n");
return;
}

View File

@ -28,7 +28,7 @@
#include "tcpecho_raw.h"
char tcp_demo_msg[LWIP_TEST_MSG_SIZE] = { 0 };
char tcp_server_ip[] = {192, 168, 130, 2};
u16_t tcp_server_port = 80;
u32_t tcp_server_port = 80;
int tcp_send_num = 0;
int tcp_send_task_on = 0;
uint32 tcp_interval = 50;
@ -101,14 +101,13 @@ void LwipTcpSendTest(int argc, char *argv[])
strcat(tcp_demo_msg, "\r\n");
if(argc >= 3) {
if(sscanf(argv[2], "%d.%d.%d.%d:%d", &tcp_server_ip[0], &tcp_server_ip[1], &tcp_server_ip[2], &tcp_server_ip[3], &tcp_server_port) == EOK)
{
sscanf(argv[2], "%d.%d.%d.%d", &tcp_server_ip[0], &tcp_server_ip[1], &tcp_server_ip[2], &tcp_server_ip[3]);
if (sscanf(argv[2], "%hhd.%hhd.%hhd.%hhd:%d", &tcp_server_ip[0], &tcp_server_ip[1], &tcp_server_ip[2], &tcp_server_ip[3], &tcp_server_port) == EOK) {
sscanf(argv[2], "%hhd.%hhd.%hhd.%hhd", &tcp_server_ip[0], &tcp_server_ip[1], &tcp_server_ip[2], &tcp_server_ip[3]);
}
sscanf(argv[3], "%d", &tcp_send_num);
sscanf(argv[4], "%d", &tcp_interval);
}
KPrintf("connect ipaddr %d.%d.%d.%d:%d send msg %d times\n", tcp_server_ip[0], tcp_server_ip[1], tcp_server_ip[2], tcp_server_ip[3], tcp_server_port, tcp_send_num);
KPrintf("connect ipaddr %hhd.%hhd.%hhd.%hhd:%hhd send msg %d times\n", tcp_server_ip[0], tcp_server_ip[1], tcp_server_ip[2], tcp_server_ip[3], tcp_server_port, tcp_send_num);
lwip_config_tcp(enet_port, lwip_ipaddr, lwip_netmask, lwip_gwaddr);
memcpy(param.ip, tcp_server_ip, 4);
@ -128,7 +127,7 @@ void LwipTcpRecvTest(void)
lwip_config_tcp(enet_port, lwip_ipaddr, lwip_netmask, lwip_gwaddr);
uint8_t *recv_data;
uint8_t* recv_data = NULL;
socklen_t sin_size;
int sock = -1, connected, bytes_received, i;
struct sockaddr_in server_addr, client_addr;

View File

@ -165,12 +165,12 @@ static int LwipUdpSend(int argc, char* argv[])
}
// translate string to array
sscanf(ip_ptr, "%d.%d.%d.%d", &get_udp_test_info()->ip[0], &get_udp_test_info()->ip[1], &get_udp_test_info()->ip[2], &get_udp_test_info()->ip[3]);
sscanf(ip_ptr, "%hhd.%hhd.%hhd.%hhd", &get_udp_test_info()->ip[0], &get_udp_test_info()->ip[1], &get_udp_test_info()->ip[2], &get_udp_test_info()->ip[3]);
int msg_len = strlen(msg_ptr);
strncpy(udp_demo_buffer, msg_ptr, msg_len < UDP_BUFFER_SIZE ? msg_len : UDP_BUFFER_SIZE);
/* start task */
KPrintf("[%s] gw %d.%d.%d.%d:%d send time %d udp_interval %d\n", __func__,
KPrintf("[%s] gw %hhd.%hhd.%hhd.%hhd:%d send time %d udp_interval %d\n", __func__,
get_udp_test_info()->ip[0], get_udp_test_info()->ip[1], get_udp_test_info()->ip[2], get_udp_test_info()->ip[3],
get_udp_test_info()->port,
get_udp_test_info()->num,
@ -191,7 +191,7 @@ void LwipUdpRecvTest(void)
//init lwip and net dirver
lwip_config_net(enet_port, lwip_ipaddr, lwip_netmask, lwip_gwaddr);
uint8_t *recv_data;
uint8_t* recv_data = NULL;
socklen_t sin_size;
int sock = -1, connected, bytes_received, i;
struct sockaddr_in server_addr, client_addr;

View File

@ -119,7 +119,7 @@ tcpecho_raw_ack_size(struct tcp_pcb *tpcb, int ack_len)
// ack message
ack_buf = pbuf_alloc(PBUF_TRANSPORT, TCP_ACK_MSG_SIZE, PBUF_RAM);
snprintf(ack_buf->payload, TCP_ACK_MSG_SIZE, "%d\n\0", ack_len);
snprintf(ack_buf->payload, TCP_ACK_MSG_SIZE, "%d\n", ack_len);
ack_buf->len = strlen(ack_buf->payload);
ack_buf->tot_len = strlen(ack_buf->payload);
ack_buf->next = NULL;

View File

@ -116,7 +116,7 @@ static int CopyRecursive(const char *from, const char *to, char *buf,
DIR *dirp;
struct dirent *dirent;
char *sub_from, *sub_to;
char *sub_from = NULL, *sub_to = NULL;
ret = mkdir(to, 0777);
if (ret < 0) {

View File

@ -31,7 +31,7 @@ static void PrintOctal(char *str, int len, uint64_t value)
char *cp;
int written_len;
written_len = sprintf(buf, "%0*llo", len, value);
written_len = sprintf(buf, "%0*lo", len, value);
cp = buf + written_len - len;
if (*cp == '0')